On The Existence of Levi Foliations

RENATA N. OSTWALD

Instituto de Matemática Pura e Aplicada – IMPA, Est. Dona Castorina 110 22460-320 Rio de Janeiro, Brasil

Manuscript received on September 20, 2000; accepted for publication on December 6, 2000; presented by César Camacho

ABSTRACT

Let $L \subset \mathbb{C}^2$ be a real 3 dimensional analytic variety. For each regular point $p \in L$ there exists a unique complex line l_p on the space tangent to L at p. When the field of complex line

$$p \mapsto l_p$$

is completely integrable, we say that L is Levi variety. More generally; let $L \subset M$ be a real subvariety in an holomorphic complex variety M. If there exists a real 2 dimensional integrable distribution on L which is invariant by the holomorphic structure J induced by M, we say that L is a Levi variety. We shall prove:

Theorem. Let \mathcal{L} be a Levi foliation and let \mathcal{F} be the induced holomorphic foliation. Then, \mathcal{F} admits a Liouvillian first integral.

In other words, if \mathcal{L} is a 3 dimensional analytic foliation such that the induced complex distribution defines an holomorphic foliation \mathcal{F} ; that is, if \mathcal{L} is a Levi foliation; then \mathcal{F} admits a Liouvillian first integral—a function which can be constructed by the composition of rational functions, exponentiation, integration, and algebraic functions (Singer 1992). For example, if f is an holomorphic function and if θ is real a 1-form on \mathbb{R}^2 ; then the pull-back of θ by f defines a Levi foliation $\mathcal{L}: f^*\theta = 0$ which is tangent to the holomorphic foliation $\mathcal{F}: df = 0$.

This problem was proposed by D. Cerveau in a meeting (see Fernandez 1997).

Key words: Levi foliations, holomorphic foliations, singularities, Levi varieties.

ANNOUNCEMENT

Let \mathcal{L} be a Levi foliation and let \mathcal{F} be the holomorphic foliation tangent to \mathcal{L} . Note that if h in an holomorphic function such that \mathcal{F} is h-invariant ($h^*\mathcal{F} = \mathcal{F}$); then \mathcal{L} is also h-invariant ($h^*\mathcal{L} = \mathcal{L}$). We shall mainly use that property in order to prove

THEOREM. Let \mathcal{L} be a Levi foliation and let \mathcal{F} be the induced holomorphic foliation. Then \mathcal{F} admits a Liouvillian first integral.

E-mail: ostwald@impa.br

We proceed as follows:

We first show that if \mathcal{L} is a Levi foliation, there exists analytic real functions g_1 , g_2 such that: if $G = g_1 + ig_2$, then the Levi foliation is defined by

$$\mathcal{L}: \overline{G}\omega + G\overline{w} = 0.$$

where ω is an holomorphic 1-form so that $\omega = 0$ defines the holomorphic foliation \mathcal{F} tangent to the Levi foliation \mathcal{L} . We then verify that; if \mathcal{F}^* is the holomorphic foliation obtained from \mathcal{F} after a finite number of blow-ups, there exists a Levi foliation \mathcal{L}^* tangent to \mathcal{F}^* . Therefore, by Seidenberg Theorem (Seindenberg 1968), we analyse the foliation \mathcal{F}^* for which all singularities are reduced.

Let D denote the divisor obtained on the process of reducing the singularity and let D_j denote the irreducible curves with normal crossings such that $D = \bigcup D_j$. We consider the induced Levi foliation on sections transversal to the holomorphic foliation through each component D_j of the divisor. We show that the holomorphic diffeomorfisms for which the Levi foliation is invariant must satisfy an equation on one variable of the type

$$h'(z) = t \frac{F(h)}{F}; \quad t \in \mathbb{R}$$
 (*)

We can then find an holomorphic coordinate system y on the section such that

$$F(y) = \frac{y^{k+1}}{1 - \lambda y^k}.$$

We refer to such coordinate system as a normalizable coordinate system. We verify that it is unique up to homographies.

If either $\lambda \neq 0$ or k = 0, then t = 1 for all solutions h of the differential equation (*). Furthermore, if k = 0, then the group of solutions of the differential equation is a linear group. On both cases we have an abelian group for the group of solutions of (*). We can already conclude:

THEOREM A. Let p be a singularity of the foliation

$$\mathcal{F}: \omega = \lambda x dy + y dx + \{ higher order terms \} = 0 \quad \lambda \in \mathbb{R}^* - \mathbb{Q}.$$

Suppose there exists a Levi foliation \mathcal{L} tangent to \mathcal{F} . Then the singularity is analytically equivalent to a linear singularity.

PROOF. For if there exists a Levi foliation, the holonomy associated to the singularity must satisfy an equation as (*). If so, the order of F at 0 cannot be but 1; that is, k=0. The holonomy is linearizable; as a result, so is the singularity (Mattei & Moussu 1980).

We still have to consider the case $\lambda = 0$. There are solutions for which $t \neq 1$, $(h'(0))^k = \frac{1}{t} \in \mathbb{R}$. These solutions are necessarily linearizable, but not those for which t = 1. The latter, though, also determine an abelian group. We shall then describe the abelian group of solutions of (*) for t = 1, k > 0.

We can take an holomorphic coordinate system (x, y) such that the group of solutions of the differential equation is in normalizable coordinate system on each transversal section x = cte.

For an holomorphic vector field X, let $\exp X$ denote its exponential application, that is, its flow for t=1:

$$\exp(\xi(z)\frac{\partial}{\partial z})(z) = z + f_1(z) + \frac{1}{2}f_2(z) + \frac{1}{3!}f_3(z) + \dots$$

satisfying

$$\begin{cases} f_1 = \xi, \\ f_n = \xi f'_{n-1}. \end{cases}$$

If h is a diffeomorfism which satisfies

$$h'(z) = \frac{h^{k+1}}{1 - \lambda h^k} \frac{1 - \lambda y^k}{y^{k+1}}$$

then the k-th interate of h; h^k , is tangent to the identity. There exists μ such that h^k is the exponential of the vector field:

$$Y = 2\pi i \mu \frac{y^{k+1}}{1 - \lambda y^k} \frac{\partial}{\partial y};$$

that is

$$h^k(w) = \exp(2\pi i \mu \frac{y^{k+1}}{1 - \lambda y^k} \frac{\partial}{\partial y})(w).$$

Consequently

$$h(w) = \exp(2\pi i \frac{\mu}{k} \frac{y^{k+1}}{1 - \lambda y^k} \frac{\partial}{\partial y})(\epsilon w); \epsilon^k = 1.$$

If

$$X = x \frac{\partial}{\partial x} + y f(x, y) \frac{\partial}{\partial y}$$

is the vector field which defines the holomorphic foliation; then the holonomy application is defined by

$$\exp 2\pi i X$$
.

We have found two linear independent vector fields—X, Y that define h. Therefore; they commute:

$$[X, Y] = 0$$
.

We can describe *X* to be so as to satisfy the commutability condition. We then show the local result:

THEOREM B. Let p be a singularity of the foliation

$$\mathcal{F}: \omega = \lambda x dy + y dx + \{higher \ order \ terms\} = 0, \lambda \in \mathbb{C}.$$

Suppose there exists a Levi foliation \mathcal{L} tangent to \mathcal{F} . Then the singularity is normalizable in the sense of Martinet and Ramis (1982), Martinet and Ramis (1983). In particular, ω admits an analytic integrating factor.

PROOF. If $\lambda \in \mathbb{C} - \mathbb{R}$, the singularity is linerizable by Poincare's Theorem. If $\lambda \in \mathbb{R} - \mathbb{Q}$, we have proved (Theorem A) that is also a linerizable singularity. Thus, we have to prove the result for $\lambda \in \mathbb{Q}$; since the singularity is a reduced one, $\lambda \in \mathbb{Q}_+$. Let

$$-2\pi i Y(x_0, y) = -2\pi i \mu(x_0)^k \frac{y^{k+1}}{1 - \lambda \mu(x_0)^k y^k} \frac{\partial}{\partial y}$$

be the vector field whose exponential application determines the holonomy application on x_0 . If there are two invariant curves through the singularity, then the vector field that defines the holomorphic distribution can be written as $x \frac{\partial}{\partial x} + y f(x, y) \frac{\partial}{\partial y}$. By solving the commutability condition [X, Y] = 0:

$$0 = \left[x \frac{\partial}{\partial x} + y f(x, y) \frac{\partial}{\partial y}, \mu(x)^k \frac{y^{k+1}}{1 - \lambda \mu(x)^k y^k} \frac{\partial}{\partial y} \right]$$
$$= \left(y \frac{1}{(1 - \lambda \mu(x)^k y^k)^2} d(\mu(x)^k y^k).(x, y f) - y \frac{\partial f}{\partial y} \mu(x)^k \frac{y^{k+1}}{1 - \lambda \mu(x)^k y^k} \right) \frac{\partial}{\partial y}.$$

Let f(x, y) = f(x, 0) + g(x, y), then f must be as to satisfy

$$\begin{cases} f(x,0) = \frac{\mu'(x)x}{\mu(x)}, \\ \frac{\partial}{\partial y} \log g = k \frac{1}{y(1-\lambda\mu^k y^k)} = k \frac{\partial}{\partial y} \log \left(\frac{y}{(1-\lambda\mu^k y^k)^{\frac{1}{k}}}\right); \end{cases}$$

which leads us to

$$f(x, y) = \frac{\mu'(x)x}{\mu(x)} + \delta(x) \frac{y^k}{1 - \lambda \mu(x)^k y^k}.$$

The foliation on the punctured neighborhood is defined by the following 1-form

$$\omega = xdy + y\left(\frac{\mu'(x)x}{\mu(x)} - \delta(x)\frac{y^k}{1 - \lambda \mu^k y^k}\right)dx$$

or still by

$$\begin{split} \frac{\mu}{x}\omega &= \mu dy + y(1 - \frac{\delta}{\mu'x} \frac{y^k \mu^k}{1 - \lambda \mu^k y^k}) d\mu \\ &= \frac{\mu^{k+1} y^{k+1}}{1 - \lambda x^k y^k} \left(\frac{1 - \lambda \mu^k y^k}{\mu^k y^k} \frac{d(\mu^k y^k)}{(\mu^k y^k)^2} + \frac{\delta}{x} dx \right). \end{split}$$

Necessarily δ has an holomorphic extension through 0 and μ^k has either an holomorphic or a meromorphic extension through 0. If it were meromorphic, the singularity would not be a reduced one, contradicting our hypotheses. The extension is then an holomorphic one. We have then a normal form for either cases:

If $\mu^k \in \mathcal{O}^*$, we have a saddle-node; if $\mu^k \in \mathcal{O} - \mathcal{O}^*$ and let p be the order of the zero of f at 0, we have a ressonant singularity.

If there is only one invariant curve through the singularity; the singularity is a saddle-node and the invariant curve is y=0. Therefore the vector field that defines the holomorphic distribution can be written as $X=(x+h(y))\frac{\partial}{\partial x}+yf(x,y)\frac{\partial}{\partial y},\ f(0)=0$. The holonomy is defined by the exponential application of the vector field $\frac{x}{x+h(y)}X=x\frac{\partial}{\partial x}+\frac{yf(x,y)}{x+h(y)}\frac{\partial}{\partial y}$. The commutability condition $[\frac{x}{x+h(y)}X,Y]=0$ implies that

$$\frac{x}{x + h(y)}[X, Y] = \left(d\frac{x}{x + h(y)}.Y\right)X.$$

By solving the equation just above, we obtain that $\frac{1}{f}$ must be an holomorphic function which contradicts f(0) = 0.

Following, we prove results that will allow us to relate the first integrals obtained on the neighborhood of each component D_i .

Theorem C. Let p be a singularity of the foliation $\mathcal{F}: \omega = 0$ and

$$\omega = f dF$$
 is an holomorphic 1-form

where F is a Liouvillian function and f is an holomorphic integrating factor of ω . There exists a Levi foliation defined by

$$\mathcal{L}: \overline{f}(fdF) + f(\overline{fdF}).$$

Furthermore, if p is not a linearizable ressonant singularity, then any other Levi foliation must be of the type:

$$\mathcal{L}_{\lambda}: \lambda \overline{f}(fdF) + \overline{\lambda}f(\overline{fdF}).$$

Note that $\Re(\lambda F)$ is a first integral of the Levi foliation \mathcal{L}_{λ} . We can then show:

COROLLARY. Let p be a singularity of the holomorphic foliation $\mathcal{F}: \omega = 0$. Let F_j be Liouvillian functions and let f_j be holomorphic functions such that

$$\omega = f_i dF_i$$
.

Suppose there exists a Levi foliation \mathcal{L} tangent to \mathcal{F} and suppose that $\Re(F_1)$, $\Re(F_2)$ are first integrals of \mathcal{L} . Then:

$$\frac{dF_j}{F_i} = \frac{dF_i}{F_i} \ .$$

PROOF. Follows from $dF_i = \frac{f_j}{f_i} dF_j$ and $d(F_i + \overline{F_i}) \wedge d(F_j + \overline{F_j}) = 0$.

We are then able to show:

THEOREM D. Let \mathcal{F} be an holomorphic foliation and \mathcal{L} be a Levi foliation tangent to \mathcal{F} . Suppose all singularities lie on an irredutible curve S; which is \mathcal{F} -invariant. Then \mathcal{F} admits a Liouvillian first integral I defined on a neighborhood of S. Furthermore, $d(I + \overline{I})$ defines a Levi foliation tangent to \mathcal{F} .

PROOF. To show the existence of a Liouvillian first integral of \mathcal{F} it is enough to show the existence of a Liouvillian first integral of the reduced foliation \mathcal{F}^* . Let $D = \cup D_j$ be the divisor obtained on the process of reducing the singularities. Let us fix a transversal section of \mathcal{F}^* through D_j . Since there exists a Levi foliation tangent to \mathcal{F}^* , there exists a normal coordinate system on the section so that the holonomy applications determined by the singularities on D_j satisfy (*).

For each D_j , we then find an holomorphic vector field Z_j that defines the foliation \mathcal{F}^* in a neighborhood of the divisor. Let Y be the holomorphic vector on each transversal section which defines the holonomies. To find Z_j , all we have to do is solve the equation

$$[Z_i, Y] = 0.$$

The vector field Z_j allows us to describe a Liouvillian first integral of the holomorphic foliation on a neighborhood of each irreduceble component D_j of the divisor $D = \bigcup D_j$ obtained on the resolution of the singularity. Let F_j be a Liouvillian first integral of the holomorphic foliation \mathcal{F}^* on a neighborhood of the D_j such that $\Re(F_j)$ is a first integral of \mathcal{L}^* . By Theorem b, for each

 $p \in D_i \cap D_j$

we have

 $\frac{dF_1}{F_1} = \frac{dF_2}{F_2}.$

Therefore

$$\omega^* = \{ \frac{dF_i}{F_i} \}.$$

is a well defined closed 1-form. Thus

$$I = \exp \int \omega^*$$

is a Liouvillian first integral of the holomorphic foliation \mathcal{F}^* and there is a Levi foliation $d(I+\overline{I})=0$; *The Theorem* is thereby proved.

RESUMO

Seja $L \subset \mathbb{C}^2$ uma variedade real de dimensão 3. Para todo ponto regular $p \in L$ existe uma única reta complexa l_p no espaço tangente à L em p. Quando o campo de linhas complexas

$$p \mapsto l_p$$

é completamente integrável, dizemos que L é uma variedade de Levi. Mais geralmente, seja $L \subset M$ uma subvariedade real em uma variedade analítica complexa. Se existe uma distribuição real integrável de

dimensão 2 em L que é invariante pela estrutura holomorfa J induzida pela variedade complexa M, dizemos que L é uma variedade de Levi. Vamos provar:

Teorema. Seja \mathcal{L} uma folheação de Levi e seja \mathcal{F} a folheação holomorfa induzida. Então \mathcal{F} tem integral primeira Liouvilliana.

Em outras palavras, se \mathcal{L} é uma folheação real de dimensão 3 tal que a folheação holomorfa induzida define uma folheação holomorfa \mathcal{F} ; isto é, se \mathcal{L} é uma folheação de Levi; então \mathcal{F} admite uma integral primeira Liouvilliana – uma função que pode ser construida por composição de funções rationais, exponenciações, integrações e funções racionais (Singer 1992). Por exemplo, se f é uma função holomorfa e se θ é uma 1-forma real em \mathbb{R}^2 ; então o pull-back de θ por f define uma folheação de Levi: \mathcal{L} : $f^*\theta=0$ a qual é tangente a folheação holomorfa \mathcal{F} : df=0.

Este problema foi proposto por D. Cerveau em uma reunião (Fernandez 1997).

Palavras-chave: folheações de Levi, folheações holomorfas, singularidades, variedades de Levi.

REFERENCES

Fernandez J. (editor) 1997. Ecuaciones Diferenciales: Singularidades, Universidad de Valladolid.

MARTINET J & RAMIS JP. 1982. Problèmes des Modules pour des Équations Differentielles Non Linéaires du Premier Order, *Math. Inst. Hautes Études Scientifiques* **55:** 63-124.

MARTINET J & RAMIS JP. 1983. Classification Analytique des Équations Differentielles Non Linéaires Réssonantes du Premier Ordre, *Ann Sc Éc Norm Sup*, **16:** 571-621.

MATTEI JF & MOUSSU R. 1980. Holonomie et Intégrales Premières, Ann Sc Norm Sup, 13.

SEINDENBERG A. 1968. Reduction of Singularities of The Differential Equation Ady = Bdx, *Amer J Math.*, 248-269.

SINGER M. 1992. Liouvillian First Integrals of Differential Equations, *Trans American Math Soc.*, **333**(2): 673-688.