
Tangency quantum cohomology and characteristic numbers

JOACHIM KOCK

Departamento de Matemática, Universidade Federal de Pernambuco

Cidade Universitária – 50670-901 Recife, PE, Brasil

Manuscript received on February 2, 2001; accepted for publication on April 17, 2001;

presented by Israel Vainsencher

ABSTRACT

This work establishes a connection between gravitational quantum cohomology and enumerative

geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinites-

imal nature like, for example, tangency. The key concept is that of modified psi classes, which

are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity.

The main results are two systems of differential equations for the generating function of certain

top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-

Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric

but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar

way modified psi classes restrict to the boundary. This machinery is applied to various enu-

merative problems, among which characteristic numbers in any projective homogeneous variety,

characteristic numbers for curves with cusp, prescribed triple contact, or double points.

Key words: Enumerative geometry, characteristic numbers, quantum cohomology, Gromov-

Witten invariants.

1 INTRODUCTION

This article exposes the main ideas and results of the theory oftangency quantum cohomology,

developed in the author’s PhD thesis (Universidade Federal de Pernambuco 2000), where detailed

exposition, complete proofs, and a wealth of examples can be found.
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1.1. Brief overview of the Scientific Context

The most classical problems of enumerative geometry are those of counting curves subject to

incidence and tangency conditions; the answers to these questions are calledcharacteristic numbers.

During the last decade, the discipline has undergone a true revolution instilled by ideas from

theoretical physics. The starting point was the discovery of M. Kontsevich (Kontsevich-Manin

1994) that the numbers of rational curves inP2 subject to incidence conditions are determined

in all degrees by a set of differential equations which amount to the associativity of thequantum

product, a new structure on the cohomology space ofP2, constructed viastable maps. Kontsevich’s

solution to this century-old problem is unparalleled in elegance — after all, associativity is one of

the most basic concepts in all of mathematics.

Since then, stable maps have been used to attack also the more difficult problem of characteristic

numbers, and various solutions have been found for rational curves inP2 (or Pr ) (Pandharipande

1999, Ernström-Kennedy 1998, 1999). These solutions are quite complicated though, and the

theories underlying them have little connection to physics.

The present work re-establishes that connection, making the powers ofgravitational quantum

cohomology available to enumerative geometry. This not only solves the rational characteristic

number problem in a conceptually much simpler way, forany projective homogeneous variety, but

also allows for a variety of new applications. The most surprising of the results is the construction of

atangency quantum product. This is a deformation of the usual quantum product based onmodified

psi classes. The associativity of this product provides a solution to the characteristic number

problem which is as simple as Kontsevich’s solution to the question involving only incidence

conditions.

2 MODIFIED PSI CLASSES AND DIAGONAL CLASSES

2.1. Set-up

Let X be a projective homogeneous projective variety over the field of complex numbers. Fix a

basisT0, . . . , Tr for the cohomology spaceH = H∗(X,Q).

All constructions take place in the stackM0,n(X, β)of genus-zeron-pointed stable maps toX of

classβ. Letνi : M0,n(X, β) → X denote thei’th evaluation morphism. Pull-backs of cohomology

classes ofX via evaluation morphisms are called evaluation classes, and top products of evaluation

classes are called Gromov-Witten invariants. The reader is referred to Fulton-Pandharipande (1997)

for basic properties of stable maps, Gromov-Witten invariants, and quantum cohomology.

2.2. Psi Classes

The tautological psi classψ i is the first Chern class of the line bundle onM0,n(X, β) whose fibre

at a moduli point[µ : C → X] is the cotangent line ofC at thei’th marked point. The inclusion

of psi classes in the Gromov-Witten invariants corresponds in theoretical physics to introducing

gravity into the quantum field theories (Witten 1991). The intersection theory of the psi classes
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goes under the namegravitational quantum cohomology (Manin 1999). The tautological psi class

is not compatible with pull-back along forgetful morphisms, and for this reason it is not directly

interpretable in enumerative geometry. To this end, a modification of the psi class is introduced.

2.3. Modified Psi Classes

The modified psi class ψ i is defined forβ > 0 as the pull-back from the one-pointed space

M0,1(X, β) of the usual psi classψ i . The motivation for this definition is that many conditions

from enumerative geometry allow easy expressions in terms of them, cf. §§5 and 6 below.

2.4. Diagonal Classes

Theij ’th diagonal class δij is by definition the sum of all boundary divisors having markspi andpj

together on a contracting twig. The name is justified by the following basic properties enjoyed by

the diagonal classes: First, ifπi is the morphism that forgetspi thenπi∗δij = 1, the fundamental

class. And second,

δijδik = δijδjk

−δ2
ij = δijψ i = δijψ j .

It follows that every top product involving evaluation classes, modified psi classes, and diagonal

classes can be reduced to products involving only evaluation classes and modified psi classes.

2.5. Key Formula

The diagonal classes appear as correction terms when restricting a modified psi class to a boundary

divisorD both of whose twigs are of positive degree. IfD is the image of the gluing morphism

ρD : M0,n′+1(X, β ′) ×X M0,n′′+1(X, β ′′) −→ M0,n(X, β),

then

ρ∗
Dψ i = ψ i + δi•,

where• denotes the gluing mark.

3 THE TANGENCY QUANTUM POTENTIAL AND TOPOLOGICAL RECURSION

3.1. The Tangency Quantum Potential

We define anenumerative descendant to be a top product of modified psi classes and evaluation

classes, and set (forγi ∈ H )

〈 τ k1(γ1) · · · τ kn(γn) 〉β :=
∫
ψ

k1
1 ∪ ν∗

1 (γ1) ∪ · · · ∪ψkn
n ∪ ν∗

n (γn) ∩ [M0,n(X, β)].
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Of particular interest are thefirst enumerative descendants, i.e., those where the exponent of each

modified psi class is at most 1:

〈 τ a
0 τ

b
1 〉β := 〈

r∏
k=0

(τ 0(Tk))
ak (τ 1(Tk))

bk 〉β.

The generating function of these invariants is called thetangency quantum potential:

�(x, y) =
∑
β>0

∑
a,b

xa

a!
yb

b! 〈 τ a
0 τ

b
1 〉β.

Herex = (x0, x1, . . . , xr) andy = (y0, y1, . . . , yr) are formal parameters, and we employ the

usual multi-index notationa! = a0!a1! · · · ar !, andxa = x
a0
0 x

a1
1 · · · xar

r . The variablesx are the

usual formal variables from quantum cohomology, so wheny is set to zero, then� reduces to the

usual (quantum part of the) genus-zero Gromov-Witten potential.

3.2. Deformation of the Poincaré Metric

While the usual quantum potential is based on the trace map
∫

0 : H → Q (integration over the

fundamental class), and the Poincaré metricgij = ∫
0 Ti ∪ Tj , the tangency quantum potential relates

more naturally to a deformation of these structures, a certain “metric” with values inQ[[y]]. The

deformed trace map is

∫
y

z :=
∑

s

(−2y)s

s!
∫

0
Ts ∪ z, z ∈ H,

and the new metric is given by

γij :=
∫

y
Ti ∪ Tj .

Let (γ ij ) denote the inverse matrix to(γij ).

3.3. Topological Recursion

Sinceψ i admits an expression in terms of boundary divisors, a sort of topological recursion works.

Note however that in contrast to the topological recursion for the usual psi classes (Witten 1991),

the Key Formula 2.5 introduces a lot of diagonal classes which must then be eliminated as explained

in 2.4. Miraculously, the deformed metric encodes all this combinatorics of diagonal classes. Put

�xi
: = ∂

∂xi
� and�(xixj )

: = ∑r
k=0 gijeg

ef �xf (the directional derivative with respect toTi ∪ Tj ).

Then,The tangency potential satisfies the differential equations

�ykxixj = �xk(xixj ) − �(xkxi )xj − �(xkxj )xi +
∑
e,f

�xkxe γ
ef �xf xixj .

These equations determine all first enumerative descendants from the Gromov-Witten invariants.
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4 THE TANGENCY QUANTUM PRODUCT AND FROBENIUS STRUCTURE

4.1. The Tangency Quantum Product

Define a multiplication onH ⊗ Q[[x, y]] by the rule

Ti ∗ Tj := Ti ∪ Tj +
∑
e,f

�ije γ
ef Tf .

Here and in the sequel, for simplicity, we put�i = �xi .

Now the crucial result is that thistangency quantum product is associative. The proof follows

the proof of associativity of the usual quantum product (cf. Fulton-Pandharipande 1997), and again

the deformed metric enters in the quadratic term to encode the combinatorics of the diagonal

classes. (In the special caseX = P2, this product was previously constructed by ad hoc methods

in Ernström-Kennedy (1999).)

4.2. Frobenius Structure

From the observationTi ∪ Tj = ∑
γijeγ

ef Tf , it follows that if we extend the tangency quantum

potential toβ = 0 setting

" := � +
∑
i,j,k

xixjxk

3!
∫

y
Ti ∪ Tj ∪ Tk,

then the tangency quantum product can be written

Ti ∗ Tj =
∑
e,f

"ije γ
ef Tf ,

and the associativity equations become
∑
e,f

"ije γ
ef "fk# =

∑
e,f

"jke γ
ef "f i#.

It follows readily from these constructions thatThe cohomology Q[[y]]-module H [[y]] with

bilinear non-degenerate pairing γ : H [[y]] ⊗ H [[y]] → Q[[y]], equipped with the tangency

quantum potential " ∈ Q[[x, y]] constitutes a formal Frobenius manifold over Q[[y]]. (See

Manin (1999) for definitions and theory of Frobenius manifolds.)

5 CHARACTERISTIC NUMBERS

5.1. Tangency Conditions

Let Z ⊂ X be a very ample hypersurface, and denote byηi the pull-back of the class ofZ along

thei’th evaluation morphism. Now one can show that the locus of maps which are tangent toZ at

thei’th marked point is of class

ηi(ηi + ψ i).
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The proof of this involves a jet-bundle construction, Porteous’ formula, and a transversality argu-

ment. Furthermore, the top intersections of such loci are transverse for general hypersurfaces, so

that the characteristic numbers are expressed as top products of modified psi classes and evaluation

classes.

5.2. Characteristic Number Potential and Coordinate Changes

Let G be the generating function for the characteristic numbers of rational curves inX. Now a

combinatorial argument shows thatG is a linear change of coordinates of�. In this way, an easy

application of the chain rule translates the equations of 3.3 and 4.1 into differential equations for

G, completely determining the characteristic numbers form the numbers involving only incidence

conditions (i.e., the Gromov-Witten invariants).

5.3. Example: Plane Curves

To give the idea, letNd(a, b, c) be the number of rational plane curves of degreed, passing through

a points, tangent tob lines, and tangent toc lines at given points (witha + b + 2c = 3d − 1). The

characteristic number potential

G(s, u, v,w) =
∑
d>0

exp(ds)
∑
a,b,c

ua

a!
vb

b!
wc

c! Nd(a, b, c)

is related to the tangency quantum potential� by

G(s, u, v,w) = �(x1, x2, y1, y2),

subject to the change of variables:

x0 = 0 x1 = s x2 = u + v

y0 = 0 y1 = v y2 = w

The deformed metric reads

(γ ef ) =



0 0 1

0 1 2y1

1 2y1 2y2
1 + 2y2


 =




0 0 1

0 1 2v

1 2v 2v2 + 2w


 ,

and 3.3 translates into the following the differential equation satisfied byG.

Gvs = Gus − Gu + 1
2GssGss + 2vGssGus + (v2 + w)GusGus.

6 FURTHER APPLICATIONS

6.1. Codimension-2Corrections

In many further applications, curves with a “marked node” contribute where they shouldn’t. Let-1

denote the sum of all codimension-2 boundary cycles whose middle twig has degree 0 and carries
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the markp1, while the two other twigs have positive degree. The potential for “first enumerative

descendants integrated over-1” is related to� through a quadratic differential equation, since an

integral over-1 can be expressed as a product of integrals over the moduli spaces corresponding to

its twigs. (A similar observation applies to the potential of “first enumerative descendants integrated

against a single factorψ2
1”: this follows from one step of topological recursion.)

6.2. Cuspidal Curves

Taking the above boundary classes into account, the techniques of modified psi classes also yield

the characteristic numbers of cuspidal rational curves (inP2 or P1 × P1). For example, forP2, the

locus of curves having cusp at the first mark is shown to be of class

3η2
1 + 3η1ψ1 + ψ2

1 − -1.

In cuspidal environment, the tangency formula of 5.1 fails, because the cusp mapping to the

given line will count as tangency, although it is not a limit of a honest tangency. The correct formula

in this case is

ηi(ηi + ψ i − δ1i).

Now the characteristic number problem is solved like this. First, the diagonal classes are

expanded using the formulae of 2.4, and next the differential equations for the enriched potentials

of 6.1 are used to eliminate-1 andψ2
1. The final result of these manipulations is three differential

equations which effectively determine the cuspidal characteristic numbers from the usual ones.

6.3. Other Examples

Many other conditions allow an easy description in terms of the classes introduced above. For

example, the locus of maps which have triple contact to a given hypersurfaceV ⊂ Pr is of class

ηi(ηi +ψ i)(ηi +2ψ i)−[Ii]3−ηi-i . (Here[Ii]3 denotes a certain correction consisting of two-twig

maps with a linear twig mapping intoV , but it turns out never to give any contribution.) The locus

of maps which are secant to a codimension-2 plane (atp1 andp2) is of classη2
1η

2
2 − δ12

(
2η3

1 +
η2

1ψ1
) − η2

1-12. (For the plane, this is the locus of curves with specified double point.) Cutting

this locus withδ12 forces the two secant points together, and we find the class of being tangent to

the codimension-2 plane.
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RESUMO

Este trabalho estabelece uma conexão entre co-homologia quântica gravitacional e geometria enumerativa

de curvas racionais (em uma variedade homogênea projetiva) sujeita a condições de natureza infinitesimal

como, por exemplo, tangência. O conceito chave é de classes psi modificadas, que são bem apropriadas para

propósitos enumerativos e substitui as classes psi tautológicas de gravidade 2D. Os resultados principais

são dois sistemas de equações diferenciais para a função geradora de certos produtos de ordem superior de

tais classes. Um é recorrência topológica enquanto o outro é Witten-Dijkgraaf-Verlinde-Verlinde (WDVV).

Em ambos os casos, entretanto, a métrica Riemanniana não é a métrica usual de Poincaré, mas, uma certa

deformação desta que, surpreendentemente, codifica todas as possibilidades combinatórias do modo peculiar

pelo qual classes psi modificadas restringem-se ao bordo. Esta maquinaria é aplicada a vários problemas

enumerativos, entre os quais números característicos em qualquer variedade homogênea projetiva, números

característicos para curvas com cúspides, contato triplo prescrito, ou pontos duplos.

Palavras-chave: geometria enumerativa, números característicos, co-homologia quântica, invariantes

Gromov-Witten.
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