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ABSTRACT

By using the nodal domains of some natural function arising in the study of hypersurfaces with

constant mean curvature we obtain some Bernstein-type theorems.
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0. INTRODUCTION

The Bernstein theorem on minimal surfacesx : M2 → R3 in the Euclidean spaceR3 states that if

x(M2) is a graph over a planeP of R3 which is defined for all points ofP thenM2 is itself a plane.

This beautiful result has been the basis of a large number of investigations on minimal surfaces.

Among its generalizations is a theorem proved independently by (do Carmo & Peng 1979) and

(Fischer-Colbrie & Schoen 1980) which states that ifM2 is complete and stable then it is a plane.

A generalization of this theorem for higher dimensions was obtained by (do Carmo-Peng 1980)

as follows:

Theorem A. Let x : Mn → Rn+1 be a minimal hypersurface. Assume thatMn is stable, complete

and that

lim
R→+∞

∫
B(R)

‖A‖2dM

R2+2q
= 0, q <

√
2/n.

Then Mn is a hyperplane in Rn+1.

Here‖A‖ is the second fundamental form andB(R) is a geodesic ball of radius ballR centered

at some fixed point inM.
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Theorem A has been recently extended to hypersurfaces with constant mean curvature. A

crucial point is to replaceA by the traceless second fundamental formφ = −A+HI ; hereH is

the mean curvature ofx : Mn → Rn+1. The precise statement is as follows:

Theorem B. (Alencar & do Carmo 1994a).Let x : M → Rn+1, n ≤ 5 be a complete noncompact

hypersurface with constant mean curvature H . Assume that M is strongly stable (see definition in

Section 1), and that

lim
R→+∞

∫
B(R)

‖φ‖2dM

R2+2q
= 0, q <

1

6n+ 1
. (0.1)

Then M is a hyperplane in Rn+1.

In the present paper, we extend Theorem B in two directions. First we relax the growth con-

dition onP(R) = ∫
B(R)

|φ|2dM and extend Theorem B to this weaker condition. More precisely,

we prove

Theorem 1. Let Mn be a strongly stable complete noncompact hypersurface of Rn+1 (n ≤ 5)

with constant mean curvature H . If P(r) ≤ CeαHr , for some positive constants C, and α, where

α depends on n given in the proof, then M is a hyperplane.

Next we improve the dimension condition fromn ≤ 5 ton ≤ 6 and prove

Theorem 2. Let M be a strongly stable complete noncompact hypersurface of Rn+1 (n ≤ 6) with

constant mean curvature H . Assume that

lim
R→+∞

∫
B(R)

‖φ‖2dM

R2−2/n
= 0.

Then M is a hyperplane.

Theorem 1 is the main theorem of this paper and goes a long way towards getting rid of condition

(0.1) in Theorem B. For its proof we need an auxiliary proposition that might be interesting by

itself and states that the function|φ| on a hypersurfaceMn with constant mean curvature inRn+1

has no bounded nodal domain.

1. NOTATIONS AND PRELIMINARIES

Let Mn be a complete noncompact hypersurface inRn+1. Fix p ∈ M and choose a local unit

normal fieldN . Define a linear mapA: TpM → TpM by

〈AX, Y 〉 = 〈∇̄XY,N〉

whereX, Y are the tangent vector fields and∇̄ is the standard connection onRn+1. The mapA can be

diagonalized, i.e., there exists a tangent basis{e1, e2, · · · , en} such thatAei = kiei, i = 1,2, · · · , n.
We then define the mean curvatureH := 1

n

∑n
i=1 ki and the square of the second fundamental form

|A|2 := ∑n
i=1 k

2
i . It is well known that the above objects are independent of the choices made.
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If M is minimal(H = 0), we sayM is stable if for all piecewise smooth functionsf : M → R

with compact support, we have that∫
M

|∇f |2dM ≥
∫
M

|A|2f 2dM; (1.1)

here∇f is the gradient off in the induced metric.

The notion of stability has been extended to hypersurfaces with constant mean curvature as

follows: M is said to be strongly stable if (1.1) holds for all piecewise smooth functionsf : M → R

with compact support.M is said to be weakly stable if (1.1) holds for all piecewise smooth functions

f : M → R with compact support and
∫
M
f = 0.

Let x : Mn → M
n+1

be an isometric immersion of a complete, noncompact Riemanniann-

dimensional manifoldMn into an oriented, complete, Riemannian(n+ 1)-dimensional manifold,

N a smooth unit normal field alongM, andRic(N) the value of the Ricci curvature ofM
n+1

in

the vectorN . HereRic(N) = ∑n
i=1K(ei ∧ N) (this is different from the normalized one). The

Morse index indM of M is defined as follows. LetL be the second order differential operator on

M given by

L = !+ |A|2 + Ric(N). (1.2)

Associated toL is the quadratic form

I (f ) = −
∫
M

fLf dM, (1.3)

defined on the vector space of functionsf onM that have support on a compact domainK ⊂ M.

For each suchK, define the index indL K ofL inK as the maximal dimension of a subspace where

I is negative definite. The index indM of L in M is the number defined by

indM = sup
K⊂M

indL K (1.4)

where the supremum is taken over all compact domainsK ⊂ M. It is well known that ind(M) ≤ 1,

if M is weakly stable(see, for example, (Fischer-Colbrie 1985)).

In what follows we always assume thatM is a hypersurface inRn+1 with constant mean

curvatureH . To study the hypersufaces with constant mean curvature, it is convenient to modify

slightly the second fundamental form and to introduce a new linear mapφ : TpM → TpM by

〈φX, Y 〉 = −〈AX, Y 〉 +H 〈X, Y 〉.
φ can also be diagonalized as:

φei = µiei.

It is easily checked that trφ = 0, and

|φ|2 :=
n∑
i=1

µ2
i = 1

2n

∑
i,j

(ki − kj )
2.
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Thus|φ|2 measures how farM is from being totally umbilic. For the rest of this section we follow

(Alencar & do Carmo 1994a). Choosing an orthonormal principal frame{ei}, we can write

1

2
!|φ|2 =

∑
i,j,l

φ2
ij l +

∑
i

µi(trφ)ii + 1

2

∑
i,j

Rijij (µi − µj)
2,

whereφijl are components of the covariant derivative of the tensorφ, andRijij is the sectional

curvature of the plane{ei, ej }. By Gauss formula, we conclude that

1

2

∑
i,j

Rijij (µi − µj)
2 =1

2

∑
i,j

µiµj (µi − µj)
2

− H

2

∑
i,j

(µi + µj)(µi − µj)
2 + H 2

2

∑
i,j

(µi − µj)
2.

Since
∑
µi = 0, it is easy to check that:

∑
i,j

(µi − µj)
2 = 2n|φ|2,

∑
i,j

(µi + µj)(µi − µj)
2 = 2n

∑
i

µ3
i ,

∑
i,j

µiµj (µi − µj)
2 = −2|φ|4.

From the above, it follows that

1

2
!|φ|2 = |φ|!|φ| + |∇|φ||2 =

∑
i,j,l

φ2
ij l − |φ|4 − nH

∑
i

µ3
i + nH 2|φ|2.

In this case it follows by (do Carmo & Peng 1980 (2.3), (2.4)) that

∑
i,j,l

φ2
ij l ≥ 2

n
|∇|φ||2 + |∇|φ||2.

By using a lemma of Okumura (see (Alencar & do Carmo 1994b) for a proof), we have

∑
i

µ3
i ≤ n− 2√

n(n− 1)
|φ|3.

So we have finally

|φ|!|φ| + |φ|4 + n(n− 2)√
n(n− 1)

H |φ|3 − nH 2|φ|2 ≥ 2

n
|∇|φ||2. (1.5)
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2. A RESULT ON NODAL DOMAINS

In this section we prove a result on the nodal domains of|φ| which will be needed in our proof of

main theorems. We first need to recall the definition of nodal domains.

Definition. An open domainD is called the nodal domain of functionf if f (x) �= 0 forx ∈ intD

and vanishes on the boundary of∂D. We denote byN(f ) the number of disjointbounded nodal

domains off .

Now we have the following lemma which follows directly from Proposition 2.2 below. We

are indebted to the referee who provided its proof and corrected a mistake in our original version.

Lemma 2.1. Let M be a hypersurface in Rn+1 with constant mean curvature H . Then

N(|φ|) = 0. (2.1)

Proof. Let ϕ(u) = u2 + n(n−2)√
n(n−1)

Hu− nH 2. Then from (1.5), with|φ| = u, and Proposition 2.2

below the lemma follows. �

Proposition 2.2. Let (M, g) be Riemannian manifold and u ≥ 0 be a continuous function

satisfying the following inequality of Simons’ type in the distribution sense

u2ϕ(u) ≥ a|∇u|2g − u!gu (2.2)

where a > 0 is a constant and ϕ is a continuous function on R.

Then u has no relatively compact nodal domain.

Proof. Suppose thatu admits a relatively compact nodal domainD. Write q := ϕ(u) and

v := logu onD. Thus (2.2) can be written as

q ≥ a|∇v|2g −!gv − |∇v|2g.

Then for any Lipschitz functionf with support inD and vanishing at∂D, we have
∫
D

(|∇f |2 − qf 2) ≤ −a
∫
D

f 2|∇v|2 +
∫
D

|∇f − f∇v|2.

Let f = wu, for some functionw to be determined. We obtain
∫
D

(|∇f |2 − qf 2) ≤ −a
∫
D

w2|∇u|2 +
∫
D

u2|∇w|2.

For allb such thatU/2 ≤ b ≤ U , whereU := supD u, we set

wb(x) =


b if u(x) ≤ b,

u(x), if u(x) > b.
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DenoteD+ (resp. D−) the set of points inD with u(x) ≥ b (resp. u(x) ≤ b). A simple

calculation leads to
∫
D

(|∇f |2 − qf 2) ≤
∫
D+
u2|∇u|2 − aU2

4

∫
D

|∇u|2.

Whenb goes toU , the first term of right hand side tends to 0 (because|∇u|2 is integrable),

while the second term is fixed. It follows that
∫
D
(|∇f |2 − qf 2) < 0 for all functionsf = wbu,

whenb is close toU . These functionswb form an infinite dimensional vector which leads to a

contradiction to the fact thatD is relatively compact andq is continuous. �

3. BERNSTEIN-TYPE THEOREMS

Before proving our main theorem, we need an auxiliary proposition. Set

P(r) =
∫
B(r)

|φ|2dv.

Proposition 3.1. Let M be a complete noncompact hypersurface of Rn+1 (n ≤ 5) with constant

mean curvatureH (H �= 0) and finite index. Assume thatP(r) ≤ CeαHr for some positive constants

C, and α, where α is a constant that can expressed explicitly in terms of n. Then
∫
M

|φ|2 < +∞.

Our Theorem 1 is a corollary of the above proposition. It is a combination of the proposition

and theorems in (Alencar & do Carmo 1994a) and (do Carmo & Peng 1980). Before proving

Proposition 3.1 we give the proof of Theorem 1.

Proof of Theorem 1. To prove the conclusion of Theorem 1 we only need to show thatH = 0

by Theorem A. OtherwiseH �= 0, and by Proposition 3.1 we know that
∫
M

|φ|2 < +∞. This is

impossible by Theorem B. Thus the proof is complete. �

We now prove the proposition:

Proof of Proposition 3.1. Introducef |φ|q+1 in the stability inequality (1.1). It has been shown

in (Alencar & do Carmo 1994a) that for allε > 0,
∫
M

f 2|φ|2+2q[A|φ|2 − B|φ| + C] ≤ D

∫
M

|φ|2q+2|∇f |2, (3.1)

where

A = 1 − (1 + q + ε)(
2

n
+ q)−1q,

B = (1 + q + ε)(
2

n
+ q)−1(1 + q)

n(n− 2)√
n(n− 1)

H,

C =
(

1 + (1 + q + ε)(
2

n
+ q)−1(2 + q)

)
nH 2,

D = (1 + q + ε)(
2

n
+ q)−1 + 1 + 1 + q

ε
.
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If M has finite index then it is stable outside some ballB(R). In (3.1), we chooseq = 0; then

A = 1 and

B = (1 + ε)
n

2

n(n− 2)√
n(n− 1)

H,

C = [1 + n(1 + ε)] nH 2,

D = n(1 + ε)

2
+ 1 + 1

ε
.

So in this case we have

A|φ|2 − B|φ| + C =(|φ| − B

2
)2 + 4C − B2

4

≥4C − B2

4
= − [n2(n− 2)2ε2 + 2n(n3 − 4n2 − 4n+ 8)ε

+ n4 − 4n3 − 12n2 + 16]H 2.

It can be checked that whenn ≤ 5, we can find sufficiently smallε > 0 such that 4C − B2 > 0.

So there exists a constantβ which can expressed in terms ofn such that

H 2
∫
M\B(R)

f 2|φ|2 ≤ β−2
∫
M\B(R)

|φ|2|∇f |2, (3.2)

for any piecewise smooth functionf with compact support inM\B(R). Then

β2H 2 ≤
∫
M\B(R) |φ|2|∇f |2∫
M\B(R) f 2|φ|2 . (3.3)

We claim that we can chooseR large enough such thatP ′(r) > 0 for all r > R. Otherwise we

can find two positive constantsr1 < r2 such that|φ|(x) = 0 whenx ∈ ∂B(ri). ThusB(r2)\B(r1)
contains a nodal domain and this contradicts Lemma 2.1.

Assume for the sake of the contradiction thatP(+∞) = +∞. Then from our oscillation

theorem in (do Carmo & Zhou 1999 Theorem 2.1) we have that for anyλ > α2H2

4 we can findx(t)

which is not identically zero and is an oscillatory solution of

[P ′(t)x ′(t)]′ + λP ′(t)x(t) = 0.

Choosef (x) = x(r(x)) wherer(x) is the distance function to some fixed point inM. We can find

T1 andT2, such thatT2 > T1 > R andx(T1) = x(T2) = 0, x(t) > 0 for all t ∈ (T1, T2). Now

chooseλ = (α
2

4 + δ)H 2, whereδ > 0 is a constant such thatβ2 − δ > 0 and setα < 2
√
β2 − δ.

It follows that

β2H 2 ≤ − ∫ T2

T1
[P ′(r)x ′(r)]′x(r)dr∫ T2

T1
P ′(r)x2(r)dr

= λ < β2H 2.

This is a contradiction which shows our conclusion.
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We now give the proof of Theorem 2:

Proof of Theorem 2. We can assume thatH �= 0; otherwise from (do Carmo & Peng 1980) the

theorem holds. Notice that in (3.1)

B2 − 4AC = nH 2

(n− 1)(2 + nq)2
{n4q4 + 2n4(ε + 2)q3

+ n2(n2ε2 + 6n2ε + 6n2 − 16n+ 16)q2

+ 2n[n3ε2 + (3n2 − 8n+ 8)nε + 2(n3 − 4n2 − 4n+ 8)]q
+ [n2(n− 2)2ε2 + 2n(n3 − 4n2 − 4n+ 8)ε + n4 − 4n3 − 12n2 + 16]}.

(3.4)

Consider the terms withoutε in the large bracket:

g(n, q) :=n4q4 + 4n4q3 + n2(6n2 − 16n+ 16)q2

+ 4n(n3 − 4n2 − 4n+ 8)q + n4 − 4n3 − 12n2 + 16.
(3.5)

Then, by choosingq = − 1
n
,

g(n,−1

n
) = 1 − 4n+ 6n2 − 16n+ 16− 4n3 + 16n2

+ 16n− 32+ n4 − 4n3 − 12n2 + 16

= n4 − 8n3 + 10n2 − 4n+ 1

= (n− 1)(n3 − 7n2 + 3n− 1).

(3.6)

It is easy to see thatg(n,− 1
n
) < 0 whenn ≤ 6. Thus we can always chooseε sufficient small such

thatB2 −4AC < 0. Notice that our choice ofq = − 1
n

makesA > 0. By usingYoung’s inequality

in (3.1)

∫
M

f 2|φ|2+2q[A|φ|2 − B|φ| + C] ≤ δ

∫
M

|φ|2q+4f 2 + β1

∫
M

|φ|2|∇f |2(1+q)

f 2q
, (3.7)

whereβ1 > 0 is a constant (depending onn, ε, andq) andδ > 0 can be chosen arbitrarily small.

Now setĀ = A− δ and chooseδ small enough so thatB2 − 4ĀC > 0 andĀ > 0. It follows from

(3.7) that ∫
M

f 2|φ|2+2q ≤ β2

∫
M

|φ|2|∇f |2(1+q)

f 2q
.

Writing f = h1+q , we have

∫
M

f 2+2q |φ|2+2q ≤ β3

∫
M

|φ|2|∇f |2+2q .

whereβ3 is a constant depending only onn, ε. The rest of the proof follows exactly as in (do

Carmo & Peng 1980), and we find thatH = 0, a contradiction.
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4. SOME FURTHER RESULTS

In this section we want to give some further related results. Using the eigenvalue estimate in (do

Carmo & Zhou 1999) we can get an index estimate for hypersurfaces with nonzero constant mean

curvature.

Defineα(M) := lim supr→+∞
logV (r)

r
whereV (r) is the volume of geodesic ballB(r). It is

easy to see thatα(M) = 0 if M has polynomial volume growth.

Theorem 4.1. If M is complete noncompact hypersurface in Rn+1 with nonzero constant mean

curvature H and α(M) < 2
√
nH , then ind(M) = +∞.

In order to prove this Theorem we need to use the eigenvalue estimate theorem proved by the

authors in (do Carmo & Zhou 1999) which is now restated as follows.

Theorem. LetM be a complete noncompact Riemannian manifold with infinite volume and 7 be

an arbitrary compact subset of M . Then

λ1(M\7) ≤ α2

4
.

Proof of Theorem 4.1. It suffices to prove that for any natural numberN we can find piecewise

smooth functionsf1, f2, · · · , fN with compact supports such that supp(fi) are disjoint andI (fi) <

0.

Note that from (Frensel, 1996) the volume ofM is infinite, so from the Theorem we have:

λ1(M\7) ≤ α2

4
< nH 2, (4.1)

for any compact set7 inM. So we can find a compact domainD1 such thatλ1(D1) ≤ α2

4 < nH 2.

We also haveλ1(M\D1) ≤ α2

4 < nH 2. So we can find again a compact domainD2 ⊂ M\D1 such

thatλ1(D2) ≤ α2

4 < nH 2. andλ1(M\(D1 ∪D2)) ≤ α2

4 < nH 2. Repeating this procedure, we can

find disjoint compact domainsD1,D2, · · · ,DN , such thatλ1(Di) < nH 2.

Let ϕi be the positive first eigenfunction of!M onDi , i.e.:!ϕi = λi(Di)ϕi inDi andϕi = 0

on ∂Di . We now definefi(x) := ϕi(x) for x ∈ Di andfi(x) ≡ 0 for x ∈ M\Di . So

∫
M

|∇fi |2 = λ1(Di)

∫
M

f 2
i < nH 2

∫
M

f 2
i ≤

∫
M

|A|2f 2
i . (4.2)

ThusI (fi, fi) < 0 for i = 1,2, · · · , N . This shows that ind(M) ≥ N , for anyN . So ind(M) =
+∞.

The following is an easy consequence of Theorem 4.1.

Corollary4.2. IfM is complete noncompact hypersurface with nonzero constant mean curvature

H and polynomial volume growth, then ind(M) = +∞. In particular, ind(M) = +∞, when

M = Sk × Rn−k with the standard metric; here Sk is a k-dimensional sphere in Rk+1.
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