$O(p+1) \times O(p+1)$-Invariant Hypersurfaces with
 Zero Scalar Curvature in Euclidean Space

JOCELINO SATO*
Universidade Federal do Ceará, UFC, Departamento de Matemática, Campus do Pici, 60455-760 Fortaleza, CE, Brazil

Manuscript received on November 20, 1999; accepted for publication on February 8, 2000; presented by Manfredo do Carmo

Abstract

We use equivariant geometry methods to study and classify zero scalar curvature $O(p+1) \times$ $O(p+1)$-invariant hypersurfaces in $R^{2 p+2}$ with $p>1$.

Key words: equivariant geometry, scalar curvature.

1. INTRODUCTION

The methods of equivariant geometry have been applied successfully by many authors to obtain and classify explicit examples of hypersurfaces, with a given condition on the r-th mean curvature, that are invariant by the action of an isometry group (see, for instance, Hsiang et al. 1983, Hsiang 1982, do Carmo \& Dajczer 1983, Bombieri et al. 1969, Alencar 1993).
O. Palmas (Palmas 1999), resuming a work started initially by T. Okayasu (Okayasu 1989) and using ideas contained in Alencar, 1993, published a work in which he approaches the hypersurfaces with zero scalar curvature in $R^{2 p+2}$, invariant by the action of the group $O(p+1) \times O(p+1)$. In his article, Palmas studied only the case $p=1$.

The objective of this work is to announce and give an sketch of proof of a classification theorem for the case $p>1$. The orbit space of the action is the set $\Omega=\left\{(x, y) \in R^{2} ; x \geq 0, y \geq 0\right\}$ and the invariant hypersurfaces are generated by curves $\gamma(t)=(x(t), y(t))$, the so called profile curves, that satisfy the following diferential equation

$$
\begin{align*}
0= & S_{2}=p \frac{\left(-x^{\prime \prime}(t) y^{\prime}(t)+x^{\prime}(t) y^{\prime \prime}(t)\right)}{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}}\left(\frac{y^{\prime}(t)}{x(t)}-\frac{x^{\prime}(t)}{y(t)}\right) \\
& +\frac{1}{2} p(p-1)\left(\left(\frac{y^{\prime}(t)}{x(t)}\right)^{2}+\left(\frac{x^{\prime}(t)}{y(t)}\right)^{2}\right)-p^{2} \frac{x^{\prime}(t) y^{\prime}(t)}{x(t) y(t)} \tag{1}
\end{align*}
$$

[^0]In order to study the profile curves of such hypersurfaces we proceeded as in Alencar 1993, analyzing the trajectories of an associated vector field X. Each trajectory $\phi(t)=(u(t), v(t))$ of X is associated to a family M_{λ} of hypersurfaces generated by profile curves $\gamma_{\lambda}(t)=(\lambda x(t), \lambda y(t))$, determined by $\phi(t)$ up to homothety. The profile curves $\gamma(t)$ in the orbit space of these hypersufaces are one of the following types:
A) $\gamma(t)$ is one of the following half-straight line

$$
\gamma_{1}(t)=(\cos (\alpha) t, \sin (\alpha) t) \quad \text { or } \quad \gamma_{2}(t)=(\sin (\alpha) t, \cos (\alpha) t)
$$

where $t \geq 0$ and $\alpha=\frac{1}{4} \arccos \left(\frac{3-2 p}{2 p-1}\right)$ (see figure 1);
B) $\gamma(t)$ is regular, intersects orthogonally one of the half-axes $x \geq 0$ or $y \geq 0$ and asymptotizes one of the half-straight lines in case A), when $t \longrightarrow+\infty$ or $t \longrightarrow-\infty$ (see figure 1);
C) $\gamma(t)$ is the union of two curves $\beta_{1}:(-\infty, 0] \longrightarrow \Omega$ and $\beta_{2}:[0,+\infty) \longrightarrow \Omega, \beta_{1}(0)=\beta_{2}(0)$ being a singularity. The curves β_{i} do not intesect the boundary of the orbit space, and asymptotizes the half-straight lines of the case A , when $t \longrightarrow \pm \infty$ (see figure 1);
D) $\gamma(t)$ is regular and does not intersect the boundary of the orbit space and asymptotizes both half-straight lines of the case A , when $t \longrightarrow \pm \infty$ (see figure 1)

Profile curve of type A.

Profile curve of type C.

Profile curve of type B.

Profile curve of type D.

Fig. 1 - Profile curves.

We will denote by C_{α} and $C_{\frac{\pi}{2}-\alpha}$ the cones generated by the half-straight lines of type A.
The main result of this work is the theorem below classifing $O(p+1) \times O(p+1)$-invariant hypersurfaces according to their profile curves.

Classification Theorem. The $O(p+1) \times O(p+1)$-invariant hypersurfaces in $R^{2 p+2}$ with $p>1$ and zero scalar curvature belong to one of the following classes:

1. cones with a singularity in the origin of $R^{2 p+2}($ type $A)$.
2. hypersurfaces that have one orbit of singularities and that are asymptotic to both the cones C_{α} e $C_{\frac{\pi}{2}-\alpha}$ (type C).
3. regular hypersurfaces that are asymptotic to the cone C_{α} (type B).
4. regular hypersurfaces that are asymptotic to the cone $C_{\frac{\pi}{2}-\alpha}$ (type B).
5. regular hypersurfaces that are asymptotic to both cones C_{α} and $C_{\frac{\pi}{2}-\alpha}$ (type D).

As a corollary we obtain the following result.
Theorem A. Let $M^{2 p+1}$ be an $O(p+1) \times O(p+1)$-invariant hypersurface in $R^{2 p+2}$, complete and with zero scalar curvature. Then M is generated by a curve of type B or D. Moreover
i) If M is generated by a curve of type B, then M is embedded and asymptotic to one of the cones C_{α} or $C_{\frac{\pi}{2}-\alpha}$;
ii) If M is generated by a curve of type D, then M is embedded and asymptotic to both of the cones C_{α} and $C_{\frac{\pi}{2}-\alpha}$.

The cones C_{α} and $C_{\frac{\pi}{2}-\alpha}$, generated by the half-straight lines in case A are characterized in the following theorem:

Theorem B. If $M^{2 p+1}$ is an $O(p+1) \times O(p+1)$-invariant hypersurface in $R^{2 p+2}$, with zero scalar curvature whose profile curve makes a constant angle with the x-axes then M is one of the cones C_{α} or $C_{\frac{\pi}{2}-\alpha}$.

This work is organized as follows. In section 2 we reduce the study of the profile curves $\gamma(t)$ of the invariant hypersurfaces in $R^{2 p+2}$, with zero scalar curvature, to the study of the trajectory $\phi(t)=(u(t), v(t))$ of a vector field X. Then we use the qualitative theory of ordinary differential equations, together with a geometric analysis of the behavior of X, to obtain a description of its trajectories.

In section 3, we present sketches of the proofs of the theorems announced above.

2. ANALYSIS OF THE VECTOR FIELD X

The regular curves $(x(t), y(t))$ satisfing the equation $S_{2}=0$ are invariant by homotheties and, therefore, for each solution $\gamma(t)$ of (1) we have a family M_{λ} of invariant hypersurfaces with zero scalar curvature, generated by the curves $\gamma_{\lambda}(t)=(\lambda x(t), \lambda y(t))$. So we can apply the method developed in (Bombieri et al. 1969) to study the corresponding differential equation. Also note that, if a curve (x, y) is a solution of equation (1), then (y, x) is also a solution.

Without loss of generality, we may assume that the curves $\gamma(t)$ are parametrized by arc length. Therefore, when $y=y(x)$ we obtain

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}=\frac{\left(1+\left(\frac{d y}{d x}\right)^{2}\right)\left[-\frac{p(p-1))}{2}\left(\frac{y}{x}\left(\frac{d y}{d x}\right)^{2}+\frac{x}{y}\right)+p^{2} \frac{d y}{d x}\right]}{p\left(-x+y \frac{d y}{d x}\right)} . \tag{2}
\end{equation*}
$$

Proceeding as in Bombieri et al. 1969 we introduce the parameters

$$
\begin{equation*}
u=\arctan \left(\frac{y}{x}\right) \text { and } v=\arctan \left(\frac{y^{\prime}}{x^{\prime}}\right) \tag{3}
\end{equation*}
$$

which are invariant by the homothety $(x, y) \longmapsto \lambda(x, y)$. Assuming $u^{\prime} \neq 0$, we rewrite equation (1) as the system

$$
\begin{aligned}
& \frac{d u}{d t}=X_{1}(u, v)=-\frac{1}{4} p \sin (2 u)[\sin (2 u)-\sin (2 v)] \\
& \frac{d v}{d t}=X_{2}(u, v)=\frac{1}{8} p[2(p-1)-\cos (2 u-2 v)+(2 p-1) \cos (2 u+2 v)]
\end{aligned}
$$

We associate to this system the vector field $X(u, v)=\left(X_{1}(u, v), X_{2}(u, v)\right)$ in the (u, v)-plane.
Since our orbit space is the region Ω, we need information just for $x, y \geq 0$, corresponding to the region $R=\left\{(u, v) ; 0 \leq u \leq \frac{\pi}{2},-\pi \leq v \leq \pi\right\}$ in the (u, v)-plane. We observe that X is bounded, π-periodic in both variables and invariant by a translation of $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$. So, it is enough to analyse it in the interval $\left[0, \frac{\pi}{2}\right] \times[0, \pi]$.

In order to characterize the phase portrait of the field X we make a geometric study of its behaviour. This study gives us information about the increasing and decreasing intervals of the coordinates $u(t)$ and $v(t)$ of an orbit $\phi(t)=(u(t), v(t))$, the types of singularities that X presents and a transversality of X on special curves. This tranversality supplies barriers for the possible behaviors of those orbits of X.

These informations, together with the tubular flow theorem and Poincaré-Bendixson's theorem allow us to prove the following proposition, where we use the notation:

$$
\begin{aligned}
& R_{1}=\left\{u<v<\frac{\pi}{2}-u\right\} \cap\left\{0<u<\frac{\pi}{4}\right\}, \\
& R_{2}=\{0 \leq v<u\} \cap\left\{0 \leq v<\frac{\pi}{2}-u,\right\},
\end{aligned}
$$

$$
\begin{aligned}
R_{3} & =\left\{\frac{\pi}{2}-u<v<u\right\} \cap\left\{\frac{\pi}{4}<u<\frac{\pi}{2}\right\}, \\
R_{4} & =\left\{\frac{\pi}{2}-u<v \leq \frac{\pi}{2}\right\} \cap\left\{u<v \leq \frac{\pi}{2}\right\}
\end{aligned}
$$

and

$$
\left.R_{i}^{-\pi}=R_{i}+(-\pi, 0)\right) \quad i=1, \ldots, 4 .
$$

Proposition 1. The trajectories $\phi(t)$ of $X=\left(X_{1}, X_{2}\right)$ are defined for all values of t. In the region $R=\left\{(u, v) \in R^{2} ; 0 \leq u \leq \frac{\pi}{2},-\pi \leq v \leq \pi\right\}$ their possible behaviors is one of the following:

1) $\phi(t)$ is a vertical trajectory with α-limit $\left(0,-\frac{\pi}{2}\right)$ and ω-limit $\left(0, \frac{\pi}{2}\right)$, or a vertical trajectory with α-limit $\left(\frac{\pi}{2}, 0\right)$ and ω-limit $\left(\frac{\pi}{2}, \pi\right)$, or still a vertical trajectory with α-limit $\left(\frac{\pi}{2},-\pi\right)$ and ω-limit $\left(\frac{\pi}{2}, 0\right)$.
2) $\phi(t)$ is a vertical half-trajectory with α-limit $\left(0,-\frac{\pi}{2}\right)$, or a vertical half-trajectory with ω-limit $\left(0, \frac{\pi}{2}\right)$.
3) $\phi(t)$ is a trajectory in $\left(0, \frac{\pi}{2}\right) \times\left(0, \frac{\pi}{2}\right)$ with α-limit $\left(\frac{\pi}{2}-\alpha, \frac{\pi}{2}-\alpha\right)$ and ω-limit (α, α) going through the points of $J_{1}=\left\{\left(u, \frac{\pi}{2}-u\right) ; 0<u<\frac{\pi}{2}\right\}$ where $\alpha=\frac{1}{4} \arccos \left(\frac{3-2 p}{2 p-1}\right)$.
4) $\phi(t)$ is a connection of saddle points contained in the region $R_{3} \cup R_{4}$ with α-limit $\left(\frac{\pi}{2}-\alpha, \frac{\pi}{2}-\alpha\right)$ and ω-limit $\left(0, \frac{\pi}{2}\right)$.
5) $\phi(t)$ is a connection of saddle points contained in the region $R_{1} \cup R_{2}$ with α-limit $\left(0, \frac{\pi}{2}\right)$ and ω-limit (α, α).
6) $\phi(t)$ is a connection of saddle points contained in the region $R_{1} \cup R_{2}$ with α-limit $\left(\frac{\pi}{2}, 0\right)$ and ω-limit (α, α).
7) $\phi(t)$ is a connection of saddle points contained in the region $R_{3} \cup R_{4}$ with α-limit $\left(\frac{\pi}{2}-\alpha, \frac{\pi}{2}-\alpha\right)$ and ω-limit $\left(\frac{\pi}{2}, 0\right)$.
8) $\phi(t)$ is a trajectory contained in the region $R_{1} \cup R_{2} \cup\left(0, \frac{\pi}{2}\right) \times\left[-\frac{\pi}{2}, 0\right] \cup R_{4}^{-\pi} \cup R_{3}^{-\pi}$, with α-limit $\left(-\frac{\pi}{2}-\alpha,-\frac{\pi}{2}-\alpha\right)$ and ω-limit (α, α).
9) $\phi(t)$ is an orbit, or part of one, obtained by a translation of $(0, \pm \pi)$, of one of the orbts given in the itens 1-8.

3. $\mathbf{O}(\mathbf{p}+\mathbf{1}) \times \mathbf{O}(\mathbf{p}+\mathbf{1})$-INVARIANT HYPERSURFACES IN $\mathbf{R}^{2 p+2}$

The hypersurfaces of type A (item 1 of the Classification theorem) are given by the cones C_{α} e $C_{\frac{\pi}{2}-\alpha}$ and characterized in Theorem B, whose proof consists in to use that, if $\gamma(t)=(x(t), y(t))$ is a solution with $y(t)=\tan \alpha x(t)$, then it satisfies the equation $0=1+\left(\frac{-4 p+2}{p-1}\right) \frac{\sin ^{2} 2 \alpha}{4}$. This, together with the fact that γ is parametrized by arc length, give us the result.

Theorem A follows from the Classification theorem, Lemma 1 and Remark 1 below.
Lemma 1. Let $\phi(t)=(u(t), v(t))$ be a trajectory with α-limit $\left(\frac{\pi}{2}-\alpha,-\frac{\pi}{2}-\alpha\right)$ and ω-limit (α, α). Let $\gamma(t)=(x(t), y(t))$ be the associated profile curve. Then $\phi(t)$ intersects the segment $l=\left\{\left(\frac{\pi}{4}, v\right):-\pi<v<\frac{\pi}{2}\right\}$ exactly once, so $\gamma(t)$ intersects the diagonal $y=x$ exactly once. Therefore, γ does not possess self-intersections and the hypersurface generated by γ is embedded and complete.

REMARK 1. If γ is a profile curve associated to a connection of saddle points, then γ is a graph over one of the axes x or y, and intersects it orthoganally. Therefore the hypersurface generated by γ is embedded and complete.

The proof of the Classification theorem is a consequence of the Proposition 1, together with the remark below:

REmark 2. For $0<v<\frac{\pi}{2}$ we have $x^{\prime}(t) \neq 0, y^{\prime}(t) \neq 0$ and so we can see the profile curve as a graph (or union of graphs when $\gamma(t)=(x(t), y(t))$ has singularities) of a function $y=y(x)$ or $x=x(y)$. We will assume without loss of generality, that $y=y(x)$. In this case, equation (2) tells us that there are singularities at the zeros of the equation

$$
x-y \frac{d y}{d x}=0
$$

They correspond to the coordinates (u, v) with $v=\frac{\pi}{2}-u$.

ACKNOWLEDGEMENT

This work is part of the author's doctoral thesis at the Department of Mathematics of the Federal University of Ceará (Fortaleza - CE). He would like to thank his adviser, Prof. Luquésio P. M. Jorge, for his guidance. A detailed account of the material presented in this announcement will appear elsewhere.

REFERENCES

Alencar H. 1993. Minimal Hypersyfaces in $R^{2 m}$ invariant by $S O(m) \times S O(m)$, Trans Amer Math Soc, 337(1): 129-141.

Bombieri E, de Giorgi E \& Giusti E. 1969. Minimal cones and the Berstein problem, Inventiones Math, 7: 243-269.
do Carmo MP \& Dajczer M. 1983. Rotational hypersurfaces in spaces of constant curvature, Trans Amer Math Soc 277(2): 685-709.

Hsiang WY. 1982. Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces I, Journal Diff Geom, 17: 337-356.

Hsiang WY, Teng ZH \& Yu WC. 1983. New examples of constant mean curvature immersions of ($2 k-1$)-spheres into Euclidean $2 k$-space, Annals of Math, 117: 609-625.

Okayasu T. 1989. $O(2) \times O(2)$-invariant hypersurfaces with constant negative scalar curvature in E^{4}, Proc. of the AMS, 107: 1045-1050.

Palmas O. 1999. $O(2) \times O(2)$-invariant hypersurfaces with zero scalar curvature, to appear in Archiv der Mathematik.

[^0]: *Permanent affiliation: Universidade Federal de Uberlândia, Uberlândia, Brazil
 E-mail: sato@ufu.br

