Acessibilidade / Reportar erro
Materials Research, Volume: 16, Número: 2, Publicado: 2013
  • Investigations on cementitious composites based on rubber particle waste additions Regular Articles

    Nacif, Glaucio Laun; Panzera, Túlio Hallak; Strecker, Kurt; Christoforo, André Luis; Paine, Kevin

    Resumo em Inglês:

    The amount of waste rubber has gradually increased over recent years because of over-growing use of rubber products. The disposal of waste rubber has caused serious environmental problems. The incorporation of recycled materials into cementitious composites is a feasible alternative that has gained ground in civil construction. The performance of such materials is much affected not only by the rubber addition, but also the particle size which has been controversially reported in the literature. In order to investigate the single effect of rubber particles into cement based materials, rubber cementitious composites were prepared with no silica particle additions. A full factorial design has been conducted to assess the influence of the rubber particle size (0.84/0.58 mm and 0.28/0.18 mm); mass fraction used (5, 15 and 30%); and water/cement ratio (0.35 and 0.50) on the physic-mechanical properties of the composites. The materials were characterized through apparent density, porosity, compressive strength, flexural strength, modulus of elasticity and microstructural analysis. The interactions of rubber particle size, rubber fraction and water/cement ratio affected significantly the density and compressive strength of the composites. The apparent porosity was influenced mainly by the rubber particle size. The flexural strength was affected by the main factors and the modulus of elasticity was affected by the interaction factors rubber particle size and fraction, and rubber fraction and w/c ratio.
  • Synthesis and characterization of CeO2 nanocrystals by solvothermal route Regular Articles

    Kumar, E.; Selvarajan, P.; Muthuraj, D.

    Resumo em Inglês:

    Cerium dioxide nanoparticles were prepared by solvothermal technique. The structural analysis was carried out using X-ray diffraction. It showed that the cerium dioxide nanoparticles exhibited cubic structure. Grain sizes were estimated from High Resolution Transmission Electron Microscopy images. The size of the nanoparticles is around 20 nm. The surface morphological studies from Scanning Electron Microscope (SEM) and HRTEM depicted spherical particles with formation of clusters. Thermal and electrical Insulating behaviors were determined.
  • Rutting prediction of asphalt mixtures modified by polypropylene fibers via repeated creep testing by utilising genetic programming Regular Articles

    Tapkin, Serkan; Çevik, Abdulkadir; Uşar, Ün; Gülşan, Eren

    Resumo em Inglês:

    A novel application of genetic programming (GP) for modelling and presenting closed form solutions to the rutting prediction for polypropylene (PP) modified asphalt mixtures is investigated. Various PP fibers have been utilised for bitumen modification and repeated creep (RC) tests have been carried out. Marshall specimens, fabricated with multifilament 3 mm (M-03) type PP fibers at optimum bitumen content of 5% have been tested under different load values and patterns at 50 °C to investigate their rutting potential. It has been shown that the service lives of PP fiber-reinforced Marshall specimens are respectively longer than the control specimens under the same testing conditions (5 to 12 times). Input variables in the developed GP model use the physical properties of Marshall specimens such as PP type, specimen height, unit weight, voids in mineral aggregate, voids filled with asphalt, air voids, rest period and pulse counts. The performance of the accuracy of the proposed GP model is observed to be quite satisfactory. To obtain the main effects plot, detailed parametric studies have been performed. The presened closed form solution will also help further researchers willing to perform studies on the prediction of the rutting potential of asphalt without carrying out destructive tests for similar type of aggregate sources, bitumen, aggregate gradation, modification technique and laboratory conditions.
  • Accelerated artificial aging of particleboards from residues of CCB treated Pinus sp. and castor oil resin Regular Articles

    Bertolini, Marília da Silva; Lahr, Francisco Antonio Rocco; Nascimento, Maria Fátima do; Agnelli, José Augusto Marcondes

    Resumo em Inglês:

    Tests simulating exposure to severe weather conditions have been relevant in seeking new applications for particleboard. This study aimed to produce particleboards with residues of CCB (chromium-copper-boron oxides) impregnated Pinus sp. and castor oil-based polyurethane resin, and to evaluate their performance before and after artificial accelerated aging. Panels were produced with different particle mass, resin content and pressing time, resulting eight treatments. Particles moisture and size distribution were determined, beyond panel physical and mechanical properties, according to NBR14810-3: 2006. After characterization, treatments B and G (small adhesive consumption and better mechanical performance, respectively) were chosen to artificial aging tests. Statistical results analysis showed best performances were achieved for waterproof aged samples, of both B and G treatments. As example, in treatment B, MOR and MOE values were 23 MPa and 2,297 MPa, samples before exposure; 26 MPa and 3,185 MPa, 32 MPa and 3,982 MPa for samples after exposure (non-sealed and sealed), respectively.
  • Preparation and characterization of stainless steel 316L/HA biocomposite Regular Articles

    Silva, Gilbert; Baldissera, Márcia Regina; Trichês, Eliandra de Sousa; Cardoso, Kátia Regina

    Resumo em Inglês:

    The austenitic stainless steel 316L is the most used metallic biomaterials in orthopedics applications, especially in the manufacture of articulated prostheses and as structural elements in fracture fixation, since it has high mechanical strength. However, because it is biologically inactive, it does not form chemical bond with bone tissue, it is fixed only by morphology. The development of biocomposites of stainless steel with a bioactive material, such as hydroxyapatite - HA, is presented as an alternative to improve the response in the tissue-implant interface. However significant reductions in mechanical properties of the biocomposite can occur. Different compositions of the biocomposite stainless steel 316L/HA (5, 20 and 50 wt. (%) HA) were prepared by mechanical alloying. After milling the powders for 10 hours, the different compositions of the biocomposite were compacted isostatically and sintered at 1200 ºC for 2 hours. The mechanical properties of the biocomposites were analyzed by compression tests. The powders and the sintered composites were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD).
  • Matrix consolidation mechanism in 1D-Ti/SiC/C composites produced by continuous binder-powder coating Regular Articles

    Ferreira, Ricardo Artur Sanguinetti; Yadava, Yogendra Prasad; Quenisset, Jean Michel; Arvieu, Corinne

    Resumo em Inglês:

    In this workmatrix consolidation mechanism has been investigated in 1D-Ti/SiC/C composites produced by Continuous Binder-Powder Coating - CBPC. Titanium metal matrix composites reinforced with continuous SiC/C filaments were analysed in different densification conditions. The results show that during processing, densification occurs by several mechanisms including a complex elasto-viscoplastic flow and diffusion bonding. The matrix consolidation depends on many processing conditions such as pressure and temperature, mainly. Using correct conditions of pressure and temperature, the titanium matrix composites produced by this process present a good matrix consolidation without porosity and a weak interaction between matrix and fiber. These good agreements between matrix consolidation and weak chemical interaction between matrix and fibre are obtained when pressures up to 150 MPa and temperatures below β-transus are applied. In these conditions, supplementary heat treatments can be performed either in alpha or beta domains.
  • Analysis of effective thermal conductivity for mineral cast material structures with varying epoxy content using TPS method Regular Articles

    Selvakumar, A.; Mohanram, P. V.

    Resumo em Inglês:

    Conventionally, cast iron is the material used for high speed machine tool structures. As an alternate material to improve the structural properties, composite materials are being used, which are known to exhibit excellent thermal and mechanical properties. While selecting an alternate material, thermal conductivity is an important thermo physical property of the material that should be studied. A resin composite material has a lesser thermal conductivity and its thermal properties vary with the composition of the mixture. A material with lower thermal conductivity will have higher heat concentration within the structure, which may result in structural deformation. In this analysis, epoxy granite, a material which is tested to exhibit excellent mechanical properties has been selected to study its thermal properties. Tests are carried out using Transient Plane Source (TPS) method, on eight samples with varying volume fraction of epoxy content in the range 10-24%. It is observed that, the effective thermal conductivity decreases with an increase in epoxy resin content in the mixture because the resin content increases interfacial resistance between particles. Hence, lower epoxy content in the mixture that maximizes the effective thermal conductivity while maintaining good mechanical properties is to be selected.
  • Development of methodology for measurements of residual stresses in welded joint based on displacement of points in a coordinated table Regular Articles

    Siqueira Filho, Aníbal Veras; Rolim, Tiago Leite; Yadava, Yogendra Prasad; Cardoso, Francisco Ilo Bezerra; Guimarães, Pablo Batista; Maciel, Theophilo Moura; Ferreira, Ricardo Artur Sanguinetti

    Resumo em Inglês:

    Residual stresses in a welded joint of ASTM A131 grade AH32 steel was measured either by the X-ray diffraction or by displacements of referenced points measured on a coordinate measuring machine before and after heat treatment. For all tests, the welding was performed with Shielded Metal Arc Welding, vertical-up position, by a certified welder. After welding, some specimens were subjected to marking, made through small holes evenly spaced and mapped on a coordinate measuring machine. After labeling, the samples were subjected to heat treatment at temperatures nearby recrystallization. After heat treatment, the samples were subjected to new measurements by coordinate measuring machine to evaluate the displacements of the points produced by the recrystallization. In parallel, residual stress measurements were made by XRD for validation of this new methodology. The results obtained either by X-ray or by coordinate measuring machine showed a good correlation between the two measurement methodologies employed.
  • The influence of the industrial processing on the degradation of poly(hidroxybutyrate) - PHB Regular Articles

    Pachekoski, Wagner Maurício; Dalmolin, Carla; Agnelli, José Augusto Marcondes

    Resumo em Inglês:

    PHB was characterized after different industrial processes by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), Melt Flow Index (MFI), Complex Dielectric Relaxation (CDR) and Size Exclusion Chromatography (SEC). Some properties of PHB were investigated before and after processing, in order to understand how temperature and other extrusion or injection conditions affect the polymer degradation. All the processed samples showed an increasing in the melt flow index, a decreasing of the dynamic crystallization temperature, and a reduction in the molar mass, suggesting some degradation. The molar mass reduction after processing, predicted when only thermal degradation is considered, was calculated in function of the kinetic parameters, such as constant thermal degradation and residence time during the industrial processing. It was found that the real molar mass reduction was higher than the theoretical value, indicating an important contribution of the shearing of polymeric chains during processing in the PHB degradation.
  • Wear mechanisms of dental composite restorative materials by two different in-vitro methods Regular Articles

    Souza, Juliana Antonino de; Dolavale, Liliane Canuto; Camargo, Sergio Alvaro de Souza

    Resumo em Inglês:

    In this work two very simple apparatuses, namely the ball crater (or ball-on-plate) and the linear reciprocating (or pin-on-plate) tests, were used in order to investigate the wear mechanisms of TPH Spectrum® and Resilab Master® dental composite resins. Loads in the range of 100 g to 1 kg and a total number of up to 24000 cycles were employed. During some of these tests, aqueous aluminum oxide suspensions were used as abrasive agent either diluted or not in distilled water. In case of the ball-on-plate test wear is dominated by abrasive and/or adhesive mechanisms, and is characterized by scratches which are composed of wear defects comprising particle detachment, wear of the polymer matrix and ceramic particle abrasion. However, the relative contributions of the two wear mechanisms could not be determined separately. In case of the pin-on-plate test wear is governed by the fatigue mechanism, although abrasive and adhesive wear mechanism are also present. After a certain number of cycles fatigue wear dominates the wear behavior and results in severe material loss. This mechanism seems to be more important in case of more brittle materials and when higher loads are employed. Qualitative analysis of the results suggests that the combination of these two very simple methods under appropriate conditions can yield sound results which may be representative of a number of clinical situations.
  • Waste polyethylene terephthalate as an aggregate in concrete Regular Articles

    Saikia, Nabajyoti; Brito, Jorge de

    Resumo em Inglês:

    This paper reports the strength behaviour of concrete containing three types of recycled polyethylene terephthalate (PET) aggregate. Results are also analysed to determine the PET-aggregate's effect on the relationship between the flexural and splitting tensile strengths and compressive strength and to know whether the relationships between compressive strength and other strength characteristics given in European design codes are applicable to concrete made with PET-aggregates. The compressive strength development of concrete containing all types of PET-aggregate behaves like in conventional concrete, though the incorporation of any type of PET-aggregate significantly lowers the compressive strength of the resulting concrete. The PET-aggregate incorporation improves the toughness behaviour of the resulting concrete. This behaviour is dependent on PET-aggregate's shape and is maximised for concrete containing coarse, flaky PET-aggregate. The splitting tensile and flexural strength characteristics are proportional to the loss in compressive strength of concrete containing plastic aggregates.
  • Experimental analysis and theoretical predictions of the limit strains of a hot-dip galvanized interstitial-free steel sheet Regular Articles

    Freitas, Maria Carolina dos Santos; Moreira, Luciano Pessanha; Velloso, Renata Garcez

    Resumo em Inglês:

    In this work, the formability of a hot-dip galvanized interstitial-free (IF) steel sheet was evaluated by means of uniaxial tensile and Forming Limit Curve (FLC) tests. The FLC was defined using the flat-bottomed Marciniak's punch technique, where the strain analysis was made using a digital image correlation software. A plastic localization model was also proposed wherein the governing equations are solved with the help of the Newton's method. The investigated hot-dip galvanized IF steel sheet presented a very good formability level in the deep-drawing range consistent with the measured Lankford values. The predicted limit strains were found to be in good agreement with the experimental data of the hot-dip galvanized IF steel sheet owing to the definition of the localization model geometrical imperfection as a function of the experimental surface roughness evolution and, in particular, to the yield surface flattening near to the plane-strain stress state authorized by the adopted yield criterion.
  • Nanocomposite of photocurable epoxy-acrylate resin and carbon nanotubes: dynamic-mechanical, thermal and tribological properties Regular Articles

    Santos, Marcos Nunes dos; Opelt, Carlos Vinícius; Pezzin, Sérgio Henrique; Amico, Sandro Campos; Costa, César Edil da; Milan, Júlio César; Lafratta, Fernando Humel; Coelho, Luiz Antonio Ferreira

    Resumo em Inglês:

    In this study, the thermal, dynamic-mechanical and tribological behavior of nanocomposites of a photocurable epoxy-acrylate resin and multiwalled carbon nanotubes (MWCNT) are investigated. A route consisting of a combination of sonication, mechanical and magnetic stirring is used to disperse 0.25-0.75 wt. (%) MWCNT into the resin. Two photocuring cycles using 12 hours and 24 hours of UV-A radiation are studied. The storage modulus, the loss modulus and the tan delta are obtained by dynamic mechanical analysis. Thermal stability is investigated by thermogravimetry, morphology by transmission electronic microscopy (TEM) and tribological performance using a pin-on-disk apparatus. The results indicate an increase in stiffness and higher ability to dissipate energy, as well as a shift in the glass transition temperature for the nanocomposites. The addition of nanofillers also decreased friction coefficient and wear rate of the nanocomposites but did not change the observed wear mechanisms.
  • Aqueous dispersion of red clay-based ceramic powder with the addition of starch Regular Articles

    Umaran, Maria Victoria Alcantar; Menchavez, Ruben Labandera

    Resumo em Inglês:

    The optimum dispersion and rheological properties of red clay-based ceramic suspension loaded with unary and binary starch were investigated in aqueous medium. The aqueous ceramic suspension was prepared consisting of red clay, quartz, feldspar, and distilled water. Using a polyelectrolyte dispersant (Darvan 821A), the ternary ceramic powder was initially optimized to give the smallest average particle size at 0.8 wt. (%) dispersant dosage as supported by sedimentation test. This resulted into an optimum high solid loading of 55 wt. (%). The addition of either unary or binary starches to the optimized ceramic slurry increased the viscosity but maintained an acceptable fluidity. The mechanism of such viscosity increase was found to be due to an adsorption of starch granules onto ceramic surfaces causing tolerable agglomeration. Correspondingly, the rheological evaluations showed that the flow behaviors of all starch-loaded ceramic slurries can be described using Herschel-Bulkley model. The parameters from this model indicated that all ceramic slurries loaded with starch are shear thinning that is required for direct casting process.
  • Influence of neutral and charged species on the plasma degradation of the stearic acid Regular Articles

    Bernardelli, Euclides Alexandre; Mafra, Marcio; Maliska, Ana Maria; Belmonte, Thierry; Klein, Aloisio Nelmo

    Resumo em Inglês:

    In this work, stearic acid (SA) was degraded in an Ar-O2and Ar-H2post-discharge environment created by a plasma reactor with a microwave source and in an Ar, Ar-H2and Ar-O2DC (Direct Current) discharge environment created in a cathode-anode confined system. The afterglow region is useful for understanding the role of the chemically active species (O, O2, H and H2). In contrast, the discharge region allows the observation of the effects of chemically active species, charged species (ions and electrons) and photons. The influence of these species on the grafting and etching of SA was evaluated by measuring the mass variation, mass variation rate and chemical composition. The results showed that when only chemically active oxygen species are present, the SA is preferentially grafted. However, when both photons and charged species are present, the SA is more efficiently etched. When the Ar-H2and Ar environments are utilized; the SA is not efficiently degraded.
  • Statistic evaluation of cysteine and allyl alcohol as additives for Cu-Zn coatings from citrate baths Regular Articles

    Garcia, Julyana Ribeiro; Lago, Dalva Cristina Baptista do; Silva, Fernando Lucas Gonçalves; D'Elia, Eliane; Luna, Aderval Severino; Senna, Lilian Ferreira de

    Resumo em Inglês:

    In the present work, cysteine and allyl alcohol were added to citrate baths as additives to Cu-Zn coatings on steel substrates. In order to verify the effects of the deposition parameters (current density, mechanical stirring speed, and additives) on the coating composition, electrochemical behavior, morphology, and microstructure properties of Cu-Zn coatings, the electrodeposition of the alloy was carried out using an experimental composite design 2³, in which these parameters were considered the entry variables and the measured properties were the response variables. The confidence level was 95% and the results were shown as response surface diagrams. It was possible to verify that the current density affected the zinc content in the coating, while the coating produced from cysteine-contained bath presented the worse anticorrosive performance. In a general way, it was possible to observe that the studied parameters affected the morphology, grain size, and the electrochemical behavior of these coatings, although only a few response variables were statistically influenced by them.
  • Dry-grinded ultrafine cements hydration. physicochemical and microstructural characterization Regular Articles

    Kontoleontos, Foteini; Tsakiridis, Petros; Marinos, Apostolos; Katsiotis, Nikolaos; Kaloidas, Vasileios; Katsioti, Margarita

    Resumo em Inglês:

    The aim of the present research work was the evaluation of the physicochemical and microstructural properties of two ultrafine cements, produced by dry grinding of a commercial CEM I 42.5N cement. The effect of grinding on particle size distribution was determined by laser scattering analyzer. All cements were tested for initial and final setting times, consistency of standard paste, soundness, flow of normal mortar and compressive strengths after 1, 2, 7 and 28 days. The effect of the fineness on the heat of hydration was also investigated. The hydration products were determined by X-ray diffraction analysis and by Fourier transform infrared spectroscopy, at 1, 2, 7 and 28 days. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. Porosity and pore size distribution were evaluated by mercury intrusion porosimetry. The effects of greater fineness on compressive strengths were evident principally at early ages. After the first 24 hours of hydration, the compressive strength of the finest cements was about 3 times higher (over 48 MPa) than the corresponding of CEM I 42.5N (15.1 MPa).
  • Synthesis and characterization of Ni-Mo filler brazing alloy for Mo-W joining for microwave tube technology Regular Articles

    Sene, Frank Ferrer; Motta, Cláudio Costa

    Resumo em Inglês:

    A brazing process based on Ni-Mo alloy was developed to join porous tungsten cathode bottom and dense molybdenum cathode body for microwave tubes manufacture. The Ni-Mo alloy was obtained by mixing and milling powders in the eutectic composition, and applied on the surface of the components. The brazing was made at 1400 °C by using induction heating in hydrogen for 5 minutes. Alumina surfaces were coated with the binder and analyzed by Energy Dispersive X-rays Fluorescence. The brazed samples were analyzed by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy. Stress-strain tests were performed to determine the mechanical behavior of the joining. The quality of the brazing was evaluated by assuring the presence of a "meniscus" formed by the Ni-Mo alloy on the border of the tungsten and molybdenum joint, the absence of microstructural defects in the interface between the tungsten and molybdenum alloys, and the adhesion of the brazed components.
  • Nucleation and growth process of sodalite and cancrinite from kaolinite-rich clay under low-temperature hydrothermal conditions Regular Articles

    Reyes, Carlos Alberto Ríos; Williams, Craig; Alarcón, Oscar Mauricio Castellanos

    Resumo em Inglês:

    The synthesis of low-silica zeotypes by hydrothermal transformation of kaolinite-rich clay and the nucleation and growth processes of sodalite and cancrinite in the system Na2O-Al2O3-SiO2-H2O at 100 °C were investigated. The synthesis products were characterized by X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), 29Si and 27Al Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR) and thermogravimetric analysis (TGA). Our data show that the sequence of the transformation of phases is: Poorly crystalline aluminosilicate → zeolite LTA → sodalite → sodalite + cancrinite → cancrinite. Synthesized materials appeared stable thermodynamically under the experimental conditions, with zeolite LTA (a metastable phase) occurring as a minor phase, compared with the presence of sodalite and cancrinite.
  • Sugarcane bagasse and castor oil polyurethane adhesive-based particulate composite Regular Articles

    Fiorelli, Juliano; Sartori, Diogo de Lucca; Cravo, Julio Cesar Machado; Savastano Junior, Holmer; Rossignolo, João Adriano; Nascimento, Maria Fátima do; Lahr, Francisco Antonio Rocco

    Resumo em Inglês:

    This paper discusses the potential use of sugarcane bagasse in two different fiber lengths (5 mm and 8 mm) of the same density as a raw material for the production of particleboards, using castor oil-based two-component polyurethane adhesive. The quality of the product that can be manufactured industrially was evaluated based on density, thickness swell (TS), absorption (WA), modulus of elasticity (MOE), modulus of rupture (MOR) in static bending and internal bond (IB), according to the Brazilian NBR 14.810:2006 standard. The results revealed a significant difference between the particleboards made with 5-mm-long fibers and those made with 8-mm-long fibers. An analysis by scanning electron microscopy (SEM) indicates that the interparticle spaces are filled with castor oil-based two-component polyurethane adhesive, contributing to improve the physicomechanical properties of the particleboards. A durability assessment based on accelerated aging tests shows that waterproofed particleboards can be used in moist environments.
  • Evaluation of erosion-corrosion resistance in Fe-Mn-Al austenitic steels Regular Articles

    Aperador, William Arnulfo; Ruiz, Jorge Hernando Bautista; Betancurt, Juan D.

    Resumo em Inglês:

    In this paper, the effects of Mn and Al against corrosion/errosion resistance of three samples of the Fe-Mn-Al austenitic alloys are evaluated. The samples have composition Fe-(4,9 ~ 11,0 wt. (%)) Al-(17,49 ~ 34,3 wt. (%)) Mn-(0,43 ~ 1,25 wt. (%))C, those were prepared in an induction furnace from high purity materials. The alloys were evaluated in a composed solution of NaCl 0,5 M and Silica in a special chamber and AISI 316 stainless steel as reference material. The electrochemical characterization was performed by Tafel curve polarizations technique. This microstructural characterization was by Scanning Electron Microscopy (SEM). It was observed the significant decrease in the corrosion rate for steels Fermanal with a lower percentage of aluminum and manganese under conditions of dynamic corrosion and erosion-corrosion. SEM allows assessment of the dominant damage mechanisms and corroborated the results obtained by electrochemical measurements.
  • Evaluation of properties and FEM Model of the Friction welded mild Steel-Al6061-Alumina Regular Articles

    Seli, Hazman; Awang, Mokhtar; Ismail, Ahmad Izani Md.; Rachman, Endri; Ahmad, Zainal Arifin

    Resumo em Inglês:

    Evaluation of mechanical and interfacial properties of friction welded alumina-mild steel rods with the use of Al6061 sheet are presented in this work. SEM, EDX analysis, hardness and bending strength tests were conducted. The bonds were attained through interfacial interlocking and intermetalllic phase formation with average bending strengths in the range of 40 to 200 MPa and insignificant hardness change in the parent alumina and mild steel. A preliminary simulation was made to predict the deformation, stress, strain and temperature distribution during the joining operation using a fully coupled thermo-mechanical FE model. The aluminum alloy metal being rubbed was simulated using a phenomenological Johnson-Cook viscoplasticity material model, which suited for materials subjected to large strains, high strain rates and high temperatures. The highest stress, strain and deformation are found to be within the heat affected zone of the weld close to the periphery rubbing surface region and correspond to the highest temperature profiles observed.
  • Synthesis of TiO2 by the pechini method and photocatalytic degradation of methyl red Regular Articles

    Ribeiro, Pollyana Caetano; Costa, Ana Cristina Figueiredo de Melo da; Kiminami, Ruth Herta Goldschmidt Aliaga; Sasaki, José Marcos; Lira, Hélio Lucena

    Resumo em Inglês:

    This work evaluated the catalytic activity of TiO2 synthesized by the Pechini method. with varying molar ratios of 2:1, 3:1 and 4:1 of citric acid/metallic cations, in the photocatalytic degradation of methyl red dye in aqueous solution. The samples were characterized by X-ray diffraction, phase quantification by Rietveld structure refinement, and textural analysis by nitrogen adsorption, and their photocatalytic performance was bench- tested. The results indicated that the 3:1 and 4:1 samples contained two phases, with 84.4 and 89% of anatase phase and 15.6 and 11% of rutile phase, respectively. The 2:1 sample contained only anatase phase. The total discoloration of methyl red dye in 24 hours confirmed the high photocatalytic efficiency of the 2:1 sample, which was ascribed to the formation of monophasic anatase.
  • Finite element reduction strategy for composite sandwich plates with viscoelastic layers Regular Articles

    Diacenco, Adriana Amaro; Lima, Antônio Marcos Gonçalves de; Corrêa, Edmilson Otoni

    Resumo em Inglês:

    Composite materials have been regarded as a convenient strategy in various types of engineering systems such as aeronautical and space structures, as well as architecture and light industry products due to their advantages over the traditional engineering materials, such as their high strength/stiffness relation characteristics and their anti-corrosion properties. This paper is devoted to the finite element modeling of composite laminated structures incorporating viscoelastic materials to the problem of vibration attenuation. However, the typically high dimension of large finite element models of composite structures incorporating viscoelastic materials makes the numerical processes sometimes unfeasible. Within this context, emphasis is placed on a general condensation strategy specially adapted for the case of viscoelastically damped structures, in which a constant (frequency- and temperature-independent) reduction basis to be enriched by static residues associated to the applied loads and the viscoelastic forces is used. After presenting the theoretical foundations, the numerical applications of composite plates treated by viscoelastic materials are addressed, and the main features of the methodology are discussed.
  • Extraction of alginate biopolymer present in marine alga sargassum filipendula and bioadsorption of metallic ions Regular Articles

    Kleinübing, Sirlei Jaiana; Gai, Frederico; Bertagnolli, Caroline; Silva, Meuris Gurgel Carlos da

    Resumo em Inglês:

    This paper studies the bioadsorption of Pb2+, Cu2+, Cd2+ and Zn2+ ions by marine alga Sargassum filipendula and by the alginate biopolymer extracted from this alga. The objective is to evaluate the importance of this biopolymer in removing different metallic ions by the marine alga S. filipendula. In the equilibrium study, the same affinity order was observed for both bioadsorbents: Pb2+ > Cu2+ > Zn2+ > Cd2+. For Pb2+ and Cu2+ ions when the alginate is isolated and acting as bioadsorbents, adsorption capacities greater than those found for the alga were observed, indicating that it is the main component responsible for the removal of metallic ions. For Zn2+ and Cd2+ ions, greater bioadsorption capacities were observed for the alga, indicating that other functional groups of the alga, such as sulfates and amino, are also important in the bioadsorption of these ions.
  • Study of phase transformations In API 5L X80 Steel in order to increase its fracture toughness Regular Articles

    Pedrosa, Igor Rafael Vilarouco; Castro, Renato Soares de; Yadava, Yogendra Prasad; Ferreira, Ricardo Artur Sanguinetti

    Resumo em Inglês:

    Phase transformations in API 5L X80 steel were studied in different thermomechanical sequences with a view to increasing the fracture toughness of this steel. Dilatometry tests performed on the quenched steel detected a phase transformation occurred, during heating, in the temperature range 593-618 K. This phase transformation was identified as the dissolution of M-A islands. Based on preliminary dilatometric tests, ten thermal and thermomechanical treatments were performed on X80 steel samples. Initially, the material was hot rolled and quenched and only quenched. On the material without deformation, aging was also performed at temperatures of 603, 673, 723, 773, 823 and 873 K. These treatments resulted in the formation of the acicular ferrite constituent, among others. Tensile tests showed that the aging treatments produced reductions in yield strength and increases in the elongation and toughness of X80 steel. All the treatments resulted in an increase in the tensile strength of steel.
  • Crystallization of II-VI semiconductor compounds forming long microcrystalline linear assemblies Regular Articles

    Becerril, Marcelino; Portillo-Moreno, Óscar; Lozada-Moráles, Rosendo; Ramírez-Bon, Rafael; Ochoa-Landín, Ramón; Sánchez-Sinencio, Feliciano; Santoyo-Salazar, Jaime; Zelaya-Angel, Orlando

    Resumo em Inglês:

    In this work we report the formation of long microcrystalline linear self-assemblies observed during the thin film growth of several II-VI compounds. Polycrystalline CdTe, CdS, CdCO3, and nanocrystalline CdTe:Al thin films were prepared on glass substrates by different deposition techniques. In order to observe these crystalline formations in the polycrystalline materials, the thin film growth was suspended before the grains reached to form a continuous layer. The chains of semiconductor crystals were observed among many isolated and randomly distributed grains. Since CdTe, CdTe:Al, CdS and CdCO3 are not ferroelectric and/or ferromagnetic materials, the relevant problem would be to explain what is the mechanism through which the grains are held together to form linear chains. It is well known that some nanocrystalline materials form rods and wires by means of electrostatic forces. This occurs in polar semiconductors, where it is assumed that the attraction forces between surface polar faces of the small crystals are the responsible for the chains formation. Since there are not too many mechanisms responsible for the attraction we assume that a dipolar interaction is the force that originates the formation of chain-like grain clusters. The study of this property can be useful for the understanding of nucleation processes in the growth of semiconductor thin films.
  • Photoluminescence properties of thermally stable highly crystalline CdS nanoparticles Regular Articles

    Dhage, Sanjay R.; Colorado, Henry A.; Hahn, Hong Thomas

    Resumo em Inglês:

    Thermally stable and highly crystalline CdS nanoparticles were obtained via chemical bath method. The optical properties of CdS nanocrystals were characterized by ultraviolet-vis and photoluminescence spectroscopy. Improvement in the photoluminescence properties of the synthesized CdS nanocrystals was observed. This improvement is believed to be due to highly crystalline CdS nanoparticles which may reduce the local surface-trap states. The CdS nanoparticles were characterized by x-ray powder diffraction (XRD), thermo gravimetric analysis (TGA/DTA) and transmission electron microscopy (TEM).
  • Comparison between Neutron Diffraction measurements and numerical simulation of residual stresses of a Wire-Drawing process Regular Articles

    Souza, Tomaz Fantin de; Soares, Carla Adriana Theis; Zottis, Juliana; Nunes, Rafael Menezes; Rocha, Alexandre da Silva; Hirsch, Thomas

    Resumo em Inglês:

    In this work, a drawing processed was simulated to calculate forces and the resulting residual stresses in the material. The calculated residual stresses were compared with experimentally measured residual stresses by the Neutron Diffraction Method. The modeled process was the Wire Drawing. The necessary parameters to model the process were taken from an industrial currently used process. Rods of an AISI 1045 steel with nominal diameters of 21.46 mm were reduced to 20.25 mm by drawing with an drawing angle of 15°. Compression tests were used to determinate flow curves of the real material an used in the simulation models. The possibility to estimate drawing forces by numerical simulation was evaluated by comparing simulated results with values from empirical equations given by the literature. The results have shown a sufficient accuracy for the calculation of forces, but the comparison of residual stresses has shown differences to the experimentally determined ones that can be minimized by the consideration of high strain rates in the compression tests, anisotropy of the material and kinematic hardening.
  • Removal of Cadmium(II) and Lead(II) ions from aqueous phase on sodic bentonite Regular Articles

    Galindo, Luz Stella Gaona; Almeida Neto, Ambrósio Florêncio de; Silva, Meuris Gurgel Carlos da; Vieira, Melissa Gurgel Adeodato

    Resumo em Inglês:

    This paper describes the adsorption of Cd2+and Pb2+ions using sodic bentonite clay type Fluidgel modified. The Fluidgelbefore and after chemical modification and thermal activation was characterized by different techniques including X-ray diffraction, thermal analysis, Fourier transform infrared, surface area, helium pycnometry, cation exchange capacity and scanning electron microscopy. Pseudo-first order, pseudo-second order and intra-particle diffusion models were used to analyze the kinetic curves. Equilibrium data were analyzed using Langmuir and Freundlich models. The thermodynamic study indicated that lead adsorption process is endothermic and interactions between clays and solutions of lead occurred spontaneously, while cadmium adsorption revealed an exothermic and spontaneous nature. The maximum removal efficiencies were 97.62% for Cd(II) using Fluidgelmodified chemically and 91.08% for lead by Fluidgel modified chemical and thermally.
  • Platinum uptake from chloride solutions using biosorbents Regular Articles

    Morcali, Mehmet Hakan; Zeytuncu, Bihter; Yucel, Onuralp

    Resumo em Inglês:

    Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (%) were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (%) was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (%) increased two-fold. The pistachio nut shell (original and activated) and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.
  • Implication of low temperature and sonication on electrocrystallization mechanism of Cu thin films: a kinetics and structural correlation Regular Articles

    Mallik, Archana; Ray, Bankim Chandra

    Resumo em Inglês:

    The effect of an ultrasonic environment during electrodeposition of copper on graphite at various electrolyte temperatures of 25, 20, 15, 10 and 5 °C is reported in this investigation. Resulting Cu deposits formed by potentiostatic deposition were characterized by electrochemical methods, scanning electron microscopy and atomic force microscopy. It was found that in presence of ultrasound the deposition kinetics was mainly dominated by the charge transfer. Copper nucleated according to 3D instantaneous mechanisms for all temperature ranges. The extent of nucleation was found to be increased at low temperatures. Diffusion coefficients and nuclei population density were calculated for each temperature range. Sonicated deposits with good surface coverage were found to consist of spherical copper agglomerates of nanosized particles.
  • Rutting analysis of 100 mm diameter polypropylene modified asphalt specimens using gyratory and Marshall compactors Regular Articles

    Tapkın, Serkan; Keskin, Mustafa

    Resumo em Inglês:

    Compaction technique used in Marshall design does not model the process of actual rolling procedures on site exactly. Carrying out laboratory compaction of dense bituminous mixtures with Superpave gyratory compactors is a more realistic way of simulating actual compaction. In this study, mechanical differences of reference and polypropylene modified asphalt mixtures were compared using Superpave gyratory and Marshall compaction methods by carrying out repeated creep tests utilising universal testing machine. In addition, there is no standard Superpave design procedure for 100 mm diameter samples till date. The other purpose of this study is to propose new standards for the compaction and testing procedures of these 100 mm specimens. Indeed, extensive studies have shown that the design gyration number should be 40 for reference and 33 for polypropylene modified specimens under medium traffic conditions for the similar and specific type of aggregate sources, bitumen, aggregate gradation, mix proportioning, modification technique and laboratory conditions. Moreover, it was shown that, the asphalt samples produced by Superpave gyratory compactor were much resistant to destructive rutting effects than the asphalt specimens prepared by Marshall design.
ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br