Acessibilidade / Reportar erro
Genetics and Molecular Biology, Volume: 30, Número: 3 Suplemento, Publicado: 2007
  • Expressed citrus genome: integration is the challenge

    Machado, Marcos Antônio
  • In silico analysis of phytohormone metabolism and communication pathways in citrus transcriptome Developmental Processes

    Quecini, Vera; Torres, Gisele A.M.; Rosa Jr, Vicente E. de; Gimenes, Marcos A.; Machado, Jeanne B. de M.; Figueira, Antonio V. de O.; Benedito, Vagner; Targon, Maria Luisa P.N.; Cristofani-Yaly, Mariângela

    Resumo em Inglês:

    Plant hormones play a crucial role in integrating endogenous and exogenous signals and in determining developmental responses to form the plant body throughout its life cycle. In citrus species, several economically important processes are controlled by phytohormones, including seed germination, secondary growth, fruit abscission and ripening. Integrative genomics is a powerful tool for linking newly researched organisms, such as tropical woody species, to functional studies already carried out on established model organisms. Based on gene orthology analyses and expression patterns, we searched the Citrus Genome Sequencing Consortium (CitEST) database for Expressed Sequence Tags (EST) consensus sequences sharing similarity to known components of hormone metabolism and signaling pathways in model species. More than 600 homologs of functionally characterized hormone metabolism and signal transduction members from model species were identified in citrus, allowing us to propose a framework for phytohormone signaling mechanisms in citrus. A number of components from hormone-related metabolic pathways were absent in citrus, suggesting the presence of distinct metabolic pathways. Our results demonstrated the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.
  • Signaling pathways in a Citrus EST database Developmental Processes

    Mehta, Angela; Silva, Marilia Santos; Guidetti-Gonzalez, Simone; Carrer, Helaine; Takita, Marco Aurélio; Martins, Natália F.

    Resumo em Inglês:

    Citrus spp. are economically important crops, which in Brazil are grown mainly in the State of São Paulo. Citrus cultures are attacked by several pathogens, causing severe yield losses. In order to better understand this culture, the Millenium Project (IAC Cordeirópolis) was launched in order to sequence Citrus ESTs (expressed sequence tags) from different tissues, including leaf, bark, fruit, root and flower. Plants were submitted to biotic and abiotic stresses and investigated under different development stages (adult vs. juvenile). Several cDNA libraries were constructed and the sequences obtained formed the Citrus ESTs database with almost 200,000 sequences. Searches were performed in the Citrus database to investigate the presence of different signaling pathway components. Several of the genes involved in the signaling of sugar, calcium, cytokinin, plant hormones, inositol phosphate, MAPKinase and COP9 were found in the citrus genome and are discussed in this paper. The results obtained may indicate that similar mechanisms described in other plants, such as Arabidopsis, occur in citrus. Further experimental studies must be conducted in order to understand the different signaling pathways present.
  • In silico prediction of gene expression patterns in Citrus flavedo Developmental Processes

    Berger, Irving J.; Freitas-Astúa, Juliana; Reis, Marcelo S.; Targon, Maria Luísa P.N.; Machado, Marcos A.

    Resumo em Inglês:

    Out of the 18,942 flavedo expressed sequences (clusters plus singletons) in Citrus sinensis from the Citrus EST Project (CitEST), 25 were statistically supported to be differentially expressed in this tissue after a double in silico hybridization strategy against leaf-, flower-, and bark-derived ESTs. Five of them, two terpene synthases and three O-methyltransferases, are absent in the other citrus tissues with concomitant 2x2 statistics, supporting the hypothesis that they are putative flavedo-specific expressed sequences. The pattern of these differentially expressed sequences during fruit development suggests that most of them are developmentally regulated. Some expressed gene products, including a putative germin-like protein highly expressed in flavedo, are shown to be promising candidates for further characterization. In addition to promoter seeking, this kind of analysis can lead to gene discovery, tissue-specific and tissue-enriched expression pattern predictions (as shown herein) and can also be adopted as an in silico first, and probably reliable approach, for detecting expression profiles from EST sequencing efforts before experimental validation is available or for heuristically guiding that validation.
  • Towards the identification of flower-specific genes in Citrus spp Developmental Processes

    Dornelas, Marcelo Carnier; Camargo, Raquel Luciana Boscariol; Berger, Irving Joseph; Takita, Marco Aurélio

    Resumo em Inglês:

    Citrus sinensis is a perennial woody species, for which genetic approaches to the study of reproductive development are not readily amenable. Here, the usefulness of the CitEST Expressed Sequence Tag (EST) database is demonstrated as a reliable new resource for identifying novel genes exclusively related to Citrus reproductive biology. We performed the analysis of an EST dataset of the CitEST Project containing 4,330 flower-derived cDNA sequences. Relying on bioinformatics tools, sequences exclusively present in this flower-derived sequence collection were selected and used for the identification of Citrus putative flower-specific genes. Our analysis revealed several Citrus sequences showing significant similarity to conserved genes known to have flower-specific expression and possessing functions related to flower metabolism and/or reproductive development in diverse plant species. Comparison of the Citrus flower-specific sequences with all available plant peptide sequences unraveled 247 unique transcripts not identified elsewhere within the plant kingdom. Additionally, 49 transcripts, for which no biological function could be attributed by means of sequence comparisons, were found to be conserved among plant species. These results allow further gene expression analysis and possibly novel approaches to the understanding of reproductive development in Citrus.
  • A genetic framework for flowering-time pathways in Citrus spp. Developmental Processes

    Dornelas, Marcelo Carnier; Camargo, Raquel Luciana Boscariol; Figueiredo, Luciana Harumi Morimoto; Takita, Marco Aurélio

    Resumo em Inglês:

    Floral transition is one the most drastic changes occurring during the life cycle of a plant. The shoot apical meristem switches from the production of leaves with associated secondary shoot meristems to the production of flower meristems. This transition is abrupt and generally irreversible, suggesting it is regulated by a robust gene regulatory network capable of driving sharp transitions. The moment at which this transition occurs is precisely determined by environmental and endogenous signals. A large number of genes acting within these pathways have been cloned in model herbaceous plants such as Arabidopsis thaliana. In this paper, we report the results of our search in the Citrus expressed sequence tag (CitEST) database for expressed sequence tags (ESTs) showing sequence homology with known elements of flowering-time pathways. We have searched all sequence clusters in the CitEST database and identified more than one hundred Citrus spp sequences that codify putative conserved elements of the autonomous, vernalization, photoperiod response and gibberelic acid-controlled flowering-time pathways. Additionally, we have characterized in silico putative members of the Citrus spp homologs to the Arabidopsis CONSTANS family of transcription factors.
  • Identification of photoperception and light signal transduction pathways in citrus Developmental Processes

    Quecini, Vera

    Resumo em Inglês:

    Studies employing model species have elucidated several aspects of photoperception and light signal transduction that control plant development. However, the information available for economically important crops is scarce. Citrus genome databases of expressed sequence tags (EST) were investigated in order to identify genes coding for functionally characterized proteins responsible for light-regulated developmental control in model plants. Approximately 176,200 EST sequences from 53 libraries were queried and all bona fide and putative photoreceptor gene families were found in citrus species. We have identified 53 orthologs for several families of transcriptional regulators and cytoplasmic proteins mediating photoreceptor-induced responses although some important Arabidopsis phytochrome- and cryptochrome-signaling components are absent from citrus sequence databases. The main gene families responsible for phototropin-mediated signal transduction were present in citrus transcriptome, including general regulatory factors (14-3-3 proteins), scaffolding elements and auxin-responsive transcription factors and transporters. A working model of light perception, signal transduction and response-eliciting in citrus is proposed based on the identified key components. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.
  • In silico analysis of the endogenous time-keeping mechanism in citrus Developmental Processes

    Quecini, Vera

    Resumo em Inglês:

    The endogenous time-keeping mechanism is responsible for organizing plant physiology and metabolism according to periodic environmental changes, such as diurnal cycles of light and dark and seasonal progression throughout the year. In plants, circadian rhythms control gene expression, stomatal opening, and the timing component of the photoperiodic responses, leading to enhanced fitness due to increased photosynthetic rates and biomass production. We have investigated the citrus genome databases of expressed sequence tags (EST) in order to identify genes coding for functionally characterized proteins involved in the endogenous time-keeping mechanism in Arabidopsis thaliana. Approximately 180,000 EST sequences from 53 libraries were investigated and 81 orthologs of clock components were identified. We found that the vast majority of Arabidopsis circadian clock genes are present in citrus species, although some important components are absent such as SRR1 and PRR5. Based on the identified transcripts, a model for the endogenous oscillatory mechanism of citrus is proposed. These results demonstrate the power of comparative genomics between model systems and economically important crop species to elucidate several aspects of plant physiology and metabolism.
  • Nitrogen assimilation in Citrus based on CitEST data mining Biochemical Processes

    Wickert, Ester; Marcondes, Jackson; Lemos, Manoel Victor; Lemos, Eliana G.M.

    Resumo em Inglês:

    Assimilation of nitrate and ammonium are vital procedures for plant development and growth. From these primary paths of inorganic nitrogen assimilation, this metabolism integrates diverse paths for biosynthesis of macromolecules, such as amino acids and nucleotides, and the central intermediate metabolism, like carbon metabolism and photorespiration. This paper reports research performed in the CitEST (Citrus Expressed Sequence Tag) database for the main genes involved in nitrogen metabolism and those previously described in other organisms. The results show that a complete cluster of genes involved in the assimilation of nitrogen and the metabolisms of glutamine, glutamate, aspartate and asparagine can be found in the CitEST data. The main enzymes found were nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthetase (GOGAT), glutamate dehydrogenase (GDH), aspartate aminotransferase (AspAT) and asparagine synthetase (AS). The different enzymes involved in this metabolism have been shown to be highly conserved among the Citrus and Poncirus species. This work serves as a guide for future functional analysis of these enzymes in citrus.
  • An in silico analysis of the key genes involved in flavonoid biosynthesis in Citrus sinensis Biochemical Processes

    Lucheta, Adriano R.; Silva-Pinhati, Ana Carla O.; Basílio-Palmieri, Ana Carolina; Berger, Irving J.; Freitas-Astúa, Juliana; Cristofani, Mariângela

    Resumo em Inglês:

    Citrus species are known by their high content of phenolic compounds, including a wide range of flavonoids. In plants, these compounds are involved in protection against biotic and abiotic stresses, cell structure, UV protection, attraction of pollinators and seed dispersal. In humans, flavonoid consumption has been related to increasing overall health and fighting some important diseases. The goals of this study were to identify expressed sequence tags (EST) in Citrus sinensis (L.) Osbeck corresponding to genes involved in general phenylpropanoid biosynthesis and the key genes involved in the main flavonoids pathways (flavanones, flavones, flavonols, leucoanthocyanidins, anthocyanins and isoflavonoids). A thorough analysis of all related putative genes from the Citrus EST (CitEST) database revealed several interesting aspects associated to these pathways and brought novel information with promising usefulness for both basic and biotechnological applications.
  • A genomic approach to characterization of the Citrus terpene synthase gene family Biochemical Processes

    Dornelas, Marcelo Carnier; Mazzafera, Paulo

    Resumo em Inglês:

    Terpenes are a very large and structurally diverse group of secondary metabolites which are abundant in many essential oils, resins and floral scents. Additionally, some terpenes have roles as phytoalexins in plant-pathogen relationships, allelopathic inhibitors in plant-plant interactions, or as airborne molecules of plant-herbivore multitrophic signaling. Thus the elucidation of the biochemistry and molecular genetics of terpenoid biosynthesis has paramount importance in any crop species. With this aim, we searched the CitEST database for clusters of expressed sequence tags (ESTs) coding for terpene synthases. Herein is a report on the identification and in silico characterization of 49 putative members of the terpene synthase family in diverse Citrus species. The expression patterns and the possible physiological roles of the identified sequences are also discussed.
  • Terpene production in the peel of sweet orange fruits Biochemical Processes

    Takita, Marco A.; Berger, Irving J.; Basílio-Palmieri, Ana Carolina; Borges, Kleber M.; Souza, Juliana M. de; Targon, Maria L.N.P.

    Resumo em Inglês:

    Terpenoids constitute the largest and most diverse class of natural products. They are important factors for aroma and flavor, and their synthesis is basically done from two compounds: isopentenyl diphosphate and dimethylallyl diphosphate. Isopentenyl diphosphate is synthesized through two different pathways, one that occurs in the cytoplasm and one in the plastid. With the sequencing of ESTs from citrus, we were able to perform in silico analyses on the pathways that lead to the synthesis of terpenes as well as on the terpene synthases present in sweet orange. Moreover, expression analysis using real-time qPCR was performed to verify the expression pattern of a terpene synthase in plants. The results show that all the pathways for isopentenyl diphosphate are present in citrus and a high expression of terpene synthases seems to have an important role in the constitution of the essential oils of citrus.
  • Citrus plastid-related gene profiling based on expressed sequence tag analyses Biochemical Processes

    Calsa Jr., Tercilio; Figueira, Antonio

    Resumo em Inglês:

    Plastid-related sequences, derived from putative nuclear or plastome genes, were searched in a large collection of expressed sequence tags (ESTs) and genomic sequences from the Citrus Biotechnology initiative in Brazil. The identified putative Citrus chloroplast gene sequences were compared to those from Arabidopsis, Eucalyptus and Pinus. Differential expression profiling for plastid-directed nuclear-encoded proteins and photosynthesis-related gene expression variation between Citrus sinensis and Citrus reticulata, when inoculated or not with Xylella fastidiosa, were also analyzed. Presumed Citrus plastome regions were more similar to Eucalyptus. Some putative genes appeared to be preferentially expressed in vegetative tissues (leaves and bark) or in reproductive organs (flowers and fruits). Genes preferentially expressed in fruit and flower may be associated with hypothetical physiological functions. Expression pattern clustering analysis suggested that photosynthesis- and carbon fixation-related genes appeared to be up- or down-regulated in a resistant or susceptible Citrus species after Xylella inoculation in comparison to non-infected controls, generating novel information which may be helpful to develop novel genetic manipulation strategies to control Citrus variegated chlorosis (CVC).
  • Identification of citrus expressed sequence tags (ESTs) encoding pleiotropic drug resistance (PDR)-like proteins Biochemical Processes

    Amaral, Alexandre Morais do; Saito, Daniel; Formighieri, Eduardo Fernandes; Rabello, Edenilson; Souza, Adriane N. de; Silva-Stenico, Maria Estela; Tsai, Siu Mui

    Resumo em Inglês:

    Pleiotropic drug resistance (PDR) proteins, a subfamily of the ATP-binding cassette (ABC) transporters, have been recently shown to play a role in plant defense against biotic and abiotic stresses. However, nothing is known about their expression in citrus. To investigate the occurrence of PDR homologues in citrus species, we have surveyed EST sequences from different tissues and conditions of the Citrus Expressed Sequence Tags (CitEST) database, through sequence similarity search analyses and inspections for characteristic PDR domains. Multiple sequence alignments, prediction of transmembrane topology and phylogenetic analysis of PDR-like proteins were additionally performed. This study allowed the identification of nine putative proteins showing characteristic PDR features in citrus species under various conditions, which may indicate a potential correlation between PDRs and stress and metabolism of citrus plants. Moreover, a tissue-specific putative PDR-like protein was found in sweet orange fruits. To our knowledge, this is the first report regarding the identification of citrus ESTs encoding PDR-like proteins as well as the first to identify a putative full ABC transporter with specific expression in fruits.
  • Identification of protein kinase SNF1 in CitEST Biochemical Processes

    Guidetti-Gonzalez, Simone; Ragassi, Carlos Francisco; Carrer, Helaine

    Resumo em Inglês:

    SnRKs (Sucrose non-fermenting-1 related kinases) is a family of protein kinases found in many crops, such as Arabidopsis, rice, sugarcane, tomato and several other plant species. This family of proteins is also present in other organisms like Saccharomyces cerevisiae (sucrose non-fermenting-1 - Snf1) and in mammals (AMP-activated protein kinases - AMPKs). There is evidence that SnRKs play an important role in plant responses to nutritional and environmental stresses and that SnRKs also play a major role in controlling key enzymes in the biosynthetic pathways of plants. In this work, we identified 18 contigs and two singletons encoding putative SnRKs in the CitEST database. All of them present highly conserved N-terminal catalytic domain, which is found in the SnRKs families of several plant species. Through comparison with known SnRKs, we were able to classify them into three subfamilies.
  • Expression profile of oxidative and antioxidative stress enzymes based on ESTs approach of citrus Stress Responses

    Peroni, Luis Antonio; Ferreira, Renato Rodrigues; Figueira, Antonio; Machado, Marcos Antonio; Stach-Machado, Dagmar Ruth

    Resumo em Inglês:

    Plants not only evolve but also reduce oxygen in photosynthesis. An inevitable consequence of this normal process is the production of reactive oxygen species (ROS). Plants are adequately protected by the presence of multiple antioxidative enzymes in the cytosol and also in the different cell organelles such as chloroplasts, mitochondria, and peroxisomes. Traditionally, ROS were considered to be only a toxic byproduct of aerobic metabolism. However, recently it has become apparent that plants actively produce these molecules which may control many different physiological processes such as abiotic and biotic stress response, pathogen defense and systemic signaling. The search results using the Citrus Genome Program in Brazil (CitEST) for oxidative stress and the antioxidant enzyme system in Citrus Sinensis variety ‘Pera IAC’ indicated that the multiple ROS-scavenging enzymes were expressed throughout all citrus tissues. The analyses demonstrated the ubiquitous expression of metallothioneins, probably indicating a constitutive expression pattern. Oxalate oxidase has been identified as the most abundant expressed gene in developing fruits, which suggests a specific function in the ripening of citrus fruit. Moreover, infected leaves with Xylella fastidiosa and Leprosis citri showed a massive change in their ROS gene expression profile which may indicate that the suppression of ROS detoxifying mechanisms may be involved in the induction of the diseases.
  • Identification and in silico analysis of the Citrus HSP70 molecular chaperone gene family Stress Responses

    Fietto, Luciano G.; Costa, Maximiller D.L.; Cruz, Cosme D.; Souza, Alessandra A.; Machado, Marcos A.; Fontes, Elizabeth P.B.

    Resumo em Inglês:

    The completion of the genome sequencing of the Arabidopsis thaliana model system provided a powerful molecular tool for comparative analysis of gene families present in the genome of economically relevant plant species. In this investigation, we used the sequences of the Arabidopsis Hsp70 gene family to identify and annotate the Citrus Hsp70 genes represented in the CitEST database. Based on sequence comparison analysis, we identified 18 clusters that were further divided into 5 subgroups encoding four mitochondrial mtHsp70s, three plastid csHsp70s, one ER luminal Hsp70 BiP, two HSP110/SSE-related proteins and eight cytosolic Hsp/Hsc70s. We also analyzed the expression profile by digital Northern of each Hsp70 transcript in different organs and in response to stress conditions. The EST database revealed a distinct population distribution of Hsp70 ESTs among isoforms and across the organs surveyed. The Hsp70-5 isoform was highly expressed in seeds, whereas BiP, mitochondrial and plastid HSp70 mRNAs displayed a similar expression profile in the organs analyzed, and were predominantly represented in flowers. Distinct Hsp70 mRNAs were also differentially expressed during Xylella infection and Citrus tristeza viral infection as well as during water deficit. This in silico study sets the groundwork for future investigations to fully characterize functionally the Citrus Hsp70 family and underscores the relevance of Hsp70s in response to abiotic and biotic stresses in Citrus.
  • Identifying water stress-response mechanisms in citrus by in silico transcriptome analysis Stress Responses

    Torres, Gisele A.M.; Gimenes, Marcos A.; Rosa Jr., Vicente E. de; Quecini, Vera

    Resumo em Inglês:

    Water deficit is one of the most critical environmental stresses to which plants are submitted during their life cycle. The evolutionary and economic performance of the plant is affected directly by reducing its survival in the natural environment and its productivity in agriculture. Plants respond to water stress with biochemical and physiological modifications that may be involved in tolerance or adaptation mechanisms. A great number of genes have been identified as transcriptionally regulated for water deficit. EST sequencing projects provide a significant contribution to the discovery of expressed genes. The identification and determination of gene expression patterns is important not only to understand the molecular bases of plant responses but also to improve water stress tolerance. In our citrus transcriptome survey we have attempted to identify homologs to genes known to be induced and regulated under water stress conditions. We have identified 89 transcripts whose deduced amino acid sequences share similarities with proteins involved in uptake and transport of water and ion, 34 similar to components of the osmolyte metabolism, 67 involved in processes of membranes and proteins protection and 115 homologs of reactive oxygen species scavenger. Many drought-inducible genes identified are known to be regulated by development, salt, osmotic and low temperature. Their possible roles in specific or general mechanisms of water stress citrus responses are discussed.
  • In silico analysis of ESTs from roots of Rangpur lime (Citrus limonia Osbeck) under water stress Stress Responses

    Boscariol-Camargo, Raquel L.; Berger, Irving J.; Souza, Alessandra A.; Amaral, Alexandre M. do; Carlos, Eduardo F.; Freitas-Astúa, Juliana; Takita, Marco A.; Targon, Maria Luisa P.N.; Medina, Camilo L.; Reis, Marcelo S.; Machado, Marcos A.

    Resumo em Inglês:

    CitEST project resulted in the construction of cDNA libraries from different Citrus sp. tissues under various physiological conditions. Among them, plantlets of Rangpur lime were exposed to hydroponic conditions with and without water stress using PEG6000. RNA from roots was obtained and generated a total of 4,130 valid cDNA reads, with 2,020 from the non-stressed condition and 2,110 from the stressed set. Bioinformatic analyses measured the frequency of each read in the libraries and yielded an in silico transcriptional profile for each condition. A total of 40 contigs were differentially expressed and allowed to detect up-regulated homologue sequences to well known genes involved in stress response, such as aquaporins, dehydrin, sucrose synthase, and proline-related synthase. Some sequences could not be classified by using FunCat and remained with an unknown function. A large number of sequences presented high similarities to annotated genes involved with cell energy, protein synthesis and cellular transport, suggesting that Rangpur lime may sustain active cell growth under stressed condition. The presence of membrane transporters and cell signaling components could be an indication of a coordinated morphological adaptation and biochemical response during drought, helping to explain the higher tolerance of this rootstock to water stress.
  • PR gene families of citrus: their organ specific-biotic and abiotic inducible expression profiles based on ESTs approach Stress Responses

    Campos, Magnólia A.; Rosa, Daniel D.; Teixeira, Juliana Érika C.; Targon, Maria Luisa P.N.; Souza, Alessandra A.; Paiva, Luciano V.; Stach-Machado, Dagmar R.; Machado, Marcos A.

    Resumo em Inglês:

    In silico expression profiles, of the discovered 3,103 citrus ESTs putatively encoding for PR protein families (PR-1 to PR-17), were evaluated using the Brazil citrus genome EST CitEST/database. Hierarchical clustering was displayed to identify similarities in expression patterns among citrus PR-like gene families (PRlgf) in 33 selected cDNA libraries. In this way, PRlgf preferentially expressed by organ and citrus species, and library conditions were highlighted. Changes in expression profiles of clusters for each of the 17 PRlgf expressed in organs infected by pathogens or drought-stressed citrus species were displayed for relative suppression or induction gene expression in relation to the counterpart control. Overall, few PRlgf showed expression 2-fold higher in pathogen-infected than in uninfected organs, even though the differential expression profiles displayed have been quite diverse among studied species and organs. Furthermore, an insight into some contigs from four PRlgf pointed out putative members of multigene families. They appear to be evolutionarily conserved within citrus species and/or organ- or stress-specifically expressed. Our results represent a starting point regarding the extent of expression pattern differences underlying PRlgf expression and reveal genes that may prove to be useful in studies regarding biotechnological approaches or citrus resistance markers.
  • Putative resistance genes in the CitEST database Stress Responses

    Guidetti-Gonzalez, Simone; Carrer, Helaine

    Resumo em Inglês:

    Disease resistance in plants is usually associated with the activation of a wide variety of defense responses to prevent pathogen replication and/or movement. The ability of the host plant to recognize the pathogen and to activate defense responses is regulated by direct or indirect interaction between the products of plant resistance (R) and pathogen avirulence (Avr) genes. Attempted infection of plants by avirulent pathogens elicits a battery of defenses often followed by the collapse of the challenged host cells. Localized host cell death may help to prevent the pathogen from spreading to uninfected tissues, known as hypersensitive response (HR). When either the plant or the pathogen lacks its cognate gene, activation of the plant’s defense responses fails to occur or is delayed and does not prevent pathogen colonization. In the CitEST database, we identified 1,300 reads related to R genes in Citrus which have been reported in other plant species. These reads were translated in silico, and alignments of their amino acid sequences revealed the presence of characteristic domains and motifs that are specific to R gene classes. The description of the reads identified suggests that they function as resistance genes in citrus.
  • Genes associated with hypersensitive response (HR) in the citrus EST database (CitEST) Stress Responses

    Guidetti-Gonzalez, Simone; Freitas-Astúa, Juliana; Amaral, Alexandre Morais do; Martins, Natália F.; Mehta, Angela; Silva, Marilia Santos; Carrer, Helaine

    Resumo em Inglês:

    Plants are continuously exposed to pathogen attack, but successful infection is rare because they protect themselves against pathogens using a wide range of response mechanisms. One of them is the hypersensitive response (HR), which is a form of cell death often associated with plant resistance to pathogen infection to prevent the spreadsebpg@cnpq.br sebpg@cnpq.br of the potential pathogen from infected to uninfected tissues. Cell death is activated by recognition of pathogen-derived molecules by the resistance (R) gene products, and is associated with the massive accumulation of reactive oxygen species (ROS), salicylic acid (SA), and other pro-death signals such as nitric oxide (NO). The analysis of the citrus EST (CitEST) database revealed the presence of putative genes likely to be involved in HR through their products, like metacaspases, lipoxygenases, phospholipases, pathogenesis-related proteins, glutathione transferases/peroxidases, enzymes involved in the phenylpropanoid pathway and in the formation and detoxification of ROS, as well as those involved in the formation and regulation of ion channels, SA and NO. By analysis of the EST database of Citrus, it was possible to identify several putative genes that code for key enzymes involved in HR triggering and also in plant defense against biotic and abiotic stress.
  • Analysis of expressed sequence tags from Citrus sinensis L. Osbeck infected with Xylella fastidiosa Stress Responses

    Souza, Alessandra A. de; Takita, Marco A.; Coletta-Filho, Helvécio D.; Targon, Maria Luisa P.N.; Carlos, Eduardo F.; Locali-Fabris, Eliane C.; Amaral, Alexandre M.; Freitas-Astúa, Juliana; Silva-Pinhati, Ana Carla O.; Boscariol-Camargo, Raquel L.; Berger, Irving J.; Rodrigues, Carolina M.; Reis, Marcelo S.; Machado, Marcos A.

    Resumo em Inglês:

    In order to understand the genetic responses resulting from physiological changes that occur in plants displaying citrus variegated chlorosis (CVC) symptoms, we adopted a strategy of comparing two EST libraries from sweet orange [Citrus sinensis (L.) Osbeck]. One of them was prepared with plants showing typical CVC symptoms caused by Xylella fastidiosa and the other with non-inoculated plants. We obtained 15,944 ESTs by sequencing the two cDNA libraries. Using an in silico hybridization strategy, 37 genes were found to have significant variation at the transcriptional level. Within this subset, 21 were up-regulated and 16 were down-regulated in plants with CVC. The main functional categories of the down-regulated transcripts in plants with CVC were associated with metabolism, protein modification, energy and transport facilitation. The majority of the up-regulated transcripts were associated with metabolism and defense response. Some transcripts associated with adaptation to stress conditions were up-regulated in plants with CVC and could explain why plants remain alive even under severe water and nutritional stress. Others of the up-regulated transcripts are related to defense response suggesting that sweet orange plants activate their defense machinery. The genes associated with stress response might be expressed as part of a secondary response related to physiological alterations caused by the infection.
  • Comparative analysis of differentially expressed sequence tags of sweet orange and mandarin infected with Xylella fastidiosa Stress Responses

    Souza, Alessandra A. de; Takita, Marco A.; Coletta-Filho, Helvécio D.; Campos, Magnólia A.; Teixeira, Juliana E.C.; Targon, Maria Luísa P.N.; Carlos, Eduardo F.; Ravasi, Juliano F.; Fischer, Carlos N.; Machado, Marcos A.

    Resumo em Inglês:

    The Citrus ESTs Sequencing Project (CitEST) conducted at Centro APTA Citros Sylvio Moreira/IAC has identified and catalogued ESTs representing a set of citrus genes expressed under relevant stress responses, including diseases such as citrus variegated chlorosis (CVC), caused by Xylella fastidiosa. All sweet orange (Citrus sinensis L. Osb.) varieties are susceptible to X. fastidiosa. On the other hand, mandarins (C. reticulata Blanco) are considered tolerant or resistant to the disease, although the bacterium can be sporadically detected within the trees, but no disease symptoms or economic losses are observed. To study their genetic responses to the presence of X. fastidiosa, we have compared EST libraries of leaf tissue of sweet orange Pêra IAC (highly susceptible cultivar to X. fastidiosa) and mandarin ‘Ponkan’ (tolerant) artificially infected with the bacterium. Using an in silico differential display, 172 genes were found to be significantly differentially expressed in such conditions. Sweet orange presented an increase in expression of photosynthesis related genes that could reveal a strategy to counterbalance a possible lower photosynthetic activity resulting from early effects of the bacterial colonization in affected plants. On the other hand, mandarin showed an active multi-component defense response against the bacterium similar to the non-host resistance pattern.
  • Differential expression of genes identified from Poncirus trifoliata tissue inoculated with CTV through EST analysis and in silico hybridization Stress Responses

    Cristofani-Yaly, Mariângela; Berger, Irving J.; Targon, Maria Luisa P.N.; Takita, Marco A.; Dorta, Sílvia de O.; Freitas-Astúa, Juliana; Souza, Alessandra A. de; Boscariol-Camargo, Raquel L.; Reis, Marcelo S.; Machado, Marcos A.

    Resumo em Inglês:

    Citrus is the most important fruit crop in Brazil and Citrus tristeza virus (CTV) is considered one of the most important pathogens of citrus. Most citrus species and varieties are susceptible to CTV infection. However, Poncirus trifoliata, a close relative of citrus, is resistant to the virus. In order to better understand the responses of citrus plants to the infection of CTV, we constructed expressed sequence tag (EST) libraries with tissues collected from Poncirus trifoliata plants, inoculated or not with Citrus tristeza virus at 90 days after inoculation, grafted on Rangpur lime rootstocks. We generated 17,867 sequence tags from Poncirus trifoliata inoculated (8,926 reads) and not (8,941 reads) with a severe CTV isolate. A total of 2,782 TCs (Tentative Consensi sequences) were obtained using both cDNA libraries in a single clusterization procedure. By the in silico hybridization approach, 289 TCs were identified as differentially expressed in the two libraries. A total of 121 TCs were found to be overexpressed in plants infected with CTV and were grouped in 12 primary functional categories. The majority of them were associated with metabolism and defense response. Some others were related to lignin, ethylene biosynthesis and PR proteins. In general, the differentially expressed transcripts seem to be somehow involved in secondary plant response to CTV infection.
  • Differentially expressed stress-related genes in the compatible citrus-Citrus leprosis virus interaction Stress Responses

    Freitas-Astúa, Juliana; Bastianel, Marinês; Locali-Fabris, Eliane C.; Novelli, Valdenice M.; Silva-Pinhati, Ana Carla; Basílio-Palmieri, Ana Carolina; Targon, Maria Luisa P.N.; Machado, Marcos A.

    Resumo em Inglês:

    Leprosis, caused by Citrus leprosis virus, cytoplasmic type (CiLV-C), is the main viral disease in the Brazilian citrus industry. This occurs because of the widespread source of inoculum and the year-round presence of the vector, the tenuipalpid mite Brevipalpus phoenicis, in citrus plants. In addition, while some Citrus species are resistant to CiLV-C, C. sinensis, the main cultivated species in the country, is extremely susceptible to the disease. The main objective of this work was to identify genes in C. sinensis cv. Pêra plants that were differentially expressed after the host was challenged with CiLV-C. In order to accomplish that, cDNA libraries were constructed from healthy and CiLV-inoculated sweet orange leaves. Two hundred and fifty-four genes were found to differ significantly in terms of expression, with 193 of them induced and 61 repressed after inoculation. Here we discuss the possible roles of a sub-set of these genes involved in metabolism, energy, signaling and cell rescue, defense and virulence, and indicate which kind of response may take place in the initial steps of the disease. Although the symptoms induced by CiLV-C in its compatible interaction with sweet orange resemble those of hypersensitive response (HR) in incompatible interactions, our data indicate that, apparently, the manifestation of leprosis symptoms should not be considered HR.
  • Genetic machinery for RNA silencing and defense against viruses in Citrus Stress Responses

    Benedito, Vagner Augusto; Faria, Laura; Freitas-Astúa, Juliana; Figueira, Antonio

    Resumo em Inglês:

    RNA silencing mechanisms are conserved throughout eukaryotic evolution, possibly due to their importance in viral resistance and other aspects of cell biology. Here, we explored the Citrus EST (CitEST) database in search of sequences related to the most important known genes involved in RNA silencing. Transcripts strongly matching Argonaute (AGO), Dicer-like (DCL), Hua enhancer (HEN), and RNA-dependent RNA Polymerase (RdRP) were found in many of the citrus libraries. The reads were clustered and quantified. This shows that post-transcriptional gene silencing apparatus is active in citrus. It seems plausible that a better understanding of the players of RNA silencing in Citrus spp. and related genera may help create new tools to defeat the viral diseases that affect the citrus industry. Functional analyses of these citrus genes would enable the pursuit of this hypothesis.
  • Phytophthora parasitica transcriptome, a new concept in the understanding of the citrus gummosis Citrus Pathogens

    Rosa, Daniel D.; Campos, Magnólia A.; Targon, Maria Luisa P.N.; Souza, Alessandra A.

    Resumo em Inglês:

    Due to the economic importance of gummosis disease for the citriculture, studies on P. parasitica-Citrus interaction comprise a significant part in the Brazilian Citrus genome data bank (CitEST). Among them, two cDNA libraries constructed from two different growth conditions of the P. parasitica pathogen are included which has generated the PP/CitEST database (CitEST - Center APTA Citros Sylvio Moreira/IAC- Millennium Institute). Through this genomic approach and clustering analyses the following has been observed: out of a total of 13,285 available in the Phytophthora parasitica database, a group of 4,567 clusters was formed, comprising 2,649 singlets and 1,918 contigs. Out of a total of 4,567 possible genes, only 2,651 clusters were categorized; among them, only 4.3% shared sequence similarities with pathogenicity factors and defense. Some of these possible genes (103) corresponding to 421 ESTs, were characterized by phylogenetic analysis and discussed. A comparison made with the COGEME database has shown homology which may be part of an evolutionary pathogenicity pathway present in Phytophthora and also in other fungi. Many of the genes which were identified here, which may encode proteins associated to mechanisms of citrus gummosis pathogenicity, represent only one facet of the pathogen-host Phytophthora - Citrus interaction.
  • Frequency and distribution of microsatellites from ESTs of citrus Structural Genomics

    Palmieri, Darío Abel; Novelli, Valdenice Moreira; Bastianel, Marinês; Cristofani-Yaly, Mariângela; Astúa-Monge, Gustavo; Carlos, Eduardo Fermino; Oliveira, Antonio Carlos de; Machado, Marcos Antonio

    Resumo em Inglês:

    Nearly 65,000 citrus EST (Expressed Sequence Tags) have been investigated using the CitEST project database. Microsatellites were investigated in the unigene sequences from Citrus spp. and Poncirus trifoliata. From these sequences, approximately 35% of the non-redundant ESTs contained SSRs. The frequencies of different SSR motifs were similar between Citrus spp and trifoliate orange. In general, mononucleotide repeats appeared to be the most abundant SSRs in the CitEST database, but we also identify di-, tri-, tetra-, penta- and hexanucleotide repeats. The AG/CT and AAG/CTT were the most common dinucleotide and trinucleotide motifs, with frequencies of 54.4% and 25.2%, respectively. Primer sequences flanking SSR motifs were successfully designed and synthesized. After in silico polymorphism analysis, a subset of sixty-eight primers was validated in different Citrus spp. and Poncirus trifoliata. PCR-amplification revealed polymorphism in citrus with all tested primer pairs and showed the potential of these markers for linkage mapping. Our study showed that the CitEST database can be exploited for the development of SSR markers that can amplify Citrus spp. and related genus for comparative mapping and other genetic analyses.
  • CitEST libraries General Aspects And Methodologies

    Targon, Maria Luísa P. Natividade; Takita, Marco Aurélio; Amaral, Alexandre M. do; Souza, Alessandra A. de; Locali-Fabris, Eliane Cristina; Dorta, Sílvia de Oliveira; Borges, Kleber Martins; Souza, Juliana Mendonça de; Rodrigues, Carolina Munari; Lucheta, Adriano Reis; Freitas-Astúa, Juliana; Machado, Marcos Antonio

    Resumo em Inglês:

    In order to obtain a better understanding of what is citrus, 33 cDNA libraries were constructed from different citrus species and genera. Total RNA was extracted from fruits, leaves, flowers, bark, seeds and roots, and subjected or not to different biotic and abiotic stresses (pathogens and drought) and at several developmental stages. To identify putative promoter sequences, as well as molecular markers that could be useful for breeding programs, one shotgun library was prepared from sweet orange (Citrus sinensis var. Olimpia). In addition, EST libraries were also constructed for a citrus pathogen, the oomycete Phythophthora parasitica in either virulent or avirulent form. A total of 286,559 cDNA clones from citrus were sequenced from their 5’ end, generating 242,790 valid reads of citrus. A total of 9,504 sequences were produced in the shotgun library and the valid reads were assembled using CAP3. In this procedure, we obtained 1,131 contigs and 4,083 singletons. A total of 19,200 cDNA clones from P. parasitica were sequenced, resulting in 16,400 valid reads. The number of ESTs generated in this project is, to our knowledge, the largest citrus sequence database in the world.
  • Bioinformatics for the Citrus EST Project (CitEST) General Aspects And Methodologies

    Reis, Marcelo S.; Takita, Marco A.; Palmieri, Darío A.; Machado, Marcos A.

    Resumo em Inglês:

    In this work we describe all the computational environments, pipelines, and web services developed for the CitEST transcriptome project, on which all the annotation researchers relied. We also present a complete list of CitEST libraries and, for each of them, the general features after the in silico processing, showing some quantitative information.
  • Gene projects: a genome web tool for ongoing mining and annotation applied to CitEST General Aspects And Methodologies

    Carazzolle, Marcelo F.; Formighieri, Eduardo F.; Digiampietri, Luciano A.; Araujo, Marcos R.R.; Costa, Gustavo G.L.; Pereira, Gonçalo A.G.

    Resumo em Inglês:

    Genome projects, both genomic DNA and ESTs (cDNA), generate a large amount of information, demanding time and a well-structured bioinformatics laboratory to manage these data. These genome projects use information available in heterogeneous formats from different sources. The amount and heterogeneity of this information, as well as the absence of a world consensus pattern, make the integration of these data a difficult task. At the same time, sub-tasks, such as microarray analyses of these projects, are very complex. This creates a demand for the development of creative solutions for ongoing annotation, thematic projects, microarray experiments, etc. This paper presents Gene Projects, a system developed to integrate all kinds of solutions.
Sociedade Brasileira de Genética Rua Cap. Adelmio Norberto da Silva, 736, 14025-670 Ribeirão Preto SP Brazil, Tel.: (55 16) 3911-4130 / Fax.: (55 16) 3621-3552 - Ribeirão Preto - SP - Brazil
E-mail: editor@gmb.org.br