Acessibilidade / Reportar erro
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Volume: 10, Número: 2, Publicado: 2011
  • An improvement of defected ground structure lowpass/bandpass filters using H-slot resonators and coupling matrix method Paper Information

    Boutejdar, Ahmed; Omar, Abbas; Burte, Edmund P.; Mikuta, Reinhard

    Resumo em Inglês:

    A novel compact wideband high-rejection lowpass filter (LPF) using H-DGS is presented. The proposed filter has neither open stub nor cascaded high-low impedance elements. It consists of two coupled H-slots in the ground plane along with a compensated line. The effect of the new slot on the filter performance is examined. The comparison with the conventional filters shows that the proposed one guarantees a large rejected-band of 20dB from 2.5 to 16 GHz. Experimental measurements by means of HP8719D network analyzer agree well with simulated results which are carried out by Microwave Office. Based on H-DGS LPF Structure, a novel bandpass filter (BPF) will be is designed and tested verified by using both J-inverter and coupling matrix methods.
  • Araújo, Josivaldo de S.; Oliveira, Rodrigo M. S. de; S. Sobrinho, Carlos Leonidas da S.

    Resumo em Inglês:

    the aim of this work is to present a new methodology, based on vector and geometrical techniques, for determining the position of an intruder in a residence (3D problem). Initially, modifications in the electromagnetic responses of the environment, caused by movements of the trespasser, are detected. It is worth mentioning that slight movements are detected by high frequency components of the used pulse. The differences between the signals (before and after any movement) are used to define a sphere and ellipsoids, which are used for estimating the position of the invader. In this work, multiple radars are used in a cooperative manner. The multiple estimates obtained are used to determine a mean position and its standard deviation, introducing the concept of sphere of estimates. The electromagnetic simulations were performed by using the FDTD method. Results were obtained for single and double floor residences.
  • Design of distributed optical-fiber raman amplifiers using multi-objective particle swarm optimization Paper Information

    Bastos-Filho, Carmelo J. A.; Figueiredo, Elliackin M. N.; Martins-Filho, Joaquim F.; Chaves, Daniel A. R.; Segatto, Marcelo E. V.; Cani, S.; Pontes, Maria J.

    Resumo em Inglês:

    A novel method is presented to design the configuration of pumping lasers of Raman amplifiers using a multi-objective particle swarm optimizer. The goal is to obtain the pump laser wavelengths and powers that maximize the amplifier on-off gain, while maintaining the flatness of the gain over the used bandwidth. We used an algorithm called Multiple Objective Particle Swarm Optimization with Crowding Distance and Roulette Wheel to generate the non-dominated solutions, considering the average on-off gain and the ripple of the amplifier over the transmission bandwidth as the objectives in the optimization process. We designed amplifiers using three, four and five pump lasers. The experimental results showed that our proposal was able to design Raman amplifiers with a gain ripple lower than 0.2 dB and with an average on-off gain around 16.7 dB, when 20 signal channels and a total pump power of 1 W were considered. Moreover, we demonstrated that it is possible to allow the decision maker to choose among many possible non-dominated solutions depending on the application requirements.
  • Holik, Sonia M.; Drysdale, Timothy D.

    Resumo em Inglês:

    We demonstrate the feasibility of using effective medium theory to reduce the computational complexity of full-wave models of inductors that are placed over interconnects. Placing inductors over interconnects is one way that designers can tackle the problem of reducing overall chip size, however this has heretofore been a difficult option to evaluate because of the prohibitive memory requirements and run times for detailed simulations of the inductor. Here we replace the interconnects with a homogeneous equivalent layer that mimics their impact on the inductor to within 2% error, but reducing runtime and memory use by 90% or more.
  • Comparative study of fundamental properties of honey comb photonic crystal fiber at 1.55µm wavelength Paper Information

    Mishra, S.S.; Singh, Vinod Kumar

    Resumo em Inglês:

    Fundamental properties such as mode field distribution, real effective refractive index, imaginary effective refractive index, confinement loss of two new kinds of honeycomb photonic crystal fibers are successfully studied by using Full-Vectorial Finite element method (FV-FEM). Low confinement loss 0.1×10-4dB/km is achieved at wavelength 1.55µm in hollow core honey comb PCF by removing 6-air holes in cladding region with air hole diameter 1.38µm in cladding region, pitch 2.3µm and air core diameter 0.2µm.
  • An FET-based microwave active circuit with dual-band negative group delay Paper Information

    Ravelo, Blaise; De Blasi, Serge

    Resumo em Inglês:

    Recent studies proved that certain electronic active circuits are capable to exhibit simultaneously a negative group delay (NGD) and amplification in microwave frequency bands. One of the simplest topologies generating this counterintuitive NGD function effect is formed by a series RLC-network in cascade with a transistor. By using this cell, similar to the classical electronic functions, dual-band NGD microwave devices with loss compensation possibility can be designed. Theoretic demonstrations concerning the theory of the NGD circuit considered are presented. The dual-band NGD concept feasibility is concretely illustrated by an example of EM/circuit co-simulations. So, in frequency domain, dual-band NGD with minimal values of about -1 ns was observed simultaneously within two frequency bands centered at about 1.05 GHz and 2.05 GHz. To highlight the functioning of the hybrid device considered, time-domain analysis showing the RF/microwave signal advancement is performed. As application, the concept investigated can be envisaged for data synchronization in multi-channel wireless communication systems eventually degraded by undesired EMI effects.
  • Heuristic solutions related to challenges of optical burst switching paradigm Paper Information

    Garg, Amit Kumar

    Resumo em Inglês:

    Several optical network switching paradigms have been under intensive research to support rapidly increasing bandwidth requirements. Of all these paradigms, optical burst switching (OBS) is a promising switching paradigm for the next-generation Internet infrastructure. Despite the significant contributions of OBS to high speed networks such as dynamic connection setup and strong separation between data and control plane, there are several issues that are to be resolved because the present OBS research studies have many differences and thus need further study. In this paper, some of author's own past researches have been summarized to overcome few issues of OBS; related to network architectures, contention, burst assembly, congestion, complex scheduling schemes, quality of service (QoS), burst dropping , routing etc.
  • A new multilevel smoothing method for wavelet-based algebraic multigrid poisson problem solver Paper Information

    Pereira, Fabio Henrique; Prado, Kleber Rogério Moreira; Nabeta, Silvio Ikuyo

    Resumo em Inglês:

    In contrast to the standard algebraic multigrid, the Wavelet-based Algebraic Multigrid method relies more strongly on the smoothing method because the coarse spaces are chosen a priori. So, it is very important to develop new smoother methods, especially for those cases where the classical Gauss-Seidel smoothing method does not give good results. This paper proposes a new multilevel smoothing approach based on projection technique. The proposed smoothing method was applied to smoothing the error in a linear systems issued from finite element solutions of the elliptic equation and the results compared with those obtained from the Gauss-Seidel method.
  • An automatic methodology for obtaining optimum shape factors for the radial point interpolation method Paper Information

    Machado, Péricles L.; Oliveira, Rodrigo M.S. de; Souza, Washington C.B.; Araújo, Ramon C.F.; Tostes, Maria E.L.; Gonçalves, Cláudio

    Resumo em Inglês:

    In this letter, a methodology is proposed for automatically (and locally) obtaining the shape factor c for the Gaussian basis functions, for each support domain, in order to increase numerical precision and mainly to avoid matrix inversion impossibilities. The concept of calibration function is introduced, which is used for obtaining c. The methodology developed was applied for a 2-D numerical experiment, which results are compared to analytical solution. This comparison revels that the results associated to the developed methodology are very close to the analytical solution for the entire bandwidth of the excitation pulse. The proposed methodology is called in this work Local Shape Factor Calibration Method (LSFCM).
Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo Praça Mauá, n°1, 09580-900 São Caetano do Sul - S. Paulo/Brasil, Tel./Fax: (55 11) 4238 8988 - São Caetano do Sul - SP - Brazil
E-mail: editor_jmoe@sbmo.org.br