Acessibilidade / Reportar erro
Brazilian Journal of Microbiology, Volume: 49, Número: 1, Publicado: 2018
  • The new Brazilian legislation on access to the biodiversity (Law 13,123/15 and Decree 8772/16) Editorial

    Silva, Manuela da; Oliveira, Danilo Ribeiro de
  • Draft genome sequence of Chryseobacterium limigenitum SUR2T (LMG 28734T) isolated from dehydrated sludge Genome Announcements

    Škraban, Jure; Kyrpides, Nikos C.; Shapiro, Nicole; Whitman, William B.; Trček, Janja

    Resumo em Inglês:

    ABSTRACT The type strain SUR2 of the novel species Chryseobacterium limigenitum was isolated from a dehydrated sludge of the municipal sewage treatment plant in Dogoše near Maribor in Slovenia. The draft genome, with 60 contigs, 4,697,725 bp, 34.4% of G+C content, was obtained using the Illumina HiSeq 2500-1 platform. Joint Genome Institute Microbial Genome Annotation Pipeline (MGAP v.4) has identified 4322 protein-coding sequences including resistance genes against arsenic and other heavy metals. In addition, a subclass B3 metallo-β-lactamase, which confers resistance to penicillins, cephalosporins and carbapenems, was also present in the genome. The genome sequence provides important information regarding bioremediation potential and pathogenic properties of this newly identified species.
  • Draft genome sequence of Exiguobacterium aurantiacum strain PN47 isolate from saline ponds, known as “Salar del Huasco”, located in the Altiplano in the North of Chile Genome Announcements

    Strahsburger, Erwin; Zapata, Felipe; Pedroso, Inti; Fuentes, Derie; Tapia, Paz; Ponce, Raul; Valdes, Jorge

    Resumo em Inglês:

    ABSTRACT In this report, we present a draft genome of 2,886,173 bp of an Exiguobacterium aurantiacum strain PN47 isolate from the sediment of a saline pond named “Salar del Huasco” in the Altiplano in the North of Chile. Strain PN47 encodes adaptive characteristics enabling survival in extreme environmental conditions of high heavy metal and salt concentrations and high alkalinity.
  • Draft genome sequence of Vitellibacter aquimaris D-24T isolated from seawater Genome Announcements

    Thevarajoo, Suganthi; Selvaratnam, Chitra; Chan, Kok-Gan; Goh, Kian Mau; Chong, Chun Shiong

    Resumo em Inglês:

    ABSTRACT Vitellibacter aquimaris D-24T (=KCTC 42708T = DSM 101732T), a halophilic marine bacterium, was isolated from seawater collected from Desaru beach, Malaysia. Here, we present the draft genome sequence of D-24T with a genome size of approximately 3.1 Mbp and G + C content of 39.93%. The genome of D-24T contains genes involved in reducing a potent greenhouse gas (N2O) in the environment and the degradation of proteinaceous compounds. Genome availability will provide insights into potential biotechnological and environmental applications of this bacterium.
  • Genome sequence of Streptomyces mangrovisoli MUSC 149T isolated from intertidal sediments Genome Announcements

    Ser, Hooi-Leng; Tan, Wen-Si; Ab Mutalib, Nurul-Syakima; Yin, Wai-Fong; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    Resumo em Inglês:

    ABSTRACT As the largest genus in Actinobacteria family, Streptomyces species have the ability to synthesize numerous compounds of diverse structures with bioactivities. Streptomyces mangrovisoli MUSC 149T was previously isolated as a novel streptomycete from mangrove forest in east coast of Peninsular Malaysia. The high quality draft genome of MUSC 149T comprises 9,165,825 bp with G + C content of 72.5%. Through bioinformatics analysis, 21 gene clusters identified in the genome were associated with the production of bioactive secondary metabolites. The presence of these biosynthetic gene clusters in MUSC 149T suggests the potential exploitation of the strain for production of medically important compounds.
  • Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76T Genome Announcements

    Yang, Xue-Jing; Wang, Sai; Cao, Jun-Min; Hou, Jia-Hui

    Resumo em Inglês:

    ABSTRACT Kosakonia cowanii type strain 888-76T is a human pathogen which was originally isolated from blood as NIH group 42. In this study, we report the complete genome sequence of K. cowanii 888-76T. 888-76T has 1 chromosome and 2 plasmids with a total genome size of 4,857,567 bp and C+G 56.15%. This genome sequence will not only help us to understand the virulence features of K. cowanii 888-76T but also provide us the useful information for the study of evolution of Kosakonia genus.
  • Genome sequencing of two Bacillus anthracis strains: a virulent strain and a vaccinal strain Genome Announcements

    Siqueira, Franciele Maboni; Cibulski, Samuel Paulo; Mayer, Fabiana Quoos; Driemeier, David; Pavarini, Saulo Petinatti; Vargas, Agueda Palmira Castagna de

    Resumo em Inglês:

    ABSTRACT Bacillus anthracis strain SPV842_15 was isolated from bovine fetus, while B. anthracis strain Brazilian vaccinal was recovered from a commercial vaccine. We report here the genome sequences of both strains. The SPV842_15 genome is composed of a single circular chromosome with a length of 5,228,664 base pairs, and comprises 5911 coding sequences. In turn, the Brazilian vaccinal genome remains in 201 contigs with 5733 coding sequences. Both genomes have an overall C + G content of 35.4%, and 11 genes encoding the ribosomal RNAs (rRNAs) 5S, 16S and 23S. Only the plasmid pX01 sequence, which carries genes for toxins synthesis, was detected and completely assembled for both strains. These plasmids have a length of 181,684 base pairs and a C + G content of 32.5%. These genomic data generate insights about vaccinal B. anthracis virulence.
  • Polyphasic characterization of bacteria obtained from upland rice cultivated in Cerrado soil Environmental Microbiology

    Braga, Lívia Fabiana; Oliveira, Fênix Araújo de; Couto, Eva Aparecida Prado do; Santos, Karina Freire d'Eça Nogueira; Ferreira, Enderson Petrônio de Brito; Martin-Didonet, Claudia Cristina Garcia

    Resumo em Inglês:

    ABSTRACT This work aimed to characterize 20 isolates obtained from upland rice plants, based on phenotypic (morphology, enzymatic activity, inorganic phosphate solubilization, carbon source use, antagonism), genotypic assays (16S rRNA sequencing) and plant growth promotion. Results showed a great morphological, metabolic and genetic variability among bacterial isolates. All isolates showed positive activity for catalase and protease enzymes and, 90% of the isolates showed positive activity for amylase, catalase and, nitrogenase. All isolates were able to metabolize sucrose and malic acid in contrast with mannitol, which was metabolized only by one isolate. For the other carbon sources, we observed a great variability in its use by the isolates. Most isolates showed antibiosis against Rhizoctonia solani (75%) and Sclerotinia sclerotiorum (55%) and, 50% of them showed antibiosis against both pathogens. Six isolates showed simultaneous ability of antibiosis, inorganic phosphate solubilization and protease activity. Based on phylogenetic analysis of the 16S rRNA gene all the isolates belong to Bacillus genus. Under greenhouse conditions, two isolates (S4 and S22) improved to about 24%, 25%, 30% and 31% the Total N, leaf area, shoot dry weight and root dry weight, respectively, of rice plants, indicating that they should be tested for this ability under field conditions.
  • Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites Environmental Microbiology

    Oladipo, Oluwatosin Gbemisola; Awotoye, Olusegun Olufemi; Olayinka, Akinyemi; Bezuidenhout, Cornelius Carlos; Maboeta, Mark Steve

    Resumo em Inglês:

    ABSTRACT Increased environmental pollution has necessitated the need for eco-friendly clean-up strategies. Filamentous fungal species from gold and gemstone mine site soils were isolated, identified and assessed for their tolerance to varied heavy metal concentrations of cadmium (Cd), copper (Cu), lead (Pb), arsenic (As) and iron (Fe). The identities of the fungal strains were determined based on the internal transcribed spacer 1 and 2 (ITS 1 and ITS 2) regions. Mycelia growth of the fungal strains were subjected to a range of (0-100 Cd), (0-1000 Cu), (0-400 Pb), (0-500 As) and (0-800 Fe) concentrations (mgkg-1) incorporated into malt extract agar (MEA) in triplicates. Fungal radial growths were recorded every three days over a 13-days' incubation period. Fungal strains were identified as Fomitopsis meliae, Trichoderma ghanense and Rhizopus microsporus. All test fungal exhibited tolerance to Cu, Pb, and Fe at all test concentrations (400-1000 mgkg-1), not differing significantly (p > 0.05) from the controls and with tolerance index >1. T. ghanense and R. microsporus demonstrated exceptional capacity for Cd and As concentrations, while showing no significant (p > 0.05) difference compared to the controls and with a tolerance index >1 at 25 mgkg-1 Cd and 125 mgkg-1 As. Remarkably, these fungal strains showed tolerance to metal concentrations exceeding globally permissible limits for contaminated soils. It is envisaged that this metal tolerance trait exhibited by these fungal strains may indicate their potentials as effective agents for bioremediative clean-up of heavy metal polluted environments.
  • Simultaneous biodegradation of phenol and cyanide present in coke-oven effluent using immobilized Pseudomonas putida and Pseudomonas stutzeri Environmental Microbiology

    Singh, Utkarsh; Arora, Naveen Kumar; Sachan, Preeti

    Resumo em Inglês:

    ABSTRACT Discharge of coke-oven wastewater to the environment may cause severe contamination to it and also threaten the flora and fauna, including human beings. Hence before dumping it is necessary to treat this dangerous effluent in order to minimize the damage to the environment. Conventional technologies have inherent drawbacks however, biological treatment is an advantageous alternative method. In the present study, bacteria were isolated from the soil collected from the sites contaminated by coke-oven effluent rich in phenol and cyanide. Nucleotides sequence alignment and phylogenetic analysis showed the identity of the selected phenol and cyanide degrading isolates NAUN-16 and NAUN-1B as Pseudomonas putida and Pseudomonas stutzeri, respectively. These two isolates tolerated phenol up to 1800 mg L-1 and cyanide up to 340 mg L-1 concentrations. The isolates were immobilized on activated charcoal, saw dust and fly ash. The effluent was passed through the column packed with immobilized cells with a flow rate of 5 mL min-1. The isolates showed degradation of phenol up to 80.5% and cyanide up to 80.6% and also had the ability to reduce biological oxygen demand, chemical oxygen demand and lower the pH of effluent from alkaline to near neutral. The study suggests the utilization of such potential bacterial strains in treating industrial effluent containing phenol and cyanide, before being thrown in any ecosystem.
  • Physiological response of Cucurbita pepo var. pepo mycorrhized by Sonoran desert native arbuscular fungi to drought and salinity stresses Environmental Microbiology

    Harris-Valle, Citlalli; Esqueda, Martín; Gutiérrez, Aldo; Castellanos, Alejandro E.; Gardea, Alfonso A.; Berbara, Ricardo

    Resumo em Inglês:

    ABSTRACT Plants response to symbiosis with arbuscular mycorrhizal fungi (AMF) under water stress is important to agriculture. Under abiotic stress conditions native fungi are more effective than exotics in improving plant growth and water status. Mycorrhization efficiency is related to soil fungi development and energy cost-benefit ratio. In this study, we assessed the effect on growth, water status and energy metabolism of Cucurbita pepo var. pepo when inoculated with native AMF from the Sonoran desert Mexico (mixed isolate and field consortium), and compared with an exotic species from a temperate region, under drought, low and high salinity conditions. Dry weights, leaf water content, water and osmotic potentials, construction costs, photochemistry and mycorrhization features were quantified. Under drought and low salinity conditions, the mixed isolate increased plant growth and leaf water content. Leaf water potential was increased only by the field consortium under drought conditions (0.5-0.9 MPa). Under high salinity, the field consortium increased aerial dry weight (more than 1 g) and osmotic potential (0.54 MPa), as compared to non-mycorrhized controls. Plants inoculated with native AMF, which supposedly diminish the effects of stress, exhibited low construction costs, increased photochemical capacity, and grew larger external mycelia in comparison to the exotic inoculum.
  • Control potential of Meloidogyne javanica and Ditylenchus spp. using fluorescent Pseudomonas and Bacillus spp. Environmental Microbiology

    Turatto, Marcielly F.; Dourado, Fernanda dos S.; Zilli, Jerri E.; Botelho, Glória R.

    Resumo em Inglês:

    ABSTRACT Plant Growth Promoting Rhizobacteria (PGPR) have different mechanisms of action in the development of plants, such as growth promotion, production of phytohormones and antibiotic substances and changes in root exudates. These help to control plant diseases. In order to evaluate the potential of microorganisms in the control of Meloidogyne javanica and Ditylenchus spp., five rhizobacteria isolated from rhizosphere of garlic cultivated in the Curitibanos (SC) region were tested. Hatching chambers were set on Petri dishes, in which were added 10 mL of bacterial suspension and 1 mL of M. javanica eggs suspension, at the rate of 4500, on the filter paper of each chamber. The same procedure was performed with 300 juvenile Ditylenchus spp. The experimental design was completely randomized, with four replications. The evaluations were performed every 72 h for nine days. The antagonized population of nematodes was determined in Peters counting chamber, determining the percentage hatching (for M. javanica) and motility (for Ditylenchus spp). Isolates CBSAL02 and CBSAL05 significantly reduced the hatching of M. javanica eggs (74% and 54.77%, respectively) and the motility of Ditylenchus spp. (55.19% and 53.53%, respectively) in vitro. Isolates were identified as belonging to the genera Pseudomonas (CBSAL05) and Bacillus (CBSAL02).
  • Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth Environmental Microbiology

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    Resumo em Inglês:

    ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10) had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48). We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth.
  • Contribution of dark septate fungi to the nutrient uptake and growth of rice plants Environmental Microbiology

    Vergara, Carlos; Araujo, Karla Emanuelle Campos; Alves, Luiziene Soares; Souza, Sônia Regina de; Santos, Leandro Azevedo; Santa-Catarina, Claudete; Silva, Krisle da; Pereira, Gilmara Maria Duarte; Xavier, Gustavo Ribeiro; Zilli, Jerri Édson

    Resumo em Inglês:

    ABSTRACT The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.
  • Effect of sulfonylurea tribenuron methyl herbicide on soil Actinobacteria growth and characterization of resistant strains Environmental Microbiology

    Rachedi, Kounouz; Zermane, Ferial; Tir, Radja; Ayache, Fatima; Duran, Robert; Lauga, Béatrice; Karama, Solange; Simon, Maryse; Boulahrouf, Abderrahmane

    Resumo em Inglês:

    ABSTRACT Repeated application of pesticides disturbs microbial communities and cause dysfunctions on soil biological processes. Granstar® 75 DF is one of the most used sulfonylurea herbicides on cereal crops; it contains 75% of tribenuron-methyl. Assessing the changes on soil microbiota, particularly on the most abundant bacterial groups, will be a useful approach to determine the impact of Granstar® herbicide. For this purpose, we analyzed Actinobacteria, which are known for their diversity, abundance, and aptitude to resist to xenobiotic substances. Using a selective medium for Actinobacteria, 42 strains were isolated from both untreated and Granstar® treated soils. The number of isolates recovered from the treated agricultural soil was fewer than that isolated from the corresponding untreated soil, suggesting a negative effect of Granstar® herbicide on Actinobacteria community. Even so, the number of strains isolated from untreated and treated forest soil was quite similar. Among the isolates, resistant strains, tolerating high doses of Granstar® ranging from 0.3 to 0.6% (v/v), were obtained. The two most resistant strains (SRK12 and SRK17) were isolated from treated soils showing the importance of prior exposure to herbicides for bacterial adaptation. SRK12 and SRK17 strains showed different morphological features. The phylogenetic analysis, based on 16S rRNA gene sequencing, clustered the SRK12 strain with four Streptomyces type strains (S. vinaceusdrappus, S. mutabilis, S. ghanaensis and S. enissocaesilis), while SRK17 strain was closely related to Streptomyces africanus. Both strains were unable to grow on tribenuron methyl as unique source of carbon, despite its advanced dissipation. On the other hand, when glucose was added to tribenuron methyl, the bacterial development was evident with even an improvement of the tribenuron methyl degradation. In all cases, as tribenuron methyl disappeared, two compounds were detected with increased concentrations. These by-products appeared to be persistent and were not degraded either chemically or by the studied strains. Based on these observations, we suggested that bacterial activity on carbon substrates could be directly involved in the partial breakdown of tribenuron methyl, by generating the required acidity for the first step of the hydrolysis. Such a process would be interesting to consider in bioremediation of neutral and alkaline tribenuron methyl-polluted soils.
  • Temporal assessment of microbial communities in soils of two contrasting mangroves Environmental Microbiology

    Rigonato, Janaina; Kent, Angela D.; Gumiere, Thiago; Branco, Luiz Henrique Zanini; Andreote, Fernando Dini; Fiore, Marli Fátima

    Resumo em Inglês:

    ABSTRACT Variations in microbial communities promoted by alterations in environmental conditions are reflected in similarities/differences both at taxonomic and functional levels. Here we used a natural gradient within mangroves from seashore to upland, to contrast the natural variability in bacteria, cyanobacteria and diazotroph assemblages in a pristine area compared to an oil polluted area along a timespan of three years, based on ARISA (bacteria and cyanobacteria) and nifH T-RFLP (diazotrophs) fingerprinting. The data presented herein indicated that changes in all the communities evaluated were mainly driven by the temporal effect in the contaminated area, while local effects were dominant on the pristine mangrove. A positive correlation of community structure between diazotrophs and cyanobacteria was observed, suggesting the functional importance of this phylum as nitrogen fixers in mangroves soils. Different ecological patterns explained the microbial behavior in the pristine and polluted mangroves. Stochastic models in the pristine mangrove indicate that there is not a specific environmental factor that determines the bacterial distribution, while cyanobacteria and diazotrophs better fitted in deterministic model in the same area. For the contaminated mangrove site, deterministic models better represented the variations in the communities, suggesting that the presence of oil might change the microbial ecological structures over time. Mangroves represent a unique environment threatened by global change, and this study contributed to the knowledge of the microbial distribution in such areas and its response on persistent contamination historic events.
  • CspB of an arctic bacterium, Polaribacter irgensii KOPRI 22228, confers extraordinary freeze-tolerance Bacterial, Fungal And Virus Molecular Biology

    Jung, Youn Hong; Lee, Yoo Kyung; Lee, Hong Kum; Lee, Kyunghee; Im, Hana

    Resumo em Inglês:

    ABSTRACT Freezing temperatures are a major challenge for life at the poles. Decreased membrane fluidity, uninvited secondary structure formation in nucleic acids, and protein cold-denaturation all occur at cold temperatures. Organisms adapted to polar regions possess distinct mechanisms that enable them to survive in extremely cold environments. Among the cold-induced proteins, cold shock protein (Csp) family proteins are the most prominent. A gene coding for a Csp-family protein, cspB, was cloned from an arctic bacterium, Polaribacter irgensii KOPRI 22228, and overexpression of cspB greatly increased the freeze-survival rates of Escherichia coli hosts, to a greater level than any previously reported Csp. It also suppressed the cold-sensitivity of an E. coli csp-quadruple deletion strain, BX04. Sequence analysis showed that this protein consists of a unique domain at its N-terminal end and a well conserved cold shock domain at its C-terminal end. The most common mechanism of Csp function in cold adaption is melting of the secondary structures in RNA and DNA molecules, thus facilitating transcription and translation at low temperatures. P. irgensii CspB bound to oligo(dT)-cellulose resins, suggesting single-stranded nucleic acid-binding activity. The unprecedented level of freeze-tolerance conferred by P. irgensii CspB suggests a crucial role for this protein in survival in polar environments.
  • Growth kinetics of Escherichia coli O157:H7 on the epicarp of fresh vegetables and fruits Food Microbiology

    Gullian-Klanian, Mariel; Sánchez-Solis, Maria José

    Resumo em Inglês:

    ABSTRACT Despite the increasing reports on the incidence of fresh vegetables and fruits as a possible vehicle for human pathogens, there is currently limited knowledge on the growth potential of Escherichia coli O157:H7 on different plant substrates. This study analyzed the selective adhesion and growth of E. coli O157:H7 on chili habanero (Capsicum chinense L.), cucumber (Cucumis sativus), radish (Raphanus sativus), tomato (Lycopersicon esculentum), beet (Beta vulgaris subsp. vulgaris), and onion (Allium cepa L.) under laboratory conditions. The Gompertz parameters were used to determine the growth kinetics. Scanning electron microscopy was used to visualize the adhesion of E. coli O157:H7 on the epicarp of the samples. Predictive models were constructed to compare the growth of E. coli O157:H7 on the samples with different intrinsic factors and to demonstrate the low selectivity of the pathogen. No significant difference was observed in the lag-phase duration (LPD), generation time (GT), and exponential growth rate (EGR) of the pathogen adhered to the samples. The interaction between the microorganism and the substrate was less supportive to the growth of E. coli O157:H7 for onion, whereas for tomato and cucumber, the time for the microorganism to attain the maximum growth rate (M) was significantly longer than that recorded for other samples.
  • Effects of hurdle technology on Monascus ruber growth in green table olives: a response surface methodology approach Food Microbiology

    Cappato, Leandro P.; Martins, Amanda M. Dias; Ferreira, Elisa H.R.; Rosenthal, Amauri

    Resumo em Inglês:

    ABSTRACT An ascomycetes fungus was isolated from brine storage of green olives of the Arauco cultivar imported from Argentina and identified as Monascus ruber. The combined effects of different concentrations of sodium chloride (3.5-5.5%), sodium benzoate (0-0.1%), potassium sorbate (0-0.05%) and temperature (30-40 °C) were investigated on the growth of M. ruber in the brine of stored table olives using a response surface methodology. A full 24 factorial design with three central points was first used in order to screen for the important factors (significant and marginally significant factors) and then a Face-Centered Central Composite Design was applied. Both preservatives prevented fungal spoilage, but potassium sorbate was the most efficient to control the fungi growth. The combined use of these preservatives did not show a synergistic effect. The results showed that the use of these salts may not be sufficient to prevent fungal spoilage and the greatest fungal growth was recorded at 30 °C.
  • A comparative study of procedures for binding of aflatoxin M1 to Lactobacillus rhamnosus GG Food Microbiology

    Assaf, Jean Claude; Atoui, Ali; Khoury, André El; Chokr, Ali; Louka, Nicolas

    Resumo em Inglês:

    ABSTRACT Several strains of lactic acid bacteria (LAB), frequently used in food fermentation and preservation, have been reported to bind different types of toxins in liquid media. This study was carried out to investigate the effect of different concentrations of Lactobacillus rhamnosus GG (ATCC 53103) to bind aflatoxin M1 (AFM1) in liquid media. AFM1 binding was tested following repetitive washes or filtration procedures in combination with additional treatments such as heating, pipetting, and centrifugation. The mixture of L. rhamnosus GG and AFM1 was incubated for 18 h at 37 °C and the binding efficiency was determined by quantifying the unbound AFM1 using HPLC. The stability of the complexes viable bacteria-AFM1 and heat treated bacteria-AFM1 was tested. Depending on the bacterial concentration and procedure used, the percentages of bound AFM1 by L. rhamnosus GG varied from as low as undetectable to as high as 63%. The highest reduction in the level of unbound AFM1 was recorded for the five washes procedure that involved heating and pipetting. Results also showed that binding was partially reversible and AFM1 was released after repeated washes. These findings highlight the effect of different treatments on the binding of AFM1 to L. rhamnosus GG in liquid matrix.
  • Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA Clinical Microbiology

    Feng, Na; Zhou, Yazhou; Fan, Yanxiao; Bi, Yujing; Yang, Ruifu; Zhou, Yusen; Wang, Xiaoyi

    Resumo em Inglês:

    ABSTRACT We developed a loop-mediated isothermal amplification (LAMP) assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.
  • Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii Clinical Microbiology

    Mares-Guia, Maria Angélica M.M.; Guterres, Alexandro; Rozental, Tatiana; Ferreira, Michelle dos Santos; Lemos, Elba R.S.

    Resumo em Inglês:

    ABSTRACT Q fever is a worldwide zoonosis caused by Coxiella burnetii—a small obligate intracellular Gram-negative bacterium found in a variety of animals. It is transmitted to humans by inhalation of contaminated aerosols from urine, feces, milk, amniotic fluid, placenta, abortion products, wool, and rarely by ingestion of raw milk from infected animals. Nested PCR can improve the sensitivity and specificity of testing while offering a suitable amplicon size for sequencing. Serial dilutions were performed tenfold to test the limit of detection, and the result was 10× detection of C. burnetti DNA with internal nested PCR primers relative to trans-PCR. Different biological samples were tested and identified only in nested PCR. This demonstrates the efficiency and effectiveness of the primers. Of the 19 samples, which amplify the partial sequence of C. burnetii, 12 were positive by conventional PCR and nested PCR. Seven samples—five spleen tissue samples from rodents and two tick samples—were only positive in nested PCR. With these new internal primers for trans-PCR, we demonstrate that our nested PCR assay for C. burnetii can achieve better results than conventional PCR.
  • Zika detection: comparison of methodologies Clinical Microbiology

    Colombo, Tatiana Elias; Terzian, Ana Carolina Bernardes; Araújo Júnior, João Pessoa; Parreira, Ricardo; Cabrera, Eliana Márcia Sotello; Santos, Izalco Nuremberg Penha dos; Reis, Andréia Francesli Negri; Costa, Fabiana Rodrigues; Cruz, Lilian Elisa Arão Antônio; Rombola, Patrícia Lopes; Nogueira, Maurício Lacerda

    Resumo em Inglês:

    ABSTRACT Many countries in the Americas have detected local transmission of multiple arboviruses that cause febrile illnesses. Therefore, laboratory testing has become an important tool for confirming the etiology of these diseases. The present study aimed to compare the sensitivity and specificity of three different Zika virus detection assays. One hundred serum samples from patients presenting with acute febrile symptoms were tested using a previously reported TaqMan® RT-qPCR assay. We used a SYBR® Green RT-qPCR and a conventional PCR methodologies to compare the results. Of the samples that were determined to be negative by the TaqMan® RT-qPCR assay, 100% (Kappa = 0.670) were also found to be negative by SYBR® Green RT-qPCR based on Tm comparison; however, 14% (Kappa = 0.035) were found to be positive by conventional PCR followed by agarose gel electrophoresis. The differences between the ZIKV strains circulating worldwide and the low viremia period can compromise diagnostic accuracy and thereby the accuracy of outbreak data. Therefore, improved assays are required to improve the diagnosis and surveillance of arbovirus.
  • Isolation of Candida spp. from denture-related stomatitis in Pará, Brazil Clinical Microbiology

    Gauch, Lurdete Maria Rocha; Pedrosa, Simone Soares; Silveira-Gomes, Fabíola; Esteves, Renata Antunes; Marques-da-Silva, Silvia Helena

    Resumo em Inglês:

    ABSTRACT The aim of this study was to isolate and identify Candida species from the oral cavity of denture wearers with denture-related stomatitis who were attended at the University Federal of Pará (Belém City, Pará State, Brazil). A total of 36 denture wearers with denture-related stomatitis were included, and type I (50%), type II (33%) and type III (17%) stomatitis were observed. Candida spp. were isolated from 89% of the cases and included five different Candida species. C. albicans was the most frequently recovered species (78% of the cases), followed by C. famata and C. tropicalis. We observed a significant association between Candida species isolation and unsatisfactory denture condition (p = 0.0017). Our results demonstrated the highly frequency of Candida species isolation in denture wearers with denture-related stomatitis and showed the relationship between these species and poor denture maintenance.
  • Antibacterial activity of 3,3',4'-Trihydroxyflavone from Justicia wynaadensis against diabetic wound and urinary tract infection Clinical Microbiology

    Dsouza, Dorin; Nanjaiah, Lakshmidevi

    Resumo em Inglês:

    ABSTRACT The present investigation was designed to study the effect of an active compound isolated from Justicia wynaadensis against multi drug resistant organisms (MDRO's) associated with diabetic patients. The drug resistant pathogens implicated in wound and urinary tract infection of diabetic patients were isolated and identified by molecular sequencing. Solvent-solvent fractionation of crude methanol extract produced hexane, chloroform, ethyl acetate and methanol-water fraction, among which chloroform fraction was found to be potent when compared with other three fractions. Further, chloroform fraction was subjected to preparatory HPLC (High-Performance Liquid Chromatography), that produced four sub-fractions; chloroform HPLC fraction 1 (CHF1) through CHF4. Among the sub-fractions, CHF1 inhibited the pathogens effectively in comparison to other three sub-fractions. The purity of CHF1 was found to be >95%. Therefore, CHF1 was further characterized by NMR and FTIR analysis and based on the structure elucidated, the compound was found to be 3,3',4'-Trihydroxyflavone. The effective dose of this bioactive compound ranged from 32 µg/mL to 1.2 mg/mL. Thus, the present study shows that 3,3',4'-Trihydroxyflavone isolated from J. wynaadensis is an interesting biopharmaceutical agent and could be considered as a source of antimicrobial agent for the treatment of various infections and used as a template molecule for future drug development.
  • The isolation of pentose-assimilating yeasts and their xylose fermentation potential Biotechnology And Industrial Microbiology

    Martins, Gisele Marta; Bocchini-Martins, Daniela Alonso; Bezzerra-Bussoli, Carolina; Pagnocca, Fernando Carlos; Boscolo, Maurício; Monteiro, Diego Alves; Silva, Roberto da; Gomes, Eleni

    Resumo em Inglês:

    ABSTRACT For the implementation of cellulosic ethanol technology, the maximum use of lignocellulosic materials is important to increase efficiency and to reduce costs. In this context, appropriate use of the pentose released by hemicellulose hydrolysis could improve de economic viability of this process. Since the Saccharomyces cerevisiae is unable to ferment the pentose, the search for pentose-fermenting microorganisms could be an alternative. In this work, the isolation of yeast strains from decaying vegetal materials, flowers, fruits and insects and their application for assimilation and alcoholic fermentation of xylose were carried out. From a total of 30 isolated strains, 12 were able to assimilate 30 g L-1 of xylose in 120 h. The strain Candida tropicalis S4 produced 6 g L-1 of ethanol from 56 g L-1 of xylose, while the strain C. tropicalis E2 produced 22 g L-1 of xylitol. The strains Candida oleophila G10.1 and Metschnikowia koreensis G18 consumed significant amount of xylose in aerobic cultivation releasing non-identified metabolites. The different materials in environment were source for pentose-assimilating yeast with variable metabolic profile.
  • Antimicrobial activity and acetylcholinesterase inhibition by extracts from chromatin modulated fungi Biotechnology And Industrial Microbiology

    Lima, Matheus Thomaz Nogueira Silva; Santos, Larissa Batista dos; Bastos, Rafael Wesley; Nicoli, Jacques Robert; Takahashi, Jacqueline Aparecida

    Resumo em Inglês:

    ABSTRACT Major health challenges as the increasing number of cases of infections by antibiotic multiresistant microorganisms and cases of Alzheimer's disease have led to searching new control drugs. The present study aims to verify a new way of obtaining bioactive extracts from filamentous fungi with potential antimicrobial and acetylcholinesterase inhibitory activities, using epigenetic modulation to promote the expression of genes commonly silenced. For such finality, five filamentous fungal species (Talaromyces funiculosus, Talaromyces islandicus, Talaromyces minioluteus, Talaromyces pinophilus, Penicillium janthinellum) were grown or not with DNA methyltransferases inhibitors (procainamide or hydralazine) and/or a histone deacetylase inhibitor (suberohydroxamic acid). Extracts from T. islandicus cultured or not with hydralazine inhibited Listeria monocytogenes growth in 57.66 ± 5.98% and 15.38 ± 1.99%, respectively. Increment in inhibition of acetylcholinesterase activity was observed for the extract from P. janthinellum grown with procainamide (100%), when compared to the control extract (39.62 ± 3.76%). Similarly, inhibition of acetylcholinesterase activity increased from 20.91 ± 3.90% (control) to 92.20 ± 3.72% when the tested extract was obtained from T. pinophilus under a combination of suberohydroxamic acid and procainamide. Concluding, increases in antimicrobial activity and acetylcholinesterase inhibition were observed when fungal extracts in the presence of DNA methyltransferases and/or histone deacetylase modulators were tested.
  • Sensitivity, specificity and comparison of three commercially available immunological tests in the diagnosis of Cryptosporidium species in animals Veterinary Microbiology

    Danišová, Olga; Halánová, Monika; Valenčáková, Alexandra; Luptáková, Lenka

    Resumo em Inglês:

    ABSTRACT The study was conducted to compare the specificity of immunological diagnostic methods used for the diagnosis of Cryptosporidium species capable of causing life-threatening infection in both immunosuppressed and immunocompetent patients. For the detection of Cryptosporidium species in 79 animals with diarrhoea, we used three Copro-antigen tests: RIDASCREEN® Cryptosporidium test, Cryptosporidium 2nd Generation (ELISA) and RIDA®QUICK Cryptosporidium. For immunoassays we used positive and negative samples detected by means of polymerase chain reaction and validated by sequencing and nested polymerase chain reaction to confirm the presence six different species of Cryptosporidium species. Prevalence of cryptosporidiosis in the entire group determined by enzyme immunoassay, enzyme linked immunosorbent assay, immuno-chromatographic test and polymerase chain reaction was 34.17%, 27.84%, 6.33% and 27.84%, respectively. Sensitivity of animal samples with enzyme immunoassay, enzyme linked immunosorbent assay, and immuno-chromatographic test was 63.6%, 40.9% and 22.7%, resp., when questionable samples were considered positive, whereas specificity of enzyme immunoassay, enzyme linked immunosorbent assay and immuno-chromatographic test was 75.9%, 78.9% and 100%, respectively. Positive predictive values and negative predictive values were different for all the tests. These differences results are controversial and therefore reliability and reproducibility of immunoassays as the only diagnostic method is questionable. The use of various Cryptosporidium species in diagnosis based on immunological testing and different results obtained by individual tests indicate potential differences in Copro-antigens produced by individual Cryptosporidium species.
  • Removal and killing of multispecies endodontic biofilms by N-acetylcysteine Fungal And Bacterial Physiology

    Choi, Young-Suk; Kim, Cheul; Moon, Ji-Hoi; Lee, Jin-Yong

    Resumo em Inglês:

    ABSTRACT Removal of bacterial biofilm from the root canal system is essential for the management of endodontic disease. Here we evaluated the antibacterial effect of N-acetylcysteine (NAC), a potent antioxidant and mucolytic agent, against mature multispecies endodontic biofilms consisting of Actinomyces naeslundii, Lactobacillus salivarius, Streptococcus mutans and Enterococcus faecalis on sterile human dentin blocks. The biofilms were exposed to NAC (25, 50 and 100 mg/mL), saturated calcium hydroxide or 2% chlorhexidine solution for 7 days, then examined by scanning electron microscopy. The biofilm viability was measured by viable cell counts and ATP-bioluminescence assay. NAC showed greater efficacy in biofilm cell removal and killing than the other root canal medicaments. Furthermore, 100 mg/mL NAC disrupted the mature multispecies endodontic biofilms completely. These results demonstrate the potential use of NAC in root canal treatment.
  • An investigation of virulence factors of Legionella pneumophila environmental isolates Bacterial And Fungal Pathogenesis

    Arslan-Aydoğdu, Elif Özlem; Kimiran, Ayten

    Resumo em Inglês:

    ABSTRACT Nine Legionella pneumophila strains isolated from cooling towers and a standard strain (L. pneumophila serogroup 1, ATCC 33152, Philadelphia 1) were analyzed and compared in terms of motility, flagella structure, ability to form biofilms, enzymatic activities (hemolysin, nucleases, protease, phospholipase A, phospholipase C, acid phosphatase, alkaline phosphatase and lipase), hemagglutination capabilities, and pathogenicity in various host cells (Acanthamoeba castellanii ATCC 30234, mouse peritoneal macrophages and human peripheral monocytes). All the isolates of bacteria appeared to be motile and polar-flagellated and possessed the type-IV fimbria. Upon the evaluation of virulence factors, isolate 4 was found to be the most pathogenic strain, while 6 out of the 9 isolates (the isolates 1, 2, 3, 4, 5, and 7) were more virulent than the ATCC 33152 strain. The different bacterial strains exhibited differences in properties such as adhesion, penetration and reproduction in the hosts, and preferred host type. To our knowledge, this is the first study to compare the virulence of environmental L. pneumophila strains isolated in Turkey, and it provides important information relevant for understanding the epidemiology of L. pneumophila.
  • Inactivation of MarR gene homologs increases susceptibility to antimicrobials in Bacteroides fragilis Bacterial And Fungal Pathogenesis

    Silva, Clara Maria Guimarães; Silva, Déborah Nascimento dos Santos; Costa, Scarlathe Bezerra da; Almeida, Juliana Soares de Sá; Boente, Renata Ferreira; Teixeira, Felipe Lopes; Domingues, Regina Maria Cavalcanti Pilotto; Lobo, Leandro Araujo

    Resumo em Inglês:

    ABSTRACT Bacteroides fragilis is the strict anaerobic bacteria most commonly found in human infections, and has a high mortality rate. Among other virulence factors, the remarkable ability to acquire resistance to a variety of antimicrobial agents and to tolerate nanomolar concentrations of oxygen explains in part their success in causing infection and colonizing the mucosa. Much attention has been given to genes related to multiple drug resistance derived from plasmids, integrons or transposon, but such genes are also detected in chromosomal systems, like the mar (multiple antibiotic resistance) locus, that confer resistance to a range of drugs. Regulators like MarR, that control expression of the locus mar, also regulate resistance to organic solvents, disinfectants and oxygen reactive species are important players in these events. Strains derived from the parental strain 638R, with mutations in the genes hereby known as marRI (BF638R_3159) and marRII (BF638R_3706) were constructed by gene disruption using a suicide plasmid. Phenotypic response of the mutant strains to hydrogen peroxide, cell survival assay against exposure to oxygen, biofilm formation, resistance to bile salts and resistance to antibiotics was evaluated. The results showed that the mutant strains exhibit statistically significant differences in their response to oxygen stress, but no changes were observed in survival when exposed to bile salts. Biofilm formation was not affected by either gene disruption. Both mutant strains however, became more sensitive to multiple antimicrobial drugs tested. This indicates that as observed in other bacterial species, MarR are an important resistance mechanism in B. fragilis.
Sociedade Brasileira de Microbiologia USP - ICB III - Dep. de Microbiologia, Sociedade Brasileira de Microbiologia, Av. Prof. Lineu Prestes, 2415, Cidade Universitária, 05508-900 São Paulo, SP - Brasil, Ramal USP 7979, Tel. / Fax: (55 11) 3813-9647 ou 3037-7095 - São Paulo - SP - Brazil
E-mail: bjm@sbmicrobiologia.org.br