$O(p + 1) \times O(p + 1)$ -Invariant Hypersurfaces with Zero Scalar Curvature in Euclidean Space

JOCELINO SATO*

Universidade Federal do Ceará, UFC, Departamento de Matemática, Campus do Pici, 60455-760 Fortaleza, CE, Brazil

Manuscript received on November 20, 1999; accepted for publication on February 8, 2000; presented by MANFREDO DO CARMO

ABSTRACT

We use equivariant geometry methods to study and classify zero scalar curvature $O(p + 1) \times O(p + 1)$ -invariant hypersurfaces in R^{2p+2} with p > 1.

Key words: equivariant geometry, scalar curvature.

1. INTRODUCTION

The methods of equivariant geometry have been applied successfully by many authors to obtain and classify explicit examples of hypersurfaces, with a given condition on the r-th mean curvature, that are invariant by the action of an isometry group (see, for instance, Hsiang *et al.* 1983, Hsiang 1982, do Carmo & Dajczer 1983, Bombieri *et al.* 1969, Alencar 1993).

O. Palmas (Palmas 1999), resuming a work started initially by T. Okayasu (Okayasu 1989) and using ideas contained in Alencar, 1993, published a work in which he approaches the hypersurfaces with zero scalar curvature in R^{2p+2} , invariant by the action of the group $O(p+1) \times O(p+1)$. In his article, Palmas studied only the case p = 1.

The objective of this work is to announce and give an sketch of proof of a classification theorem for the case p > 1. The *orbit space* of the action is the set $\Omega = \{(x, y) \in \mathbb{R}^2; x \ge 0, y \ge 0\}$ and the invariant hypersurfaces are generated by curves $\gamma(t) = (x(t), y(t))$, the so called *profile curves*, that satisfy the following differential equation

$$0 = S_2 = p \frac{(-x''(t) y'(t) + x'(t) y''(t))}{(x'(t))^2 + (y'(t))^2} \left(\frac{y'(t)}{x(t)} - \frac{x'(t)}{y(t)}\right) + \frac{1}{2} p(p-1) \left(\left(\frac{y'(t)}{x(t)}\right)^2 + \left(\frac{x'(t)}{y(t)}\right)^2 \right) - p^2 \frac{x'(t) y'(t)}{x(t) y(t)}.$$
(1)

*Permanent affiliation: Universidade Federal de Uberlândia, Uberlândia, Brazil E-mail: sato@ufu.br In order to study the profile curves of such hypersurfaces we proceeded as in Alencar 1993, analyzing the trajectories of an associated vector field X. Each trajectory $\phi(t) = (u(t), v(t))$ of X is associated to a family M_{λ} of hypersurfaces generated by profile curves $\gamma_{\lambda}(t) = (\lambda x(t), \lambda y(t))$, determined by $\phi(t)$ up to homothety. The profile curves $\gamma(t)$ in the orbit space of these hypersufaces are one of the following types:

A) $\gamma(t)$ is one of the following half-straight line

$$\gamma_1(t) = (\cos(\alpha) t, \sin(\alpha) t)$$
 or $\gamma_2(t) = (\sin(\alpha) t, \cos(\alpha) t)$

where $t \ge 0$ and $\alpha = \frac{1}{4} \arccos\left(\frac{3-2p}{2p-1}\right)$ (see figure 1);

B) $\gamma(t)$ is regular, intersects orthogonally one of the half-axes $x \ge 0$ or $y \ge 0$ and asymptotizes one of the half-straight lines in case A), when $t \longrightarrow +\infty$ or $t \longrightarrow -\infty$ (see figure 1);

C) $\gamma(t)$ is the union of two curves $\beta_1 : (-\infty, 0] \longrightarrow \Omega$ and $\beta_2 : [0, +\infty) \longrightarrow \Omega$, $\beta_1(0) = \beta_2(0)$ being a singularity. The curves β_i do not intesect the boundary of the orbit space, and asymptotizes the half-straight lines of the case A, when $t \longrightarrow \pm \infty$ (see figure 1);

D) $\gamma(t)$ is regular and does not intersect the boundary of the orbit space and asymptotizes both half-straight lines of the case A, when $t \longrightarrow \pm \infty$ (see figure 1)

Profile curve of type C.

Profile curve of type D.

Fig. 1 – Profile curves.

We will denote by C_{α} and $C_{\frac{\pi}{2}-\alpha}$ the cones generated by the half-straight lines of type A.

The main result of this work is the theorem below classifing $O(p + 1) \times O(p + 1)$ -invariant hypersurfaces according to their profile curves.

CLASSIFICATION THEOREM. The $O(p + 1) \times O(p + 1)$ -invariant hypersurfaces in \mathbb{R}^{2p+2} with p > 1 and zero scalar curvature belong to one of the following classes:

- 1. cones with a singularity in the origin of R^{2p+2} (type A).
- 2. hypersurfaces that have one orbit of singularities and that are asymptotic to both the cones $C_{\alpha} \ e \ C_{\frac{\pi}{2}-\alpha}$ (type C).
- 3. regular hypersurfaces that are asymptotic to the cone C_{α} (type B).
- 4. regular hypersurfaces that are asymptotic to the cone $C_{\frac{\pi}{2}-\alpha}$ (type B).
- 5. regular hypersurfaces that are asymptotic to both cones C_{α} and $C_{\frac{\pi}{2}-\alpha}$ (type D).

As a corollary we obtain the following result.

THEOREM A. Let M^{2p+1} be an $O(p+1) \times O(p+1)$ -invariant hypersurface in \mathbb{R}^{2p+2} , complete and with zero scalar curvature. Then M is generated by a curve of type B or D. Moreover

- i) If M is generated by a curve of type B, then M is embedded and asymptotic to one of the cones C_α or C^π/_{2-α};
- ii) If M is generated by a curve of type D, then M is embedded and asymptotic to both of the cones C_α and C_{π/2-α}.

The cones C_{α} and $C_{\frac{\pi}{2}-\alpha}$, generated by the half-straight lines in case A are characterized in the following theorem:

THEOREM B. If M^{2p+1} is an $O(p+1) \times O(p+1)$ -invariant hypersurface in \mathbb{R}^{2p+2} , with zero scalar curvature whose profile curve makes a constant angle with the x-axes then M is one of the cones C_{α} or $C_{\frac{\pi}{2}-\alpha}$.

This work is organized as follows. In section 2 we reduce the study of the profile curves $\gamma(t)$ of the invariant hypersurfaces in R^{2p+2} , with zero scalar curvature, to the study of the trajectory $\phi(t) = (u(t), v(t))$ of a vector field X. Then we use the qualitative theory of ordinary differential equations, together with a geometric analysis of the behavior of X, to obtain a description of its trajectories.

In section 3, we present sketches of the proofs of the theorems announced above.

2. ANALYSIS OF THE VECTOR FIELD X

The regular curves (x(t), y(t)) satisfing the equation $S_2 = 0$ are invariant by homotheties and, therefore, for each solution $\gamma(t)$ of (1) we have a family M_{λ} of invariant hypersurfaces with zero scalar curvature, generated by the curves $\gamma_{\lambda}(t) = (\lambda x(t), \lambda y(t))$. So we can apply the method developed in (Bombieri *et al.* 1969) to study the corresponding differential equation. Also note that, if a curve (x, y) is a solution of equation (1), then (y, x) is also a solution.

Without loss of generality, we may assume that the curves $\gamma(t)$ are parametrized by arc length. Therefore, when y = y(x) we obtain

$$\frac{d^2 y}{dx^2} = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right) \left[-\frac{p(p-1)}{2} \left(\frac{y}{x} \left(\frac{dy}{dx}\right)^2 + \frac{x}{y}\right) + p^2 \frac{dy}{dx}\right]}{p\left(-x + y\frac{dy}{dx}\right)}.$$
(2)

Proceeding as in Bombieri et al. 1969 we introduce the parameters

$$u = \arctan\left(\frac{y}{x}\right) \text{ and } v = \arctan\left(\frac{y'}{x'}\right)$$
 (3)

which are invariant by the homothety $(x, y) \mapsto \lambda(x, y)$. Assuming $u' \neq 0$, we rewrite equation (1) as the system

$$\frac{du}{dt} = X_1(u, v) = -\frac{1}{4}p\sin(2u)[\sin(2u) - \sin(2v)]$$

$$\frac{dv}{dt} = X_2(u, v) = \frac{1}{8}p[2(p-1) - \cos(2u - 2v) + (2p-1)\cos(2u + 2v)].$$

We associate to this system the vector field $X(u, v) = (X_1(u, v), X_2(u, v))$ in the (u, v)-plane.

Since our orbit space is the region Ω , we need information just for $x, y \ge 0$, corresponding to the region $R = \{(u, v) : 0 \le u \le \frac{\pi}{2}, -\pi \le v \le \pi\}$ in the (u, v)-plane. We observe that X is bounded, π -periodic in both variables and invariant by a translation of $(\frac{\pi}{2}, \frac{\pi}{2})$. So, it is enough to analyse it in the interval $[0, \frac{\pi}{2}] \times [0, \pi]$.

In order to characterize the phase portrait of the field X we make a geometric study of its behaviour. This study gives us information about the increasing and decreasing intervals of the coordinates u(t) and v(t) of an orbit $\phi(t) = (u(t), v(t))$, the types of singularities that X presents and a transversality of X on special curves. This tranversality supplies barriers for the possible behaviors of those orbits of X.

These informations, together with the tubular flow theorem and Poincaré-Bendixson's theorem allow us to prove the following proposition, where we use the notation:

$$R_1 = \{u < v < \frac{\pi}{2} - u\} \cap \{0 < u < \frac{\pi}{4}\},\$$
$$R_2 = \{0 \le v < u\} \cap \{0 \le v < \frac{\pi}{2} - u, \},\$$

$$R_{3} = \{\frac{\pi}{2} - u < v < u\} \cap \{\frac{\pi}{4} < u < \frac{\pi}{2}\},\$$
$$R_{4} = \{\frac{\pi}{2} - u < v \le \frac{\pi}{2}\} \cap \{u < v \le \frac{\pi}{2}\}$$

and

$$R_i^{-\pi} = R_i + (-\pi, 0))$$
 $i = 1, ..., 4$

PROPOSITION 1. The trajectories $\phi(t)$ of $X = (X_1, X_2)$ are defined for all values of t. In the region $R = \{(u, v) \in R^2; 0 \le u \le \frac{\pi}{2}, -\pi \le v \le \pi\}$ their possible behaviors is one of the following:

- 1) $\phi(t)$ is a vertical trajectory with α -limit $(0, -\frac{\pi}{2})$ and ω -limit $(0, \frac{\pi}{2})$, or a vertical trajectory with α -limit $(\frac{\pi}{2}, 0)$ and ω -limit $(\frac{\pi}{2}, \pi)$, or still a vertical trajectory with α -limit $(\frac{\pi}{2}, -\pi)$ and ω -limit $(\frac{\pi}{2}, 0)$.
- 2) $\phi(t)$ is a vertical half-trajectory with α -limit $\left(0, -\frac{\pi}{2}\right)$, or a vertical half-trajectory with ω -limit $\left(0, \frac{\pi}{2}\right)$.
- 3) $\phi(t)$ is a trajectory in $\left(0, \frac{\pi}{2}\right) \times \left(0, \frac{\pi}{2}\right)$ with α -limit $\left(\frac{\pi}{2} \alpha, \frac{\pi}{2} \alpha\right)$ and ω -limit (α, α) going through the points of $J_1 = \left\{\left(u, \frac{\pi}{2} u\right); 0 < u < \frac{\pi}{2}\right\}$ where $\alpha = \frac{1}{4} \arccos\left(\frac{3-2p}{2p-1}\right)$.
- 4) $\phi(t)$ is a connection of saddle points contained in the region $R_3 \cup R_4$ with α -limit $\left(\frac{\pi}{2} \alpha, \frac{\pi}{2} \alpha\right)$ and ω -limit $\left(0, \frac{\pi}{2}\right)$.
- 5) $\phi(t)$ is a connection of saddle points contained in the region $R_1 \cup R_2$ with α -limit $\left(0, \frac{\pi}{2}\right)$ and ω -limit (α, α) .
- 6) $\phi(t)$ is a connection of saddle points contained in the region $R_1 \cup R_2$ with α -limit $(\frac{\pi}{2}, 0)$ and ω -limit (α, α) .
- 7) $\phi(t)$ is a connection of saddle points contained in the region $R_3 \cup R_4$ with α -limit $\left(\frac{\pi}{2} \alpha, \frac{\pi}{2} \alpha\right)$ and ω -limit $\left(\frac{\pi}{2}, 0\right)$.
- 8) $\phi(t)$ is a trajectory contained in the region $R_1 \cup R_2 \cup (0, \frac{\pi}{2}) \times [-\frac{\pi}{2}, 0] \cup R_4^{-\pi} \cup R_3^{-\pi}$, with α -limit $(-\frac{\pi}{2} \alpha, -\frac{\pi}{2} \alpha)$ and ω -limit (α, α) .
- 9) $\phi(t)$ is an orbit, or part of one, obtained by a translation of $(0, \pm \pi)$, of one of the orbits given in the itens 1-8.

3. $O(p + 1) \times O(p + 1)$ -INVARIANT HYPERSURFACES IN \mathbb{R}^{2p+2}

The hypersurfaces of type A (item 1 of the Classification theorem) are given by the cones C_{α} e $C_{\frac{\pi}{2}-\alpha}$ and characterized in Theorem B, whose proof consists in to use that, if $\gamma(t) = (x(t), y(t))$ is a solution with $y(t) = \tan \alpha x(t)$, then it satisfies the equation $0 = 1 + \left(\frac{-4p+2}{p-1}\right)\frac{\sin^2 2\alpha}{4}$. This, together with the fact that γ is parametrized by arc length, give us the result.

Theorem A follows from the Classification theorem, Lemma 1 and Remark 1 below.

LEMMA 1. Let $\phi(t) = (u(t), v(t))$ be a trajectory with α -limit $(\frac{\pi}{2} - \alpha, -\frac{\pi}{2} - \alpha)$ and ω -limit (α, α) . Let $\gamma(t) = (x(t), y(t))$ be the associated profile curve. Then $\phi(t)$ intersects the segment $l = \{(\frac{\pi}{4}, v) : -\pi < v < \frac{\pi}{2}\}$ exactly once, so $\gamma(t)$ intersects the diagonal y = x exactly once. Therefore, γ does not possess self-intersections and the hypersurface generated by γ is embedded and complete.

REMARK 1. If γ is a profile curve associated to a connection of saddle points, then γ is a graph over one of the axes x or y, and intersects it orthogonally. Therefore the hypersurface generated by γ is embedded and complete.

The proof of the Classification theorem is a consequence of the Proposition 1, together with the remark below:

REMARK 2. For $0 < v < \frac{\pi}{2}$ we have $x'(t) \neq 0$, $y'(t) \neq 0$ and so we can see the profile curve as a graph (or union of graphs when $\gamma(t) = (x(t), y(t))$ has singularities) of a function y = y(x) or x = x(y). We will assume without loss of generality, that y = y(x). In this case, equation (2) tells us that there are singularities at the zeros of the equation

$$x - y\frac{dy}{dx} = 0.$$

They correspond to the coordinates (u, v) with $v = \frac{\pi}{2} - u$.

ACKNOWLEDGEMENT

This work is part of the author's doctoral thesis at the Department of Mathematics of the Federal University of Ceará (Fortaleza - CE). He would like to thank his adviser, Prof. Luquésio P. M. Jorge, for his guidance. A detailed account of the material presented in this announcement will appear elsewhere.

REFERENCES

- ALENCAR H. 1993. Minimal Hypersyfaces in R^{2m} invariant by $SO(m) \times SO(m)$, Trans Amer Math Soc, **337**(1): 129-141.
- BOMBIERI E, DE GIORGI E & GIUSTI E. 1969. Minimal cones and the Berstein problem, *Inventiones Math*, **7:** 243-269.
- DO CARMO MP & DAJCZER M. 1983. Rotational hypersurfaces in spaces of constant curvature, *Trans Amer Math Soc* 277(2): 685-709.
- HSIANG WY. 1982. Generalized rotational hypersurfaces of constant mean curvature in the Euclidean spaces I, *Journal Diff Geom*, **17**: 337-356.

- HSIANG WY, TENG ZH & YU WC. 1983. New examples of constant mean curvature immersions of (2k 1)-spheres into Euclidean 2*k*-space, *Annals of Math*, **117**: 609-625.
- OKAYASU T. 1989. $O(2) \times O(2)$ -invariant hypersurfaces with constant negative scalar curvature in E^4 , Proc. of the AMS, **107**: 1045-1050.
- PALMAS O. 1999. $O(2) \times O(2)$ -invariant hypersurfaces with zero scalar curvature, to appear in Archiv der Mathematik.