Acessibilidade / Reportar erro
Materials Research, Volume: 8, Número: 4, Publicado: 2005
  • Editorial

  • High-temperature oxidation of pure Fe and the ferritic steel 2.25Cr1Mo

    Trindade, Vicente Braz; Borin, Rodrigo; Hanjari, Behzad Zandi; Yang, Songlan; Krupp, Ulrich; Christ, Hans-Jürgen

    Resumo em Inglês:

    The global pressure for recycling and ecological energy production increases steadily in combination with the demand of cost-effective application of materials. However, some severe corrosion problems, associated with the high internal/intergranular corrosion rates in boiler components need to be avoid. Some commercial boiler materials contain a Cr content of 0.55 (wt. (%)) - 2.25 (wt. (%)). This Cr concentration in the alloys is not sufficient for the formation of a complete dense Cr2O3 scale. Hence, high oxidation kinetics may result. In this study, pure Fe and the steel 2.25Cr1Mo were oxidized in laboratory air at 550 °C using a thermobalance system. The surface as well as the cross section of oxidized specimens were analysed using scanning electron microscopy in order to quantify several factors (e.g. surface finishing, cold working and grain size) on the overall oxidation kinetics. For alloys with low Cr content, a decreasing in the grain size leads to an acceleration of the oxidation rate by facilitating the oxygen diffusion along alloy grain boundaries leading to an inward oxide layer formation. The study of effects of surface finish and cold working yielded results revealing that the oxidation process is complex and comparison of results from different laboratories is difficult and should be done.
  • Effect of alloy grain size on the high-temperature oxidation behavior of the austenitic steel TP 347

    Trindade, Vicente Braz; Krupp, Ulrich; Hanjari, Behzad Zandi; Yang, Songlan; Christ, Hans-Jürgen

    Resumo em Inglês:

    Generally, oxide scales formed on high Cr steels are multi-layered and the kinetics are strongly influenced by the alloy grain boundaries. In the present study, the oxidation behaviour of an austenite steel TP347 with different grain sizes was studied to identify the role of grain-boundaries in the oxidation process. Heat treatment in an inert gas atmosphere at 1050 °C was applied to modify the grain size of the steel TP347. The mass gain during subsequent oxidation was measured using a microbalance with a resolution of 10-5 g. The scale morphology was examined using SEM in combination with energy-dispersive X-ray spectroscopy (EDS). Oxidation of TP347 with a grain size of 4 µm at 750 °C in air follows a parabolic rate law. For a larger grain size (65 µm), complex kinetics is observed with a fast initial oxidation followed by several different parabolic oxidation stages. SEM examinations indicated that the scale formed on specimens with smaller grain size was predominantly Cr2O3, with some FeCr2O4 at localized sites. For specimens with larger grain size the main oxide is iron oxide. It can be concluded that protective Cr2O3 formation is promoted by a high density of fast grain-boundary diffusion paths which is the case for fine-grained materials.
  • The effect of alloying on the resistance of carbon steel for oilfield applications to CO2 corrosion

    Edmonds, David V.; Cochrane, Robert C.

    Resumo em Inglês:

    A systematic study has been conducted to investigate the influence of a wide range of alloying elements and different processing conditions on the resistance of low-carbon steels to CO2 corrosion. Strong carbide-forming microalloying elements such as Ti, Nb and V, along with Cr additions, and different levels of Mn, Si, Cu, Mo and Ni, have been explored, along with treatments simulating different processing conditions, for example, controlled rolling, and quenching and tempering. Corrosion testing, including flow loop tests, has been carried out, along with evaluation of mechanical properties, weldability and hot ductility. The programme has developed steels with improved CO2 corrosion resistance and hence identified a potential route for producing more economical carbon steels for oilfield applications. The work has been carried out as part of the UK- Brazil Corrosion Network.
  • Corrosion resistance enhancement of SAE 1020 steel after Chromium implantation by nitrogen ion recoil

    Gomes, Geraldo Francisco; Ueda, Mario; Beloto, Antonio Fernando; Nakazato, Roberto Zenhei; Reuther, Helfried

    Resumo em Inglês:

    SAE 1020 construction steel is widely used as mortar reinforcement and small machine parts, but aside good surface properties as high ductility, hardness and wear resistance, its surface is prone to severe corrosion. As it is known, Chromium in amount over 12%-13% in the Fe alloys renders them resistance to several corrosive attacks. SAE 1020 samples were recovered with Chromium film and then bombarded either by nitrogen Ion Beam (IB) or Plasma Immersion Ion Implantation (PIII) to recoil implant Cr atoms in the Fe matrix. Samples treated by 100 keV N+ IB showed irregular, thin Cr profile, remaining a part of the film on the surface, to about 10 nm. Samples treated by 40 kV N PIII presented Cr layer of about 18% at., ranging to around 90 nm. Cr of the film was implanted in the Fe matrix in an almost flat profile. Results of corrosion test showed good performance of the PIII treated sample. The IB treated sample showed some enhancement over the non-treated reference and the only Cr film deposited sample showed no modification on the corrosion behavior as compared to the non-treated reference sample.
  • Processing of bulk Bi-2223 high-temperature superconductor

    Polasek, Alexander; Saléh, Luiz Antonio; Borges, Hortêncio Alves; Hering, Eduardo Novaes; Marinkovic, Bojan; Assunção, Fernando C. Rizzo; Serra, Eduardo Torres; Oliveira, Glória Suzana de

    Resumo em Inglês:

    The Bi2Sr2Ca2Cu3 O10+x (Bi-2223) is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL), which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.
  • Nanocrystalline material in toroidal cores for current transformer: analytical study and computational simulations

    Luciano, Benedito Antonio; Albuquerque, João Marcelo Cavalcante de; Castro, Walman Benício de; Afonso, Conrado Ramos Moreira

    Resumo em Inglês:

    Based on electrical and magnetic properties, such as saturation magnetization, initial permeability, and coercivity, in this work are presented some considerations about the possibilities of applications of nanocrystalline alloys in toroidal cores for current transformers. It is discussed how the magnetic characteristics of the core material affect the performance of the current transformer. From the magnetic characterization and the computational simulations, using the finite element method (FEM), it has been verified that, at the typical CT operation value of flux density, the nanocrystalline alloys properties reinforce the hypothesis that the use of these materials in measurement CT cores can reduce the ratio and phase errors and can also improve its accuracy class.
  • Constant load creep data in air and vacuum on 2.25Cr-1Mo steel from 600 °C to 700 °C

    Bueno, Levi de Oliveira; Sordi, Vitor Luiz; Marino, Luiz

    Resumo em Inglês:

    Creep results on 2.25Cr-1Mo were obtained at 600 °C, 650 °C and 700 °C at five stress levels, under constant load, in air and vacuum. Two chambers were specially developed for carrying out creep testing in controlled environment, with the possibility of accommodating inside them the load train, the extensometry system and the thermocouples. The creep machines used in this project present the advantage of allowing the performance of both constant load or constant stress creep testing, using interchangeable profiles. The preliminary set of constant load data reported here was analyzed according to the conventional methodology of creep data analysis, with the identification of parameters of the Norton, Arrhenius, Monkman-Grant and some extrapolation relations involving stress, temperature, minimum creep rate and rupture time. The results indicate a strong effect of the oxidation phenomenon on the creep behavior of this steel. The data were consistent and meaningful so that the developed chambers can be considered to present good performance in the generation of creep data in vacuum.
  • Fatigue analysis of aluminum drill pipes

    Plácido, João Carlos Ribeiro; Miranda, Paulo Emílio Valadão de; Antoun Netto, Theodoro; Pasqualino, Ilson Paranhos; Miscow, Guilherme Farias; Pinheiro, Bianca de Carvalho

    Resumo em Inglês:

    An experimental program was performed to investigate the fundamental fatigue mechanisms of aluminum drill pipes. Initially, the fatigue properties were determined through small-scale tests performed in an optic-mechanical fatigue apparatus. Additionally, full-scale fatigue tests were carried out with three aluminum drill pipe specimens under combined loading of cyclic bending and constant axial tension. Finally, a finite element model was developed to simulate the stress field along the aluminum drill pipe during the fatigue tests and to estimate the stress concentration factors inside the tool joints. By this way, it was possible to estimate the stress values in regions not monitored during the fatigue tests.
  • The "quenching and partitioning" process: background and recent progress

    Speer, John G.; Assunção, Fernando C. Rizzo; Matlock, David K.; Edmonds, David V.

    Resumo em Inglês:

    A new process concept, "quenching and partitioning" (Q&P) has been proposed recently for creating steel microstructures with retained austenite. The process involves quenching austenite below the martensite-start temperature, followed by a partitioning treatment to enrich the remaining austenite with carbon, thereby stabilizing it to room temperature. The process concept is reviewed here, along with the thermodynamic basis for the partitioning treatment, and a model for designing some of the relevant processing temperatures. These concepts are applied to silicon-containing steels that are currently being examined for low-carbon TRIP sheet steel applications, and medium-carbon bar steel applications, along with a silicon-containing ductile cast iron. Highlights of recent experimental studies on these materials are also presented, that indicate unique and attractive microstructure/property combinations may be obtained via Q&P. This work is being carried out through a collaborative arrangement sponsored by the NSF in the USA, CNPq in Brazil, and the EPSRC in the United Kingdom.
  • Microstructural evaluation of rare-earth-zinc oxide-based varistor ceramics

    Furtado, José Geraldo de Melo; Saléh, Luiz Antônio; Serra, Eduardo Torres; Oliveira, Glória Suzana Gomes de; Nóbrega, Maria Cecília de Souza

    Resumo em Inglês:

    Zinc oxide varistors are nonlinear voltage dependent ceramic resistors used to suppress and limit transient voltage surges. The work reported in this paper involves the relationship between microstructural characteristics and the varistor performance of ZnO ceramics doped with rare-earth oxides. Samples of these ceramics with different nonlinear current-voltage characteristics, according to the specific chemical composition and sintering parameters, were prepared and microstructurally analyzed by scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray fluorescence spectroscopy and X-ray diffraction. The results denote that intergranular phase is rich in rare-earth elements, but its morphology, obtained by selective leaching of ZnO grains (which are only doped with Co), provides evidence that ZnO grains are not completely surrounding by the intergranular phase, also existing ZnO grains are in direct contact with each other, as well as it occurs in conventional varistor system.
  • Self-diffusion in the hexagonal structure of Zirconium and Hafnium: computer simulation studies

    Ruiz, Diego Hernán; Gribaudo, Luis María; Monti, Ana María

    Resumo em Inglês:

    Self-diffusion by vacancy mechanism is studied in two metals of hexagonal close packed structure, namely Hafnium and Zirconium. Computer simulation techniques are used together with many-body potentials of the embedded atom type. Defect properties are calculated at 0 K by molecular static while molecular dynamic is used to explore a wide temperature range.
  • Study of the non-linear stress-strain behavior in Ti-Nb-Zr alloys

    Schneider, Sergio; Schneider, Sandra Giacomin; Silva, Helena Marques da; Moura Neto, Carlos de

    Resumo em Inglês:

    The aim of this work is to study the elastic behavior of some Ti-Nb-Zr alloys (Ti-8Nb-13Zr, Ti-13Nb-13Zr, Ti-18Nb-13Zr and Ti-41.1Nb-7.1Zr) developed to biomedical applications. These alloys were produced by arc melting under argon atmosphere. Uniaxial tensile tests, carried out in a MST servo-hydraulic machine, were employed in their mechanical characterization. The occurrence of non-linear stress-strain behavior in the conventional elastic region (total strain values up to 0.2%) lead to the Ramberg-Osgood relationship, modified by Hill, in order to analyze that portion of the obtained curves. The present study involves the following properties: initial elastic modulus, tangent modulus, secant modulus, proof stress and the Ramberg-Osgood parameter (n). The results demonstrate that these alloys are not similar with respect to the mechanical behavior. Furthermore, it is shown that the degree of non-linearity in the stress-strain behavior is quantified by the parameter (n).
  • Production of a low young modulus titanium alloy by powder metallurgy

    Santos, Dalcy Roberto dos; Henriques, Vinicius André Rodrigues; Cairo, Carlos Alberto Alves; Pereira, Marcelo dos Santos

    Resumo em Inglês:

    Titanium alloys have several advantages over ferrous and non-ferrous metallic materials, such as high strengthto-weight ratio and excellent corrosion resistance. A blended elemental titanium powder metallurgy process has been developed to offer low cost commercial products. The process employs hydride-dehydride (HDH) powders as raw material. In this work, results of the Ti-35Nb alloy sintering are presented. This alloy due to its lower modulus of elasticity and high biocompatibility is a promising candidate for aerospace and medical use. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by isochronal sintering between 900 up to 1600 °C, in vacuum. Sintering behavior was studied by means of microscopy and density. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Samples sintered at high temperatures display a fine plate-like alpha structure and intergranular beta. A few remaining pores are still found and density above 90% for specimens sintered in temperatures over 1500 °C is reached.
  • Production of titanium alloys for advanced aerospace systems by powder metallurgy

    Henriques, Vinicius André Rodrigues; Campos, Pedro Paulo de; Cairo, Carlos Alberto Alves; Bressiani, José Carlos

    Resumo em Inglês:

    Titanium alloys parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent corrosion resistance. Despite these features, use of titanium alloys in engines and airframes is limited by cost. The alloys processing by powder metallurgy eases the obtainment of parts with complex geometry. In this work, results of the Ti-6Al-4V and Ti-13Nb-13Zr alloys production are presented. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 up to 1500 °C, in vacuum. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. It was shown that the samples were sintered to high densities and presented homogeneous microstructure from the elements dissolution with low interstitial pick-up.
  • Tecnored process - high potential in using different kinds of solid fuels

    Noldin Júnior, José Henrique; Contrucci, Marcos de Albuquerque; D'Abreu, José Carlos

    Resumo em Inglês:

    One important feature of the Brazilian Tecnored ironmaking process is its flexibility to use different types of solid fuels, other than metallurgical coke, as proved in the pilot plant tests by extensively using green petroleum coke, biomasses, high ash cokes, etc. Even if new solid fuels not thus far used are envisaged for a given project, thru the bench scale simulator of the process it is possible to predict the behavior of such solid fuels in the Tecnored furnace and establish the best techno-economical-environmental equation for its use. This paper discusses the key aspects involved in the use of alternative solid fuels in the Tecnored process.
  • Surface processing to improve the fatigue resistance of advanced bar steels for automotive applications

    Matlock, David K.; Alogab, Khaled A.; Richards, Mark D.; Speer, John G.

    Resumo em Inglês:

    With the development of new steels and processing techniques, there have been corresponding advances in the fatigue performance of automotive components. These advances have led to increased component life and smaller power transfer systems. New processing approaches to enhance the fatigue performance of steels are reviewed with an emphasis on carburizing and deep rolling. Selected examples are presented to illustrate the importance of the base steel properties on the final performance of surface modified materials. Results on carburized gear steels illustrate the dependence of the fatigue behavior on carburizing process control (gas and vacuum carburizing), alloy additions and microstructure. The importance of retained austenite content, case and core grain size as controlled by processing and microalloy additions, extent of intergranular oxidation, and the residual stress profile on fatigue performance is also illustrated. Specific recent results on the use of microalloying elements (e.g. Nb) and process history control to limit austenite grain growth at the higher carburizing temperatures associated with vacuum carburizing are highlighted. For crankshaft applications, deep rolling is highlighted, a process to mechanically work fillet surfaces to improve fatigue resistance. The influence of the deformation behavior of the substrate, as characterized by standard tensile and compression tests, on the ability to create desired surface properties and residual stress profiles will be illustrated with data on several new steels of current and future interest for crankshaft applications.
  • Quenching technology: a selected overview of the current state-of-the-art

    Canale, Lauralice de Campos Franceschini; Totten, George E.

    Resumo em Inglês:

    Many papers have been published on a wide range of aspects of the fundamental physics and chemistry of quenching such as: additive technology, surface rewetting, hardness distribution prediction, role of heat transfer and residual stresses, etc.1,2. However, relatively little information has been published on the application of these insightful research results for the solution of long standing quench tank production problems. This paper will address three areas where technical advancements have been, or may be, made. These include discussion of: 1) the application fundamental fluid dynamics to characterize quenching uniformity due to agitation; 2) the use of "waves" to provide uniform agitation during the quenching process; and 3) the use of pressure as a variable to mediate heat transfer throughout the quenching process.
  • Theoretical and experimental study of carburisation and decarburisation of a meta-stable austenitic steel

    West, Charles; Trindade, Vicente Braz; Krupp, Ulrich; Christ, Hans-Jürgen

    Resumo em Inglês:

    Metastable austenitic stainless steels are known to undergo a partial transformation of austenite to martensite as a consequence of plastic deformation. In the case of cyclic loading, a certain level of plastic strain must be exceeded, and phase formation takes place after an incubation period, during which the necessary amount of plastic deformation is accumulated. The susceptibility of the austenitic phase to deformation-induced martensite formation is strongly affected by the temperature of loading and the stability of austenite, which itself depends on the chemical composition. A key element in this regard is carbon which stabilizes the austenitic phase. It is shown in this study that the carbon concentration can be analysed systematically and reproducible by means of annealing treatments, if the parameters of these treatments are carefully defined on the basis of advanced theoretical thermodynamic and kinetic considerations. First results on the effect of carbon concentration and temperature of fatigue testing on the austenite/martensite transformation are presented, in order to illustrate the significance of these parameters on the martensite formation rate.
  • The mechanism of changes in the surface layer of grey cast iron automotive brake disc

    Polak, Adam; Grzybek, Janusz

    Resumo em Inglês:

    The aim of the study was to create a model, describing the run of tribological processes in the surface layer of grey cast iron automotive brake discs. Grey cast iron discs mating with non-asbestos organic brake pads were chosen for the investigations, as the most widely used materials in car brakes. Samples for surface analysis were prepared from disc operating in stand and road conditions. Stand tests were pin-on-disc kind. Operating parameters for the stand tests were chosen on the basis of results of our earlier research. Topography of brake disc surface was evaluated by surface roughness measurements. The surface layer was examined with use of metallography and scanning electron microscopy. In order to differentiate structures of grey cast iron brake discs SE and BSE modes were used in scanning electron microscopy. Chemical investigations of samples were done by X-ray analysis linked with SEM. Studies showed influence of grey cast iron structures on tribological processes taking place in a brake friction pair. The surface layer of grey cast iron discs was described and features and functions of separated structures were presented. On the basis of the obtained results a physical model of friction mechanism was created. Special attention was paid to the influence of graphite on the run of tribological processes and mechanism of compaction and removal of wear debris.
  • Operating characteristics of heavy loaded cylindrical journal bearing with variable axial profile

    Strzelecki, Stanislaw

    Resumo em Inglês:

    During the operation of turbounit its bearings displace as a result of heat elongation of bearings supports. It changes the static deflection line of rotor determined during assembly of the turbounit, causing an increase in the stresses on the bearing edges and a decrease in the dynamic state of the machine. One of possibilities to avoid the edge stresses is to apply the bearings with variable axial profile, e.g. hyperboloidal, convex profile in the axial cross-section of bearing. Application of journal bearings with hyperboloidal profile allows to extend the bearing operation range without the stress concentration on the edges of bush. These bearings successfully carry the extreme load in conditions of misaligned axis of journal and the bush eliminating the necessity of using self-aligning bearings. Operating characteristics of bearing include the resulting force, attitude angle, oil film pressure and temperature distributions, minimum oil film thickness, maximum oil film temperature. In literature there is a lack of data on the operating characteristics of heavy loaded hyperboloidal journal bearings operating at the conditions of adiabatic oil film and static equilibrium position of the journal. For the hyperboloidal bearing the operating characteristics have been obtained. Different values of length to diameter ratio, assumed shape and inclination ratio coefficients have been assumed. Iterative solution of the Reynolds', energy and viscosity equations was applied. Adiabatic oil film, laminar flow in the bearing gap as well as aligned and misaligned orientation of journal in the bush were considered.
ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br