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ABSTRACT
We study the asymptotic behavior of curvature and prove that the integral of curvature along a
geodesic without conjugate points is nonpositive and some generalizations of Myers theorem and
Cohn-Vossen'’s theorem. Some applications are also given.
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1. MAINRESULTS

Let M" be ann-dimensional Riemannian manifold and létx, y) be the distance induced by

the metric. (Ambrose 1957) showed that if the integral of the Ricci curvature along a geodesic
y: [0, +00) — M isinfinite then there isa> 0 such thay (¢) is conjugate tg’ (0). We extended

this result in two directions: first we obtain

THEOREM A. Let y: R — M be a geodesic without conjugate points (particularly if y isaline).
Then for any unit vector field X (r) which isparallel along y it holds that

n=Ilminf | K(X(),y'(t))dt <0, p=Iliminf | Ric(y'(t),y'(t))dt <0
v—4o0 YU If;:;% u

where K (X ®), y/(t)) isthe sectional curvature of the plane spanned by X () and y’(¢). Moreover,
if n = 0then K(X(t), y/(t)) = 0. If ©x = Othen for all r and any v orthogonal to y'(¢), it holds
that K (y'(1), v)) = 0.

Note thatM is not supposed to be complete in Theorem A, and no hypothesis on the curvature
isassumed. It should be remarked that (Liang & Zhan 1996) proved thaiiif -~ M is a geodesic
without conjugate points and if Rig'(), ¥'(r)) > 0, then Ri¢y'(¢), y'(t)) = 0.
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Recall that the minimal radial curvatu™" > ¢ if K(y’,v) > ¢ for any minimal normal
geodesicy joining o and p and any unit vectop orthogonal toy’. We say that the radial Ricci
curvature Rig(p) > c if for any normal (not necessarily minimizing) geodegigoining o and p
it holds that Ri¢y’, y’) > ¢. As a corollary of Theorem A we have

CoroLLARY 1. Assumethat M isacomplete manifold without conjugate pointssatisfying Ric, > 0,
for a certain base point 0. Then M isflat, that is, M isisometric to R" /m1(M).

It should be remarked that whe is compact and the condition Ri¢ 0 is replaced by the
scalar curvaturé > 0, the same conclusion of Corollary 1 follows from (Green 1958).

In order to state our second result we need some definitions. In the folla#wiagM™ always
denotes a complete and connectedimensional Riemannian manifold. is always a connected
manifold without boundary which is isometrically immersed and whose image is clogédTinis
assumption is weaker than that the immersion being proper, siiéasfany compact manifold
andp € N has no conjugate points, then the exponential map &y — N is an immersion
whose image is closed, but the inverse imagevodf course is not compact. Unless otherwise
stated all geodesics are supposed to be normalized. One of the subjects treated here is to stud
the manifolds with minimak-radial (Ricci) curvature bounded from below (or from above). Even
if we strengthen our curvature conditions with the corresponding ones on the sectional (or Ricci)
curvature some of our results are new.

The notion of minimal radial curvature was first introduced by (Klingenberg 1963) and was
studied by many authors. It is natural to extend such definition for submanifolds when we study
existence of minimal submanifolds. The notion of mininsatadial curvature appears - even
without an explicit definition - for example in (Eschenburg 1987) and in (Heintze & Karcher 1978).
Given p € M we say that a minimal geodesic [0, a] — M is a minimal connection betwegn
andS if y(0) € S, y(a) = p and the distancé(p, S) = a. Given linearly independent tangent
vectorsv, w we denote byK (v, w) the sectional curvature associated with the plane generated by
v andw.

0.1.DeriNITION.  Given p € M, we say that the minima$-radial curvaturek ™ (p) > ¢
(Kf™"(p) < c¢) if for any minimal connectiony betweenp and S, and anyv orthogonal to
the tangent vectoy’ at p it holds thatK (y', v) > ¢ (K(y’, v) < ¢). We say similarly that the
minimal S-radial Ricci curvature R@'”(p) > ¢ if any orthonormal framey, ey, ..., ¢,_1 Which is
orthogonal toy at p satisfiesy ; K(y’, ¢;) > c. Finally we say that the parallel minimétradial
Ricci curvaturefRflCFS“‘”(p) > cif Zf?:lK(y/, e;) > ¢, whereey, e, - - - , ¢, are obtained by the
parallel transport along of an orthonormal basis df, ) S.

Note that if the dimension of is n — 1 then Ri§™"(p) > c is equivalent taAR7CT"(p) > c.
We can give some examples of radial curvature bounded from below. One of the most well-known
results relating the curvature and topology of a complete Riemannian mamiftddhe classical
Theorem of (Myers 1941) which states that if the Ricci curvature with respect to unitary vectors
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in M has a positive lower bound thed is compact. For the distance functipiix) = d(x, S)

setRs = Rs(M) := supp(X)|x € M}. The following result shows that, Ry = +o0, then the
existence of a minimal submanifold implies that radial curvatures tend to be nonpositive in some
integral sense. Precisely we have:

THEOREM B. Let S be minimal and have dimension k¥ > 1. Assume that M satisfies RZIC'S“‘”(x) >
kK (,o (x)) for any x € M, where K (p) issupposed to be a continuous function. Then the condition
Rs=+o0 impliesthat liminf ,_, . [y K (0)dp <0. Furthermore, if liminf ,_ .. [; K (p)dp =0
then we have K (p) = 0, for all p.

We remark thaiRs can be finite even il is noncompact. For example, |1&tbe a line in a
cylinder M. WhenR:lCE“‘“z 0 Theorem B implies that, iK (p) as above is nhonnegative, then
K (p) = 0. This fact however does notimply tHBZ CI""(x) = 0. It means only that for any > 0
it holds that inI{R.’ICFS“‘”(x) \ p(x) = p} = 0 (see for example the case in tifat a meridian of a
paraboloid).

Ifarayy: [0, +00) — M satisfieg/(0) € S andp o y(¢) = ¢t we will say thaty is anS-ray.
By the same proof as in Theorem A we obtain the following result.

CoRroLLARY 2. Assume that S is totally geodesic (respectively, minimal), has dimension k > 1,
and that y isan S-ray. Let v = v(r) be a paralléel field along y with v(0) € T, S. Then we
have liminf ,_ 4 [y K (v, ¥")ds < O (respectively, liminf ,_ o [y RICT(y', y")ds < 0). If
thisintegral limit vanishesthen K (v, y") = 0 (respectively, mcg“i”(y(z)) = 0).

The Theorems of (Cohn-Vossen 1935) and (Huber 1957) assert that # and the negative
part of its Gaussian curvature is integrable, ttfﬁanM < 27 X (M), whered M is the volume
element ofM, and X (M) is the Euler characteristic aff. This implies that for this type of
manifolds there does not exist a sequence of pajints- oo with K > § in the ball B, () with
centergy, radiusry, and volumeV, for fixed positive numberg and V. It should be noted that
this is false without the assumption on the integrability of the curvature. This can be seen if we
considerR? with the periodic metric induced by the universal covering of a nonflat metric on torus.

It has been asked by many mathematicians about the extension of theorems of Cohn-Vossen an
Huber to the higher dimensions (see for example Yau 1991).

As pointed out before we first need some suitable integrability conditions about curvatures. It
seems for us that the asymptotically nonnegative condition studied extensively by (Abresch 1985)
is one reasonable choice. In dimensiolet K (p) be the infimum of the sectional curvatures at the
point p. Itwould be interesting to obtain an integral inequality for the funckorHowever we have
only obtained the nonexistence of a sequence as above in this case. We recall (see Abresch 1985) th
the curvature of a complete manifaldis asymptotically nonnegative if there exists a nonincreasing
functionk : [0, +00) — [0, +00) such tha§[0+°° tk(t)dt < +o0, andK (x) > —k(d(o, x)), for a
fixed pointo. Abresch obtained (Abresch 1985) a version of Toponogov Theorem for this class of
manifolds, and Kasue constructed in (Kasue 1988) a compactification of such manfolOsir
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third theorem is the following.

THEOREM C. Let M be a complete manifold with asymptotically nonnegative curvature. Take a
sequence gy — oo. Supposethat K > 6, > 01in B, (1), withr, < R, where R is a fixed number.
Then rk28k — 0.

In particular it is not possible th& > é > 0in B, (1), if the volume ofB,, () is a constant
V. In fact, letKq be the minimum ofK (p) in M. Because of the Bishop-Gromov comparison
volume Theorem we would have in that case- ry, wherery is the radius of a ball of volumg in
the hyperbolic space of constant curvatiie So we would not have, — 0, and this contradicts
Theorem C. We can give an example to show that the conditien R is essential in Theorem C,
evenifK > 0.

0.2. DeriniTION. An embedded submanifoll is said to be a polar submanifold if the normal
exponential map exp: v(S) — M is a diffeomorphism.

0.3. DerINITION. S is called a geometric soul if the distance functjois convex.

Clearly any geometric soul is totally convex (any geodesic joining two poirfso€ontained
in S). In (Cheeger & Gromoll 1972) it is proved that any totally convex Gas of the form
C = N UJC, whereN = N¥is aC>™ embedded submanifold ariC is a boundary ofC°
class. Since ous has no boundary we conclude that any geometric soul@$otlass and totally
geodesic. For the case of nonnegafiveadial curvature we have the following result.

TueoreM D. Assumethat S isa C2 polar submanifold of M and that K" > 0. Given x € M\S
and a unitary vector v € T, M it holds that the Hessian

0 <Hess(v,v) <

p(x)’
hencethefunction p isconvexand S isa geometric soul. Infact evenif S isnot polar the conclusion
Hess (v, v) < le) isvalidin all point x outside the cut locus of S.

Using Theorem D we can prove:

COROLLARY 3. Let M satisfy K" > 0 (or K" < Oand S betotally geodesic). Then the distance
functiond (-, S) isconvexif and only if S ispolar. In particular, under these conditions the distance
function froma point d(-, p) isconvex if and only if p isa pole.

The following result is a generalization of the famous result of (Frankel 1966) about the
fundamental group of positively curved manifolds. We remark that in our case the fundamental
groupm1(S) can be infinite, since the curvature $tan be negative. We say that the Ricci radial
curvature Rig > ¢ when for any geodesic (not necessarily minimizipgyvith y’(0) € v(S) it
holds that Ri¢y’, y') > c.

THEOREM E. Assume that S is a compact minimal hypersurface in M and that Ricg > 0 (or
instead Ric?™" > 0 and Rics > 0). Then the natural homomorphism of fundamental groups
m1(S) — w1 (M) isonto.
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2. OUTLINE OF THE PROOFS

Let M be a Riemannian manifold of dimensienLety : R — M be a geodesic without conjugate
points. Consider the normal bundiéR) associated with the isometric immersipnTake a closed
neighborhood’ of R in v(R) such that the normal exponential map ex@/ — M is a local
diffeomorphism. We consider iti the Riemannian metric induced by éxpLety: R — R be
the trivial curve given by (r) = . We define the distance functions as

re(x) == diSt(x, )7(s)),s eR,xeU,

where dist is the intrinsic distance Uh. Since there are no conjugate pointginfor sufficiently
smallU we have that;(x) is smooth ak = 7 (1) andr, (7 (1)) = |s —t], for anys € (—o0, +00).
Also it is easy to see thaltr,(7 (1)) = 7'(1), for all > s. For any unit vector field () which
is parallel alongy, consider the Hessiam; () := HeSSrs(ﬁ(t))(X, X). Given some curve(u)
with ¢(0) = y(¢r) andc’(0) = X (¢), for small|u| we have geodesigs, joining y (s) andc(u) with
Vry(c(u)) = ,. So we havéVy Vy, Vr, = 0. Thus a direct calculation shows that

d
Jrws(D) = =KX, Vr,) = wZ(?). ()
LemmA 1.1. With the notations above w(r) := lim,_, , ., wy(¢) exists for every r. The derivative

w'(t) existsand w'(¢) = limg_, 4o w(2).
To prove Theorem A we need the following lemmas, which are stated here without proofs. For
a positive constant, consider the following inequality of Ricatti type:

’ 2 K
x'(t) +ax*(t) + K(1) <0 (1.2)

x(fo) = xo

LemmA 1.2, If liminf,_ f;; K (s)ds > ¢ for aconstant ¢ € R and x(¢) isa solution of (1.2)
on [fy, +00), then f,go x2(s)ds < +oo.

LemMma 1.3. If x(¢z) isasolution of (1.2) for ¢ € R, then

&= Iirﬂir;l: /v K(s)ds < 0. (1.3)

v—>+00

Wehaveé = 0ifandonlyif K(r) = 0and x(¢) = 0.
Now we are in the position to prove our theorem.

Proor oF THEOREM A. It follows from (1.1) and Lemma 1.1 that
w'(t) +w?(@®) + K(X@®),y'®) =0, forallr e R. (L4)
Therefore it follows immediately from Lemma 1.3 that< 0 and thaty = 0 if and only if

K(X(@),y'(1)) =0.
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Take an arbitrary with |v| = 1 which is orthogonal t¢’(zg). Consider an orthonormal basis
v =-eye- - ,e, =y (), and the parallel transpoet(z),i = 1,2,--- ,n of ¢; alongy. For
each = 1, --- , n—1 consider the sectional curvatuke(r) = K(e,- ), y’(t)). Then we have the
existence of functions; : R — R such that

wj(t) +w?(t) + K;(t) =0, forallt eR, i=1---,n—1 (1.5)

Sety() = Y/~ w; (). Using the inequality

n—1 1 n—1 2
2
we get
y'(t) + n—ilyz(t) + Ric(y'(1),y'()) <0, forallz € R. (1.6)

Therefore by Lemma 1.3 we haye < 0 and thaty = 0 if and only if y(z) = 0 and

Ric(y' (1), y'(1)) =0.
From (1.5) we have

n—1

Y + Y wi) + Ric(y' (1), y'(t)) = 0. (1.7)

i=1

Sincey'(r) = 0 and Ri¢y'(), y'(t)) = 0, we have from (1.7) that;(r) = 0 for all i =
1,---,n— 1. Using (1.5) again we conclude thiit(r) = 0, henceX (v, y' (o)) = 0. Theorem A
is proved. O

To prove Theorem B we use the same idea and the following lemma.

LemMma 1.4. The following boundary value problem

")+ K@) f@)=0
f'0 =0, f(b)=0

(1.8)

has no positive solution on [0, b), if 0 < b < Rg and RICT™"(x) > K (p(x)), for anyx € M.

SKETCH OF THE PrROOF OF THEOREM C. Take a sequencg, as above. Assume by contradiction
thats,r2 > n, for some constant > 0. Set¢; = r,/10. Lete > 0 be a constant such that

sine n
< —.
coge 200

Lett, = F,(qx), whereF,(x) := lim,_. . (t —d(x, S,)), wheres, is the boundary of the balt, (1).
We can prove that there exists a pajpte dC,,, such thatd(gx, gx) = €. Let, be a minimal
geodesic joiningy, andg,. Consider a minimal connectian betweent;(s) andaC,,), for
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s € [0, &]. Seto(s) = £(t/(s),0,(0)) andep(s) = d(tk(s), 0C(,+s))- It is not difficult to obtain
thatrk([o, Ek]) C C,,. After a series of lemmas we show that
drs
@ (t) < 9(0) — £, COSH(0) — - €.
For sufficiently largek, we haver /2 < 0(0) < m/2+¢,andr/2 <7 —0(€) < /24 €. SOwe
obtaini > min{sir?6(0), sin’ #(¢;)} > co< ¢, because of the monotonicity of the functiee).
We obtain also that cosf(0) < — cogw/2 + &) = sine. Thus we conclude that

_ £3(cog )8,
b = o) < b + e sine — —————.

Replacingé, by its value we conclude that

sine _ €25
> X >
cofe — 200

2
which contradicts to the choice efand proves Theorem C. a

SKETCH OF THE PROOF OF THEOREM D. We can reduce again the estimate of Hessian of the distance
function to estimate of solutions of Ricatti equations. O

SKETCH OF THE PrROOF OF THEOREM E. For any nonzero elemefi] € 71(M), there is a repre-
sentative loog with basep € S. We can find a curvé in M such that both initial poing, and
end pointéy in 771(p). If & = & there is nothing to prove. B; # & then there exists a cunie
in 7~1(S) connecting, andé; which is homotopic t&. Sox o ¥ is a loop inS and[x o 7] = [7].
This proves our conclusion. O
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