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ABSTRACT
By using the nodal domains of some natural function arising in the study of hypersurfaces with
constant mean curvature we obtain some Bernstein-type theorems.
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0. INTRODUCTION

The Bernstein theorem on minimal surfages M2 — R? in the Euclidean spack?® states that if
x(M?) is a graph over a plang of R® which is defined for all points oP thenM? is itself a plane.

This beautiful result has been the basis of a large number of investigations on minimal surfaces.
Among its generalizations is a theorem proved independently by (do Carmo & Peng 1979) and
(Fischer-Colbrie & Schoen 1980) which states that’# is complete and stable then it is a plane.

A generalization of this theorem for higher dimensions was obtained by (do Carmo-Peng 1980)
as follows:

THEOREM A. Let x : M" — R™*1 beaminimal hypersurface. Assumethat M” is stable, complete
and that )
Jsir 1ANI2dM

N e

Then M" isa hyperplanein R"+1.

Here| A|l is the second fundamental form aBdR) is a geodesic ball of radius batlcentered
at some fixed point i/
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Theorem A has been recently extended to hypersurfaces with constant mean curvature. A
crucial point is to replacd by the traceless second fundamental farm- —A + HI; hereH is
the mean curvature of : M” — R™*1. The precise statement is as follows:

Tueorem B. (Alencar & do Carmo 1994a).et x : M — R"™!, n < 5bea complete noncompact
hypersurface with constant mean curvature H. Assume that M is strongly stable (see definitionin
Section 1), and that

Joiy I012AM 1

lim , .
1~ 611

R—+00 R2+2q

(0.1)

Then M isa hyperplanein R"*1.

In the present paper, we extend Theorem B in two directions. First we relax the growth con-
ditononP(R) = fB(R) |¢|2d M and extend Theorem B to this weaker condition. More precisely,
we prove

THEOREM 1. Let M” be a strongly stable complete noncompact hypersurface of R"** (n < 5)
with constant mean curvature H. If P(r) < Ce*!", for some positive constants C, and «, where
o depends on » given in the proof, then M is a hyperplane.

Next we improve the dimension condition from< 5ton < 6 and prove

THEOREM 2. Let M be a strongly stable complete noncompact hypersurface of R"** (n < 6) with
constant mean curvature H. Assume that

I P L L
R 400 R2-2/n -

Then M is a hyperplane.

Theorem 1isthe maintheorem of this paper and goes along way towards getting rid of condition
(0.1) in Theorem B. For its proof we need an auxiliary proposition that might be interesting by
itself and states that the functigy| on a hypersurfacés” with constant mean curvature gr+*
has no bounded nodal domain.

1. NOTATIONSAND PRELIMINARIES
Let M" be a complete noncompact hypersurfacerit®. Fix p € M and choose a local unit
normal fieldN. Define a linear mag: T,M — T,M by

(AX,Y) = (VxY, N)

whereX, Y are the tangent vector fields a¥ds the standard connection &i*1. The mapA can be
diagonalized, i.e., there exists atangent basisy, - - - , ¢,} suchthatde; = kie;, i =1,2,--- , n.

We then define the mean curvatiie.= }l Y '_, k; and the square of the second fundamental form
|A|2:= Y""_, k2. It is well known that the above objects are independent of the choices made.
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If M is minimal(H# = 0), we sayM is stable if for all piecewise smooth functiofis M — R
with compact support, we have that

/ IV f12aM > f AP f2d M (1.1)
M M

hereV f is the gradient off in the induced metric.

The notion of stability has been extended to hypersurfaces with constant mean curvature as
follows: M is said to be strongly stable if (1.1) holds for all piecewise smooth funcifion®& — R
with compact supportM is said to be weakly stable if (1.1) holds for all piecewise smooth functions
f M — R with compact support anfl, f = 0.

Letx : M" — M""" be an isometric immersion of a complete, noncompact Riemamnian
dimensional manifold™ into an oriented, complete, Riemanni@ 1)-dimensional manifold,
N a smooth unit normal field alond, andRic(N) the value of the Ricci curvature at" ™ in
the vectorN. HereRic(N) = Y '_, K(e; A N) (this is different from the normalized one). The
Morse index indW of M is defined as follows. LeL be the second order differential operator on
M given by

L = A +|A?> + Ric(N). (1.2)

Associated td. is the quadratic form

1) = - /M FLfdM, (1.3)

defined on the vector space of functiofi®n M that have support on a compact dom&inc M.
For each suclk, define the indexindK of L in K as the maximal dimension of a subspace where
I is negative definite. The index il of L in M is the number defined by
indM = supind, K (1.4)
KcMm

where the supremum is taken over all compact dom&irs M. Itis well known thatindM) < 1,
if M is weakly stable(see, for example, (Fischer-Colbrie 1985)).

In what follows we always assume thaf is a hypersurface iR"*! with constant mean
curvatureH. To study the hypersufaces with constant mean curvature, it is convenient to modify
slightly the second fundamental form and to introduce a new lineargmaf, M — T,M by

(X, Y)=—(AX,Y)+ H(X,Y).

¢ can also be diagonalized as:
pe; = uie;.
It is easily checked that ¢ = 0, and
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Thus|¢|?> measures how fa¥/ is from being totally umbilic. For the rest of this section we follow
(Alencar & do Carmo 1994a). Choosing an orthonormal principal fréarjewe can write

—A|¢| = Z¢,]1+Z,uz(tr¢)u ZRijij(,ui — )
i,jl i,j

whereg;;; are components of the covariant derivative of the tegsaand R;;;; is the sectional
curvature of the plang;, ¢;}. By Gauss formula, we conclude that

1 1
> Z Rijij (i — wj)? =5 ZMiMj(Mi — 1j)?
i,j i,J
H ,  H? »
- ij(m )= i) S Y = i)
1, L]

Since)_ u; = 0, itis easy to check that:
D (i — pp)? = 2nlgl%,

iJ

Z(ul + ) (i — p))? = ZnZMZ,

iJ

D i — up)? = —2lgl*.

i,J

From the above, it follows that

1
SAIBE = I$1AIg] + VIOl = 3 ¢ —161* —nH Y _ i +nHgI.

ij.l

In this case it follows by (do Carmo & Peng 1980 (2.3), (2.4)) that

2
D95 = SIVIBIE+IVIgl2

iJ.l

By using a lemma of Okumura (see (Alencar & do Carmo 1994b) for a proof), we have

-2 3
§:u,_ n(n_ )|¢|.
So we have finally
9| Alg] + |¢]* L2 H|g|® - H2|¢|ZzE|V|¢||2. (1.5)
Jnn —1) n
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2. ARESULT ON NODAL DOMAINS

In this section we prove a result on the nodal domaingpivhich will be needed in our proof of
main theorems. We first need to recall the definition of hodal domains.

DerINITION. An open domairD is called the nodal domain of functighif f(x) # Oforx € int D
and vanishes on the boundaryadd. We denote by ( f) the number of disjoinbounded nodal
domains off.

Now we have the following lemma which follows directly from Proposition 2.2 below. We
are indebted to the referee who provided its proof and corrected a mistake in our original version.

LemMA 2.1. Let M be a hypersurfacein R” with constant mean curvature H. Then

N(l¢]) = 0. (2.1)

PrOOF. Leto(u) = u? + %Hu nH2. Then from (1.5), witH¢| = «, and Proposition 2.2

below the lemma follows. O

ProposITION 2.2. Let (M, g) be Riemannian manifold and « > 0 be a continuous function
satisfying the following inequality of Smons' type in the distribution sense

wlou) > aqul? —ulgu (2.2)

wherea > 0isa constant and ¢ isa continuous function on R.
Then u has no relatively compact nodal domain.

ProoF. Suppose that admits a relatively compact nodal domain Write ¢ := ¢(u) and
=logu on D. Thus (2.2) can be written as

q = alVvlZ — Agv — |Vol2.
Then for any Lipschitz functiorf with support inD and vanishing a@ D, we have
/<|Vf|2—qf2> < —a/ f2|Vv|2+f Vf — FVoL

D D D

Let f = wu, for some functiorw to be determined. We obtain
/ (VFP—qf?) < —a/ w|Vul? +/ W2Vl
D D D

For allb such thatV/2 < b < U, whereU := sup, u, we set

b if u(x) <o,
u(x), if u(x)>b.

wp(x) =
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DenoteD, (resp. D_) the set of points inD with u(x) > b (resp. u(x) < b). A simple

calculation leads to
UZ
/<|Vf|2—qf2>s/ u2|W|2—“—f Vul2.
D D 4 Jp

Whenb goes toU, the first term of right hand side tends to 0 (becali&e|? is integrable),
while the second term is fixed. It follows th#t (|V f12 — ¢f?) < O for all functionsf = wpu,
whenb is close toU. These functionsv, form an infinite dimensional vector which leads to a
contradiction to the fact thdp is relatively compact and is continuous. O

3. BERNSTEIN-TYPE THEOREMS

Before proving our main theorem, we need an auxiliary proposition. Set

P(r) = / p|dv.
B(r)

ProposITION 3.1. Let M be a complete noncompact hypersurface of R"+1 (n < 5) with constant
mean curvature H(H # 0) andfiniteindex. Assumethat P (r) < Ce*H" for somepositive constants
C, and o, where o is a constant that can expressed explicitly in terms of n. Then [, ||% < +o0.

Our Theorem 1 is a corollary of the above proposition. Itis a combination of the proposition
and theorems in (Alencar & do Carmo 1994a) and (do Carmo & Peng 1980). Before proving
Proposition 3.1 we give the proof of Theorem 1.

Proor oF THEOREM 1. To prove the conclusion of Theorem 1 we only need to show#hat O
by Theorem A. Otherwis&/ # 0, and by Proposition 3.1 we know thAt |$|?> < +o00. Thisis
impossible by Theorem B. Thus the proof is complete. O

We now prove the proposition:

PrOOF OF ProPosITION 3.1. Introducef |¢|?+! in the stability inequality (1.1). It has been shown
in (Alencar & do Carmo 1994a) that for all> 0,

f 2912 [ Alp|? — Blg| + C1 < D/ |p|24+2|V £ 2, (3.1)
M M
where 2

~Q+q+ea+ 9 g,

nn—2)
14+q+ + Y1+ —H,

C= (1+ 1+g+eo(= +q)‘1(2+q)) nH?,
(1+q+e)( N Rt o +q
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If M has finite index then it is stable outside some BIR). In (3.1), we choosg = 0; then
A =1and

B=1teol =2 y
- 2Yn(n—1)
C=[1+n1+e)]nH?
D=”(1+€)+1+}.
2 €
So in this case we have
2 B, 4C-B?
Alp| —B|¢>|+C=(I¢|—§) +T
4C — B?
>___
- 4

= — [n%(n — 2)%€* + 2n(n® — 4n? — 4n + 8)¢
+n* — 4n® — 120 4+ 16]H?.

It can be checked that when< 5, we can find sufficiently smadl > 0 such that & — B? > 0.
So there exists a constafitwhich can expressed in termsmobuch that

H? f fAel? < g2 1612V £, (3.2)
M\B(R)

M\B(R)
for any piecewise smooth functighwith compact support inf\ B(R). Then

_ Jnsn 19PIVFP
= i 1191

We claim that we can choogelarge enough such th&(r) > 0forall» > R. Otherwise we
can find two positive constants < r, such thatg|(x) = 0 whenx € 9 B(r;). ThusB(r2)\B(r1)
contains a nodal domain and this contradicts Lemma 2.1.

Assume for the sake of the contradiction that+-o00) = +oo. Then from our oscillation
theorem in (do Carmo & Zhou 1999 Theorem 2.1) we have that foﬁaﬂy# we can findx (¢)
which is not identically zero and is an oscillatory solution of

B2H? (3.3

[P'()x' ()] + AP (t)x(t) = 0.

Choosef (x) = x(r(x)) wherer (x) is the distance function to some fixed pointih We can find
T1 andT», such thatl, > 71 > R andx(Ty) = x(T») = 0,x(¢) > Oforallr € (T1, T>). Now
chooser = (0‘72 + 8)H?, wheres > 0 is a constant such tha? — § > 0 and setr < 2,/82 — §.

It follows that ,
g2p? < - 7 [P'(1)x' (n]'x(r)dr _ < g2
T [ Prx3(rdr '

This is a contradiction which shows our conclusion.
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We now give the proof of Theorem 2:

Proor oF THEOREM 2. We can assume that # 0; otherwise from (do Carmo & Peng 1980) the
theorem holds. Notice thatin (3.1)

nH?
B? —4AC = " _DeT nq)z{n4q4 + 2n*(e + 2)¢3
+ n?(n?e? + 6n’e + 6n? — 16n + 16)g> (3.4)

+ 2n[n3e? 4+ (3n? — 8n + 8)ne + 2(n® — 4n? — 4n + 8)\g
+ [n%(n — 2)%€% + 2n(n® — 4n? — 4n + 8)e + n* — 4n® — 12:% + 16]}.

Consider the terms withoutin the large bracket:

g(n, q) :==nq* + dn'q® + n®(6n* — 16n + 16)¢>

+4n(n® — M® —4n + 8)g + n* — 4n® — 120% + 16. (3:5)
Then, by choosing = —1,
g(n, —%) =1—4n+6n?— 161+ 16— 4n® + 1642
+ 1610 — 324 n* — 4n® — 12¢° + 16 (3.6)

=n*—8n*+1m’—4n+1
=n—1Dn—Tn?+3n-1).

Itis easy to see that(n, —%) < 0whenn < 6. Thus we can always choossufficient small such

that B> — 4AC < 0. Notice that our choice of = —% makesA > 0. By using Young's inequality

in (3.1)

| 2|V f 240
f2 ’

whereB; > 0 is a constant (depending ane, andg) ands > 0 can be chosen arbitrarily small.

Now setA = A — § and choosé small enough so tha&t?> —4AC > 0 andA > 0. It follows from
(3.7) that

ff2|¢I2+2"[AI¢>|2—BI¢>I+C]55/ p12H f2 + By 3.7)
M M M

|12V f |24+

/Mf2|¢|2+245ﬂ2 ; 77

Writing f = h'*9, we have

/f2+2‘f|¢|2+2‘15ﬂ3/ lpI2|V 17+
M M

where B3 is a constant depending only ane. The rest of the proof follows exactly as in (do
Carmo & Peng 1980), and we find th&t= 0, a contradiction.
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4. SOME FURTHER RESULTS

In this section we want to give some further related results. Using the eigenvalue estimate in (do
Carmo & Zhou 1999) we can get an index estimate for hypersurfaces with nonzero constant mean
curvature.

Definea(M) := limsup._, '09’# whereV (r) is the volume of geodesic bali(r). Itis
easy to see that(M) = 0 if M has polynomial volume growth.

THEOREM 4.1. If M is complete noncompact hypersurface in R"+* with nonzero constant mean
curvature H and a(M) < 2/nH, thenind(M) = +oc.

In order to prove this Theorem we need to use the eigenvalue estimate theorem proved by the
authors in (do Carmo & Zhou 1999) which is now restated as follows.

THEOREM. Let M be a complete noncompact Riemannian manifold with infinite volume and 2 be
an arbitrary compact subset of M. Then

062

AM(M\Q) < 7z
Proor oF THEOREM 4.1. It suffices to prove that for any natural numbewe can find piecewise

smooth functiondi, f», - - -, fy with compact supports such that sygp are disjointand (f;) <
0.
Note that from (Frensel, 1996) the volumehfis infinite, so from the Theorem we have:

2
M(M\Q) < “Z < nH2, (4.1)

for any compact se® in M. So we can find a compact domdin such that.,(D;) < "‘742 <nH?.
We also have.;(M\ D;) < % < nH?. So we can find again a compact domain Cc M\ D; such
thati(D,) < “742 < nH? andiy(M\(D1 U Dy)) < “742 < nH?. Repeating this procedure, we can
find disjoint compact domain®., Do, - - -, Dy, such thak1(D;) < nH?.

Let ¢; be the positive first eigenfunction af, on D;, i.e.: Ag; = A;(D;)g; in D; andg; =0

ondD;. We now definef; (x) := ¢;(x) forx € D; and f;(x) = 0 forx € M\ D;. So

/M|Vﬁ|2=k1(D,~)/Mfi2<nH2/Mfi2§/M|A|2fi2. (4.2)

ThusI(f;, f;) <Ofori =1,2,---, N. This shows that ind/) > N, foranyN. So indM) =
+00.
The following is an easy consequence of Theorem 4.1.

CoRrOLLARY 4.2. If M iscomplete noncompact hyper surface with nonzero constant mean curvature
H and polynomial volume growth, then ind(M) = +o0. In particular, ind(M) = o0, when
M = S* x R"* with the standard metric; here S* isa k-dimensional spherein R**,
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