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ABSTRACT

We study the asymptotic behavior of curvature and prove that the integral of curvature along a

geodesic without conjugate points is nonpositive and some generalizations of Myers theorem and

Cohn-Vossen’s theorem. Some applications are also given.
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1. MAIN RESULTS

Let Mn be ann-dimensional Riemannian manifold and letd(x, y) be the distance induced by

the metric. (Ambrose 1957) showed that if the integral of the Ricci curvature along a geodesic

γ : [0,+∞) → M is infinite then there is at > 0 such thatγ (t) is conjugate toγ (0). We extended

this result in two directions: first we obtain

Theorem A. Let γ : R → M be a geodesic without conjugate points (particularly if γ is a line).

Then for any unit vector field X(t) which is parallel along γ it holds that

η = lim inf
u→−∞
v→+∞

∫ v

u

K
(
X(t), γ ′(t)

)
dt ≤ 0, µ = lim inf

u→−∞
v→+∞

∫ v

u

Ric
(
γ ′(t), γ ′(t)

)
dt ≤ 0

whereK
(
X(t), γ ′(t)

)
is the sectional curvature of the plane spanned byX(t) and γ ′(t). Moreover,

if η = 0 then K
(
X(t), γ ′(t)

) ≡ 0. If µ = 0 then for all t and any v orthogonal to γ ′(t), it holds

that K
(
γ ′(t), v)

) = 0.

Note thatM is not supposed to be complete in Theorem A, and no hypothesis on the curvature

is assumed. It should be remarked that (Liang & Zhan 1996) proved that ifγ : R → M is a geodesic

without conjugate points and if Ric
(
γ ′(t), γ ′(t)

) ≥ 0, then Ric
(
γ ′(t), γ ′(t)

) ≡ 0.

Correspondence to: Detang Zhou
E-mail: zhou@impa.br

An. Acad. Bras. Ci., (2000)72 (2)



GEODESICS WITHOUT CONJUGATE POINTS AND CURVATURES AT INFINITY 118

Recall that the minimal radial curvatureKmin
o ≥ c if K(γ ′, v) ≥ c for any minimal normal

geodesicγ joining o andp and any unit vectorv orthogonal toγ ′. We say that the radial Ricci

curvature Rico(p) ≥ c if for any normal (not necessarily minimizing) geodesicγ joining o andp

it holds that Ric(γ ′, γ ′) ≥ c. As a corollary of Theorem A we have

Corollary1. Assume thatM is a complete manifold without conjugate points satisfying Rico ≥ 0,

for a certain base point o. Then M is flat, that is, M is isometric to R
n/π1(M).

It should be remarked that whenM is compact and the condition Rico ≥ 0 is replaced by the

scalar curvatureS ≥ 0, the same conclusion of Corollary 1 follows from (Green 1958).

In order to state our second result we need some definitions. In the followingM = Mn always

denotes a complete and connectedn-dimensional Riemannian manifold.S is always a connected

manifold without boundary which is isometrically immersed and whose image is closed inM. This

assumption is weaker than that the immersion being proper, since ifN is any compact manifold

andp ∈ N has no conjugate points, then the exponential map exp: TpN → N is an immersion

whose image is closed, but the inverse image ofN of course is not compact. Unless otherwise

stated all geodesics are supposed to be normalized. One of the subjects treated here is to study

the manifolds with minimalS-radial (Ricci) curvature bounded from below (or from above). Even

if we strengthen our curvature conditions with the corresponding ones on the sectional (or Ricci)

curvature some of our results are new.

The notion of minimal radial curvature was first introduced by (Klingenberg 1963) and was

studied by many authors. It is natural to extend such definition for submanifolds when we study

existence of minimal submanifolds. The notion of minimalS-radial curvature appears - even

without an explicit definition - for example in (Eschenburg 1987) and in (Heintze & Karcher 1978).

Givenp ∈ M we say that a minimal geodesicγ : [0, a] → M is a minimal connection betweenp

andS if γ (0) ∈ S, γ (a) = p and the distanced(p, S) = a. Given linearly independent tangent

vectorsv,w we denote byK(v,w) the sectional curvature associated with the plane generated by

v andw.

0.1.Definition. Given p ∈ M, we say that the minimalS-radial curvatureKmin
S (p) ≥ c

(Kmin
S (p) ≤ c) if for any minimal connectionγ betweenp and S, and anyv orthogonal to

the tangent vectorγ ′ at p it holds thatK(γ ′, v) ≥ c (K(γ ′, v) ≤ c). We say similarly that the

minimalS-radial Ricci curvature Ricmin
S (p) ≥ c if any orthonormal framee1, e2, ..., en−1 which is

orthogonal toγ atp satisfies
∑

i K(γ ′, ei) ≥ c. Finally we say that the parallel minimalS-radial

Ricci curvatureRICmin
S (p) ≥ c if

∑k
i=1K(γ ′, ei) ≥ c, wheree1, e2, · · · , ek are obtained by the

parallel transport alongγ of an orthonormal basis ofTγ (0)S.

Note that if the dimension ofS is n − 1 then Ricmin
S (p) ≥ c is equivalent toRICmin

S (p) ≥ c.

We can give some examples of radial curvature bounded from below. One of the most well-known

results relating the curvature and topology of a complete Riemannian manifoldM is the classical

Theorem of (Myers 1941) which states that if the Ricci curvature with respect to unitary vectors
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in M has a positive lower bound thenM is compact. For the distance functionρ(x) = d(x, S)

setRS = RS(M) := sup{ρ(x)|x ∈ M}. The following result shows that, ifRS = +∞, then the

existence of a minimal submanifold implies that radial curvatures tend to be nonpositive in some

integral sense. Precisely we have:

Theorem B. Let S be minimal and have dimension k ≥ 1. Assume that M satisfies RICmin
S (x) ≥

kK
(
ρ(x)

)
for any x ∈ M , where K(ρ) is supposed to be a continuous function. Then the condition

RS =+∞ implies that liminf t→+∞
∫ t

0 K(ρ)dρ≤0. Furthermore, if liminf t→+∞
∫ t

0 K(ρ)dρ = 0

then we have K(ρ) = 0, for all ρ.

We remark thatRS can be finite even ifM is noncompact. For example, letS be a line in a

cylinderM. WhenRICmin
S ≥ 0 Theorem B implies that, ifK(ρ) as above is nonnegative, then

K(ρ) ≡ 0. This fact however does not imply thatRICmin
S (x) ≡ 0. It means only that for anyρ > 0

it holds that inf{RICmin
S (x)

∣∣ ρ(x) = ρ} = 0 (see for example the case in thatS is a meridian of a

paraboloid).

If a rayγ : [0,+∞) → M satisfiesγ (0) ∈ S andρ ◦ γ (t) ≡ t we will say thatγ is anS-ray.

By the same proof as in Theorem A we obtain the following result.

Corollary 2. Assume that S is totally geodesic (respectively, minimal), has dimension k ≥ 1,

and that γ is an S-ray. Let v = v(t) be a parallel field along γ with v(0) ∈ Tγ (0)S. Then we

have liminf t→+∞
∫ t

0 K(v, γ ′) ds ≤ 0 (respectively, liminf t→+∞
∫ t

0 RICmin
S (γ ′, γ ′) ds ≤ 0). If

this integral limit vanishes then K(v, γ ′) ≡ 0 (respectively, RICmin
S

(
γ (t)

) ≡ 0).

The Theorems of (Cohn-Vossen 1935) and (Huber 1957) assert that ifn = 2 and the negative

part of its Gaussian curvature is integrable, then
∫
M
KdM ≤ 2πX(M), wheredM is the volume

element ofM, andX(M) is the Euler characteristic ofM. This implies that for this type of

manifolds there does not exist a sequence of pointsqk → ∞ with K ≥ δ in the ballBqk(rk) with

centerqk, radiusrk, and volumeV , for fixed positive numbersδ andV . It should be noted that

this is false without the assumption on the integrability of the curvature. This can be seen if we

considerR2 with the periodic metric induced by the universal covering of a nonflat metric on torus.

It has been asked by many mathematicians about the extension of theorems of Cohn-Vossen and

Huber to the higher dimensions (see for example Yau 1991).

As pointed out before we first need some suitable integrability conditions about curvatures. It

seems for us that the asymptotically nonnegative condition studied extensively by (Abresch 1985)

is one reasonable choice. In dimensionn let K(p) be the infimum of the sectional curvatures at the

pointp. It would be interesting to obtain an integral inequality for the functionK. However we have

only obtained the nonexistence of a sequence as above in this case. We recall (seeAbresch 1985) that

the curvature of a complete manifoldM is asymptotically nonnegative if there exists a nonincreasing

functionκ : [0,+∞) → [0,+∞) such that
∫ +∞

0 tκ(t)dt < +∞, andK(x) ≥ −κ
(
d(o, x)

)
, for a

fixed pointo. Abresch obtained (Abresch 1985) a version of Toponogov Theorem for this class of

manifolds, and Kasue constructed in (Kasue 1988) a compactification of such manifoldsM. Our
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third theorem is the following.

Theorem C. Let M be a complete manifold with asymptotically nonnegative curvature. Take a

sequence qk → ∞. Suppose that K ≥ δk > 0 in Bqk(rk), with rk ≤ R, where R is a fixed number.

Then r2
k δk → 0.

In particular it is not possible thatK ≥ δ > 0 inBqk(rk), if the volume ofBqk(rk) is a constant

V . In fact, letK0 be the minimum ofK(p) in M. Because of the Bishop-Gromov comparison

volume Theorem we would have in that caserk ≥ rV , whererV is the radius of a ball of volumeV in

the hyperbolic space of constant curvatureK0. So we would not haverk → 0, and this contradicts

Theorem C. We can give an example to show that the conditionrk ≤ R is essential in Theorem C,

even ifK ≥ 0.

0.2. Definition. An embedded submanifoldS is said to be a polar submanifold if the normal

exponential map exp⊥ : ν(S) → M is a diffeomorphism.

0.3. Definition. S is called a geometric soul if the distance functionρ is convex.

Clearly any geometric soul is totally convex (any geodesic joining two points ofS is contained

in S). In (Cheeger & Gromoll 1972) it is proved that any totally convex setC is of the form

C = N ∪ ∂C, whereN = Nk is aC∞ embedded submanifold and∂C is a boundary ofC0

class. Since ourS has no boundary we conclude that any geometric soul is ofC∞ class and totally

geodesic. For the case of nonnegativeS-radial curvature we have the following result.

Theorem D. Assume that S is a C2 polar submanifold of M and that Kmin
S ≥ 0. Given x ∈ M\S

and a unitary vector v ∈ TxM it holds that the Hessian

0 ≤ Hessρ(v, v) ≤ 1

ρ(x)
,

hence the function ρ is convex and S is a geometric soul. In fact even if S is not polar the conclusion

Hessρ(v, v) ≤ 1
ρ(x)

is valid in all point x outside the cut locus of S.

Using Theorem D we can prove:

Corollary 3. Let M satisfy Kmin
S ≥ 0 (or Kmin

S ≤ 0 and S be totally geodesic). Then the distance

function d(·, S) is convex if and only if S is polar. In particular, under these conditions the distance

function from a point d(·, p) is convex if and only if p is a pole.

The following result is a generalization of the famous result of (Frankel 1966) about the

fundamental group of positively curved manifolds. We remark that in our case the fundamental

groupπ1(S) can be infinite, since the curvature ofS can be negative. We say that the Ricci radial

curvature RicS ≥ c when for any geodesic (not necessarily minimizing)γ with γ ′(0) ∈ ν(S) it

holds that Ric(γ ′, γ ′) ≥ c.

Theorem E. Assume that S is a compact minimal hypersurface in M and that RicS > 0 (or

instead Ricmin
S > 0 and RicS ≥ 0). Then the natural homomorphism of fundamental groups

π1(S) → π1(M) is onto.
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2. OUTLINE OF THE PROOFS

LetM be a Riemannian manifold of dimensionn. Letγ : R → M be a geodesic without conjugate

points. Consider the normal bundleν(R) associated with the isometric immersionγ . Take a closed

neighborhoodU of R in ν(R) such that the normal exponential map exp⊥ : U → M is a local

diffeomorphism. We consider inU the Riemannian metric induced by exp⊥. Let γ̃ : R → R be

the trivial curve given bỹγ (t) = t . We define the distance functions as

rs(x) := dist
(
x, γ̃ (s)

)
, s ∈ R, x ∈ U,

where dist is the intrinsic distance inU . Since there are no conjugate points inγ̃ , for sufficiently

smallU we have thatrs(x) is smooth atx = γ̃ (t) andrs
(
γ̃ (t)

) = |s − t |, for anyt ∈ (−∞,+∞).

Also it is easy to see that∇rs
(
γ̃ (t)

) = γ̃ ′(t), for all t > s. For any unit vector fieldX(t) which

is parallel alongγ̃ , consider the Hessianws(t) := Hessrs
(
γ̃ (t)

)
(X,X). Given some curvec(u)

with c(0) = γ̃ (t) andc′(0) = X(t), for small|u| we have geodesics̃γu joining γ̃ (s) andc(u) with

∇rs
(
c(u)

) = γ̃ ′
u. So we have∇X∇∇rs∇rs = 0. Thus a direct calculation shows that

d

dt
ws(t) = −K(X,∇rs) − w2

s (t). (1.1)

Lemma 1.1. With the notations above w(t) := lim s→+∞ ws(t) exists for every t . The derivative

w′(t) exists and w′(t) = lim s→+∞ w′
s(t).

To prove Theorem A we need the following lemmas, which are stated here without proofs. For

a positive constanta, consider the following inequality of Ricatti type:
x

′(t) + ax2(t) + K(t) ≤ 0

x(t0) = x0

(1.2)

Lemma 1.2. If lim inf t→+∞
∫ t

t0
K(s)ds ≥ c for a constant c ∈ R and x(t) is a solution of (1.2)

on [t0,+∞), then
∫∞
t0

x2(s)ds < +∞.

Lemma 1.3. If x(t) is a solution of (1.2) for t ∈ R, then

ξ := lim inf
u→−∞
v→+∞

∫ v

u

K(s)ds ≤ 0. (1.3)

We have ξ = 0 if and only if K(t) ≡ 0 and x(t) ≡ 0.

Now we are in the position to prove our theorem.

Proof of Theorem A. It follows from (1.1) and Lemma 1.1 that

w′(t) + w2(t) + K
(
X(t), γ ′(t)

) = 0, for all t ∈ R. (1.4)

Therefore it follows immediately from Lemma 1.3 thatη ≤ 0 and thatη = 0 if and only if

K
(
X(t), γ ′(t)

) ≡ 0.
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Take an arbitraryv with |v| = 1 which is orthogonal toγ ′(t0). Consider an orthonormal basis

v = e1, e2, · · · , en = γ ′(t0), and the parallel transportei(t), i = 1,2, · · · , n of ei alongγ . For

eachi = 1, · · · , n− 1 consider the sectional curvatureKi(t) = K
(
ei(t), γ

′(t)
)
. Then we have the

existence of functionswi : R → R such that

w′
i(t) + w2

i (t) + Ki(t) = 0, for all t ∈ R, i = 1, · · · , n − 1. (1.5)

Sety(t) = ∑n−1
i=1 wi(t). Using the inequality

n−1∑
i=1

w2
i (t) ≥ 1

n − 1

(
n−1∑
i=1

wi(t)

)2

we get

y ′(t) + 1

n − 1
y2(t) + Ric

(
γ ′(t), γ ′(t)

) ≤ 0, for all t ∈ R. (1.6)

Therefore by Lemma 1.3 we haveµ ≤ 0 and thatµ = 0 if and only if y(t) ≡ 0 and

Ric
(
γ ′(t), γ ′(t)

) ≡ 0.

From (1.5) we have

y ′(t) +
n−1∑
i=1

w2
i (t) + Ric

(
γ ′(t), γ ′(t)

) ≡ 0. (1.7)

Sincey ′(t) ≡ 0 and Ric
(
γ ′(t), γ ′(t)

) ≡ 0, we have from (1.7) thatwi(t) ≡ 0 for all i =
1, · · · , n− 1. Using (1.5) again we conclude thatKi(t) ≡ 0, henceK

(
v, γ ′(t0)

) = 0. Theorem A

is proved. �

To prove Theorem B we use the same idea and the following lemma.

Lemma 1.4. The following boundary value problem
f

′′(t) + K(t)f (t) = 0

f ′(0) = 0, f (b) = 0
(1.8)

has no positive solution on [0, b), if 0 < b < RS and RICmin
S (x) ≥ K

(
ρ(x)

)
, for any x ∈ M .

Sketch of the Proof of Theorem C. Take a sequenceqk as above. Assume by contradiction

thatδkr2
k ≥ η, for some constantη > 0. Set1k = rk/10. Letε > 0 be a constant such that

sinε

cos2 ε
<

η

200
.

Let tk = Fo(qk), whereFo(x) := lim t→+∞
(
t−d(x, St )

)
, whereSt is the boundary of the ballBo(t).

We can prove that there exists a pointq̃k ∈ ∂Ctk , such thatd(qk, q̃k) = 1k. Let τk be a minimal

geodesic joiningqk and q̃k. Consider a minimal connectionσs betweenτk(s) and∂C(tk+1k), for
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s ∈ [0, 1k]. Setθ(s) = �
(
τ ′
k(s), σ

′
s(0)

)
andϕ(s) = d

(
τk(s), ∂C(tk+1k)

)
. It is not difficult to obtain

thatτk
([0, 1k]) ⊂ Ctk . After a series of lemmas we show that

ϕ(1k) ≤ ϕ(0) − 1k cosθ(0) − d̄λδk

2
12
k.

For sufficiently largek, we haveπ/2 ≤ θ(0) < π/2+ ε, andπ/2 ≤ π − θ(1k) < π/2+ ε. So we

obtainλ ≥ min{sin2 θ(0), sin2 θ(1k)} ≥ cos2 ε, because of the monotonicity of the functionθ(s).

We obtain also that− cosθ(0) ≤ − cos(π/2 + ε) = sinε. Thus we conclude that

1k ≤ ϕ(1k) ≤ 1k + 1k sinε − 13
k(cos2 ε)δk

2
.

Replacing1k by its value we conclude that

sinε

cos2 ε
≥ 12

k δ

2
≥ η

200
,

which contradicts to the choice ofε and proves Theorem C. �

Sketch of the Proof of TheoremD. We can reduce again the estimate of Hessian of the distance

function to estimate of solutions of Ricatti equations. �

Sketch of the Proof of Theorem E. For any nonzero element[η] ∈ π1(M), there is a repre-

sentative loopξ with basep ∈ S. We can find a curvẽξ in M̃ such that both initial point̃ξ0 and

end pointξ̃1 in π−1(p). If ξ̃1 = ξ̃0 there is nothing to prove. If̃ξ1 �= ξ̃0 then there exists a curvẽν

in π−1(S) connecting̃ξ0 andξ̃1 which is homotopic tõξ . Soπ ◦ ν̃ is a loop inS and[π ◦ ν̃] = [η].
This proves our conclusion. �
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