Acessibilidade / Reportar erro
Brazilian Journal of Chemical Engineering, Volume: 23, Número: 1, Publicado: 2006
  • Theoretical and experimental study of the effects of scale-up on mixing time for a stirred-tank bioreactor Biotechnology

    Bonvillani, P.; Ferrari, M. P.; Ducrós, E. M.; Orejas, J. A.

    Resumo em Inglês:

    Mixing time is one of the criteria most widely used to characterize mixing intensity in bioprocesses. In bioreactors, mixing mainly depends on amount of energy consumed, reactor and stirrer shapes, airing speed and the rheology of the medium. In this work we experimentally determined the mixing times for a lab-scale bioreactor equipped with a stirrer propelled by two Rushton turbines. From these experiments we could obtain expressions to evaluate the effects of stirring speed, superficial gas velocity, specific power consumption and system geometry on mixing times under various flow regimes. The resulting correlations were employed to analyze the effect of scale-up on mixing times for the production of Staphylococcus aureus Smith.
  • Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production Biotechnology

    Marton, J. M.; Felipe, M. G. A.; Almeida e Silva, J. B.; Pessoa Júnior, A.

    Resumo em Inglês:

    Xylitol has sweetening, anticariogenic and clinical properties that have attracted the attention of the food and pharmaceutical industries. The conversion of sugars from lignocellulosic biomass into xylitol by D-xylose-fermenting yeast represents an alternative to the chemical process for producing this polyol. A good source of D-xylose is sugarcane bagasse, which can be hydrolyzed with dilute acid. However, acetic acid, which is toxic to the yeast, also appears in the hydrolysate, inhibiting microbe metabolism. Xylitol production depends on the initial D-xylose concentration, which can be increased by concentrating the hydrolysate by vacuum evaporation. However, with this procedure the amount of acetic acid is also increased, aggravating the problem of cell inhibition. Hydrolysate treatment with powdered activated charcoal is used to remove or decrease the concentration of this inhibitor, improving xylitol productivity as a consequence. Our work was an attempt to improve the fermentation of Candida guilliermondii yeast in sugarcane bagasse hydrolysate by treating the medium with seven types of commercial powdered activated charcoals (Synth, Carbon Delta A, Carbon Delta G, Carbon 117, Carbon 118L, Carbon 147 and Carvorite), each with its own unique physicochemical properties. Various adsorption conditions were established for the variables temperature, contact time, shaking, pH and charcoal concentration. The experiments were based on multivariate statistical concepts, with the application of fractional factorial design techniques to identify the variables that are important in the process. Subsequently, the levels of these variables were quantified by overlaying the level curves, which permitted the establishment of the best adsorption conditions for attaining high levels of xylitol volumetric productivity and D-xylose-to-xylitol conversion. This procedure consisted in increasing the original pH of the hydrolysate to 7.0 with CaO and reducing it to 5.5 with H3PO4. Next, the hydrolysate was treated under adsorption conditions employing CDA powdered activated charcoal (1%) for 30 min at 60ºC, 100 rpm and pH 2.5. The optimized xylitol volumetric productivity (0.50 g/L h) corresponded to a D-xylose-to-xylitol conversion of 0.66 g/g.
  • Semicontinuous cultivation of the cyanobacterium Spirulina platensis in a closed photobioreactor Biotechnology

    Reichert, C. C.; Reinehr, C. O.; Costa, J. A. V.

    Resumo em Inglês:

    The cultivation of photosynthetic microorganisms such as the cyanobacterium Spirulina platensis has been studied by researchers in many countries because these organisms can produce products with industrial potential. We studied the specific growth rate (µx, day-1) and productivity (Px, in mg/L/day of Spirulina platensis biomass, dry weight basis) of two S. platensis strains (LEB-52 and Paracas) growing in aerated semicontinuous culture in two-liter Erlenmeyer flasks for 90 days (2160 h) at 30°C under 2500 lux of illumination in a 12 h photoperiod. Independent of the S. platensis strain used we found that low biomass concentrations (0.50 g/L) and high renewal rates (50% v/v) resulted in a high specific growth rate (µx = 0.111 day-1) and high productivity (Px = 42.3 mg/L/day). These values are two to four times higher than those obtained in simple batch cultivation and indicate that the semicontinuous cultivation of S. platensis is viable.
  • Biological phosphate removal using a degradable carbon source produced by hydrothermal treatment of excess sludge Biotechnology

    Haraguchi, L. H.; Fujita, M.; Daimon, H.; Fujie, K.; Mohamed, R. S.

    Resumo em Inglês:

    The possibility of reusing excess sludge treated by hydrothermal reaction for the purpose of improving the efficiency of the enhanced biological phosphate removal (EBPR) process was investigated. Excess sludge from a fish-processing industry located in Japan was treated in high-temperature and high-pressure water, at a reaction temperature ranging from 200 to 400ºC, a pressure of 1.8 to 30MPa and a constant reaction time of 7 min. For the conditions tested, the results showed that when the reaction temperature was increased the content of readily biodegradable substrate in the total COD Cr increased. In addition, the amount of some volatile fatty acids (VFAs) produced by the hydrothermal reaction increased as reaction temperature increased. From the phosphate release tests under anaerobic conditions, it was possible to demonstrate that not only the VFAs, but also the readily and slowly biodegradable substrates are used as potential carbon source by the phosphate-accumulating organisms (PAOs).
  • Using a medium of free amino acids to produce penicillin g acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945 Biotechnology

    Silva, R. G.; Souza, V. R.; Nucci, E. R.; Pinotti, L. M.; Cruz, A. J. G.; Giordano, R. C.; Giordano, R. L.C.

    Resumo em Inglês:

    The production of penicillin G acylase (PGA, an important industrial enzyme) from a wild strain of Bacillus megaterium using a pool of free amino acids as substrate was studied in a bench-scale bioreactor. Experiments carried out in shakers showed that the substitution of casein for free amino acids in the presence of cheese whey was the culture medium that provided the highest productivity. Several cultivations were carried out in a bioreactor operated in either batch or fed-batch mode. Batch runs showed that enzyme production is associated with microorganism growth. The following set of amino acids was preferentially consumed: Ala, Arg, Asp, Gly, Lys, Ser, Thr and Trp. On the other hand, the rates of consumption of His, Ile, Leu, Met, Phe, Pro, Tyr and Val were lower.
  • Properties of chemically modified gelatin films Food Science And Engineering

    Carvalho, R. A. de; Grosso, C. R. F.

    Resumo em Inglês:

    Edible and/or biodegradable films usually have limited water vapor barriers, making it difficult to use them. Thus, the objective of this work was to evaluate the effect of a chemical reticulation treatment with formaldehyde and glyoxal on the mechanical properties, water vapor permeability, solubility and color parameters of gelatin-based films. Formaldehyde and glyoxal were added to the filmogenic solution in concentrations ranging from 3.8 to 8.8 mmoles/100 mL of filmogenic solution and 6.3 to 26.3 mmoles/100 mL of filmogenic solution, respectively. The treatments caused a reduction in permeability to water vapor and in solubility. Only the treatment with formaldehyde caused a significant increase in rupture tension for concentrations above 6.3 mmoles/100 mL of filmogenic solution. Scanning electron microscopy indicated a loss of matrix orientation due to the chemical reticulation treatment.
  • The effects of sucrose on the mechanical properties of acid milk proteins-kappa-carrageenan gels Food Science And Engineering

    Sabadini, E.; Hubinger, M. D.; Cunha, R. L.

    Resumo em Inglês:

    Mechanical properties have been widely correlated with textural characteristics to determine the interactions during the process formation of dairy gel. These interactions are strongly affected by process conditions and system composition. In the present study, the rheological of acid-induced protein dairy gels with (2(7-3)) and without (2(6-2)) sucrose and subjected to small and large deformations were studied using an experimental design. The independent variables were the sodium caseinate, whey protein concentrate (WPC), carrageenan and sucrose concentrations as well as stirring speed and heat treatment time and temperature. Mechanical deformation tests were performed at 0.1, 1, 5, and 9 mm/s up to 80% of initial height. A heavy dependence of rupture stress on increasing crosshead speed and the formation of harder gels with the addition of sucrose were observed. Moreover the elastic and viscous moduli, obtained by fitting the Maxwell model to stress relaxation data, increased with increasing addition of sucrose. These results can be explained by preferential hydration of the casein with sucrose, causing an induction of casein-polysaccharide and casein-casein interactions.
  • A bilevel decomposition technique for the optimal planning of offshore platforms Process System Engineering

    Carvalho, M.C.A.; Pinto, J.M.

    Resumo em Inglês:

    There is a great incentive for developing systematic approaches that effectively identify strategies for planning oilfield complexes. This paper proposes an MILP that relies on a reformulation of the model developed by Tsarbopoulou (UCL M.S. Dissertation, London, 2000). Moreover, a bilevel decomposition technique is applied to the MILP. A master problem determines the assignment of platforms to wells and a planning subproblem calculates the timing for fixed assignments. Furthermore, a heuristic search procedure that relies on the distance between platforms and wells is applied in order to reduce the search region. Results show that the decomposition approach using heuristic generates optimal solutions for instances of up to 500 wells and 25 platforms in 10 discrete time periods that otherwise could not be solved with a full-scale approach. One important feature regarding these instances is that they correspond to problems of real-world dimension.
  • Oxidation of limonene catalyzed by Metal(Salen) complexes Reactors Engineering And Catalysis

    Lima, L. F.; Corraza, M. L.; Cardozo-Filho, L.; Márquez-Alvarez, H.; Antunes, O. A. C.

    Resumo em Inglês:

    The compound R-(+)limonene is available and cheap than its oxidized products. Consequently, the selective oxidation of R(+)limonene has attracted attention as a promising process for the production of compounds with a higher market value, such as cis/trans-1,2-limoneneoxide, cis/trans-carveol and/or carvone. One of the these processes, described in the recent literature, is submission of R-(+)limonene to an oxidation reaction catalyzed by neutral or cationic Metal(Salen) complexes, in the presence of effective terminal oxidants such as NaOCl or PhIO. These reactions are commonly carried out in organic solvents (dichromethane, ethyl acetate, acetonitrile or acetone). Thus, the main objective of the present work was to study the effect of several factors (type of oxidant, catalyst, solvent and time) on reaction selectivity for the high-priced compounds referred to above. For this purposes, experimental statistical multivariate analysis was used in conjunction with a complete experimental design. From the results it was observed that for the three targeted products (1,2-limoneneoxide, carveol or carvone) some factors, including the nature of the terminal oxidant and the catalyst, were significant for product selectivity (with a confidence level of 95%). Therefore, this statistical analysis proved to be suitable for choosing of the best reaction conditions for a specific desired product.
  • Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures Thermodynamics

    Mandagarán, B. A.; Campanella, E. A.

    Resumo em Inglês:

    A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.
  • Extraction/fractionation and deacidification of wheat germ oil using supercritical carbon dioxide Thermodynamics

    Zacchi, P.; Daghero, J.; Jaeger, P.; Eggers, R.

    Resumo em Inglês:

    Wheat germ oil was obtained by mechanical pressing using a small-scale screw press and by supercritical extraction in a pilot plant. With this last method, different pressures and temperatures were tested and the tocopherol concentration in the extract was monitored during extraction. Then supercritical extracted oil as well as commercial pressed oil were deacidified in a countercurrent column using supercritical carbon dioxide as solvent under different operating conditions. Samples of extract, refined oil and feed oil were analyzed for free fatty acids (FFA) and tocopherol contents. The results show that oil with a higher tocopherol content can be obtained by supercritical extraction-fractionation and that FFA can be effectively removed by countercurrent rectification while the tocopherol content is only slightly reduced.
  • Synthesis of dimethyl carbonate in supercritical carbon dioxide Thermodynamics

    Ballivet-Tkatchenko, D.; Ligabue, R. A.; Plasseraud, L.

    Resumo em Inglês:

    The reactivity of carbon dioxide with methanol to form dimethyl carbonate was studied in the presence of the n-butylmethoxytin compounds n-Bu3SnOCH3, n-Bu2Sn(OCH3)2 , and [n-Bu2(CH3O)Sn]2 O. The reaction occurred under solventless conditions at 423 K and was produced by an increase in CO2 pressure. This beneficial effect is primarily attributed to phase behavior. The mass transfer under liquid-vapor biphasic conditions was not limiting when the system reached the supercritical state for a CO2 pressure higher than 16 MPa. Under these conditions, CO2 acted as a reactant and a solvent.
  • Application of interval analysis for gibbs and helmholtz free energy global minimization in phase stability analysis Thermodynamics

    Souza, A. T.; Cardozo-Filho, L.; Wolff, F.; Guirardello, R.

    Resumo em Inglês:

    The tangent plane criterion has become important for a correct solution evaluation phase and chemical of equilibrium problem. This method, applicable to single and multiphase systems, is mainly used for a single equation of state modeling all phases involved. The present work is mainly concerned with the application of interval analysis methods for global energy minimization in high-pressure phase stability problems. Two approaches are applied: (i) the Gibbs free energy global minimization under conditions of constant temperature and pressure and (ii) the Helmholtz free energy density global minimization under conditions of constant temperature and volume. Five case studies, one ternary and four binary systems, are analyzed in connection with the Peng-Robinson equation of state (PREOS) model. Five more case studies, for the CO2 + trans-2-hexen-1-ol system at high pressures, are used to compare different methods of phase equilibrium calculation with the approach using interval analysis. Finally, a complex system, clove oil + CO2, is analyzed. The results indicate that the interval analysis method is robust and reliable for all the problems studied.
  • Measurement of the electrostatic charge in airborne particles: II - particle charge distribution of different aerosols Transport Phenomena

    Rodrigues, M. V.; Marra Jr., W. D.; Almeida, R. G.; Coury, J. R.

    Resumo em Inglês:

    This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000) has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.
  • Hydrodynamic and tray efficiency behavior in parastillation column Transport Phenomena

    Belincanta, J.; Ravagnani, T. M. Kakuta; Pereira, J. A. F.

    Resumo em Inglês:

    This work presents aspects of the parastillation process, which employs a unique distillation column where the vapor stream is divided into two equal parts and the falling liquid is alternately in contact with both vapor parts on a stage-by-stage basis. A laboratory-scale apparatus was used to study the parastillation column. Experiments were carried out under total and partial reflux conditions using an ethanol-water system. Experiments were conducted to analyze the effects of vapor flow rate and initial ethanol concentration in the reboiler on the hydrodynamic conditions. Limiting operating conditions were defined. Murphree separation efficiencies were calculated and discussed.
  • Influence on the quality of essential lemon (Citrus aurantifolia) oil by distillation process Short Communication

    Gamarra, F. M. C.; Sakanaka, L. S.; Tambourgi, E. B.; Cabral, F. A.

    Resumo em Inglês:

    The essential oil of key lime (Citrus aurantifolia) was obtained by steam distillation at normal conditions (1.0 bar/25ºC) with steam at 110ºC, during 10h. The GC analysis identified about 10 main substances, being limonene, p-cymene, myrcene and beta-bisabolene the most significant compounds. Aldehyde content increased significantly during distillation time (upper phase). After 10h of process, oil has presented more than 3% of aldehydes content due to oxidative reactions.
Brazilian Society of Chemical Engineering Rua Líbero Badaró, 152 , 11. and., 01008-903 São Paulo SP Brazil, Tel.: +55 11 3107-8747, Fax.: +55 11 3104-4649, Fax: +55 11 3104-4649 - São Paulo - SP - Brazil
E-mail: rgiudici@usp.br