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ABSTRACT

This work establishes a connection between gravitational quantum cohomology and enumerative
geometry of rational curves (in a projective homogeneous variety) subject to conditions of infinites-
imal nature like, for example, tangency. The key concept is that of modified psi classes, which
are well suited for enumerative purposes and substitute the tautological psi classes of 2D gravity.
The main results are two systems of differential equations for the generating function of certain
top products of such classes. One is topological recursion while the other is Witten-Dijkgraaf-
Verlinde-Verlinde. In both cases, however, the background metric is not the usual Poincaré metric
but a certain deformation of it, which surprisingly encodes all the combinatorics of the peculiar
way modified psi classes restrict to the boundary. This machinery is applied to various enu-
merative problems, among which characteristic numbers in any projective homogeneous variety,
characteristic numbers for curves with cusp, prescribed triple contact, or double points.

Key words. Enumerative geometry, characteristic numbers, quantum cohomology, Gromov-
Witten invariants.

1 INTRODUCTION

This article exposes the main ideas and results of the theaigngéncy quantum cohomology,
developed in the author’s PhD thesis (Universidade Federal de Pernambuco 2000), where detailec
exposition, complete proofs, and a wealth of examples can be found.
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1.1. BRIEF OVERVIEW OF THE SCIENTIFIC CONTEXT

The most classical problems of enumerative geometry are those of counting curves subject to
incidence and tangency conditions; the answers to these questions aretambeteristic numbers.

During the last decade, the discipline has undergone a true revolution instilled by ideas from
theoretical physics. The starting point was the discovery of M. Kontsevich (Kontsevich-Manin
1994) that the numbers of rational curvesPifi subject to incidence conditions are determined

in all degrees by a set of differential equations which amount to the associativity gfidhim

product, a new structure on the cohomology spacB%fconstructed viatable maps. Kontsevich’s
solution to this century-old problem is unparalleled in elegance — after all, associativity is one of
the most basic concepts in all of mathematics.

Since then, stable maps have been used to attack also the more difficult problem of characteristic
numbers, and various solutions have been found for rational curis(or P") (Pandharipande
1999, Ernstrom-Kennedy 1998, 1999). These solutions are quite complicated though, and the
theories underlying them have little connection to physics.

The present work re-establishes that connection, making the powgnavithtional quantum
cohomology available to enumerative geometry. This not only solves the rational characteristic
number problem in a conceptually much simpler waygioy projective homogeneous variety, but
also allows for a variety of new applications. The most surprising of the results is the construction of
atangency quantumproduct. This is a deformation of the usual quantum product basexooified
psi classes. The associativity of this product provides a solution to the characteristic number
problem which is as simple as Kontsevich’s solution to the question involving only incidence
conditions.

2 MODIFIED PSI CLASSESAND DIAGONAL CLASSES
2.1. SET-UP

Let X be a projective homogeneous projective variety over the field of complex numbers. Fix a
basisTy, ..., T, for the cohomology spacl = H*(X, Q).

All constructions take place in the stakdg , (X, 8) of genus-zera-pointed stable maps 6 of
class8. Letv; : Mo, (X, B) — X denote theé’th evaluation morphism. Pull-backs of cohomology
classes o via evaluation morphisms are called evaluation classes, and top products of evaluation
classes are called Gromov-Witten invariants. The reader is referred to Fulton-Pandharipande (1997)
for basic properties of stable maps, Gromov-Witten invariants, and quantum cohomology.

2.2. Ps1 CLASSES

The tautological psi clasg, is the first Chern class of the line bundle &hy, (X, 8) whose fibre
at a moduli poinfu : C — X] is the cotangent line af at thei’'th marked point. The inclusion
of psi classes in the Gromov-Witten invariants corresponds in theoretical physics to introducing
gravity into the quantum field theories (Witten 1991). The intersection theory of the psi classes
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goes under the nanggavitational quantum cohomology (Manin 1999). The tautological psi class
is not compatible with pull-back along forgetful morphisms, and for this reason it is not directly
interpretable in enumerative geometry. To this end, a modification of the psi class is introduced.

2.3. MoDIFIED Ps1 CLASSES

The modified psi class ¥; is defined for8 > 0 as the pull-back from the one-pointed space
Mo 1(X, B) of the usual psi clasg,. The motivation for this definition is that many conditions
from enumerative geometry allow easy expressions in terms of them, cf. 885 and 6 below.

2.4. DIAGONAL CLASSES

Thei j'th diagonal classé;; is by definition the sum of all boundary divisors having maskandp ;
together on a contracting twig. The name is justified by the following basic properties enjoyed by
the diagonal classes: Firstif is the morphism that forgets; thenrn; . é;; = 1, the fundamental
class. And second,

8ij6ic = 8ijéj
—8% = ¥ = 8;¥,.

It follows that every top product involving evaluation classes, modified psi classes, and diagonal
classes can be reduced to products involving only evaluation classes and modified psi classes.

2.5. KEy FormMULA

The diagonal classes appear as correction terms when restricting a modified psi class to a boundar
divisor D both of whose twigs are of positive degree Difis the image of the gluing morphism

op : Mowi1(X, B)) xx Moi1(X, B") — Mo, (X, B),

then

wheree denotes the gluing mark.

3 THE TANGENCY QUANTUM POTENTIAL AND TOPOLOGICAL RECURSION
3.1. THE TANGENCY QUANTUM POTENTIAL

We define arenumerative descendant to be a top product of modified psi classes and evaluation
classes, and set (for € H)

(Thy(y1) - Ty, (V) Vg 1= f PR uvEGD U - v UvE () N [Mo (X, B)I.
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Of particular interest are thiest enumerative descendants, i.e., those where the exponent of each
modified psi class is at most 1:

(737 = ([T Fa(T)" ).

The generating function of these invariants is calledi#mgency quantum potential:

Xayb b
I,y = ZZEH (757108

B>0 ab

Herex = (xo, x1,...,x,) andy = (yo, y1, ..., y,) are formal parameters, and we employ the

ao a1

usual multi-index notatiom! = agla;!---a,!, andx® = xy°x7*---x¥. The variablesx are the
usual formal variables from quantum cohomology, so whénset to zero, thel reduces to the
usual (quantum part of the) genus-zero Gromov-Witten potential.

3.2. DEFORMATION OF THE POINCARE METRIC

While the usual quantum potential is based on the traceﬁg;apH — Q (integration over the
fundamental class), and the Poincaré meffic= fo T; u T;, the tangency quantum potential relates
more naturally to a deformation of these structures, a certain “metric” with valu@gyi]. The

deformed trace map is
: (—2y)°
/z.: Z g /Tsuz, Z€e H,
y 0

S

Vij 32ijUTj.
y

Let (y"/) denote the inverse matrix tg;;).

and the new metric is given by

3.3. ToPoLOGICAL RECURSION

Sincey; admits an expression in terms of boundary divisors, a sort of topological recursion works.
Note however that in contrast to the topological recursion for the usual psi classes (Witten 1991),
the Key Formula 2.5 introduces a lot of diagonal classes which must then be eliminated as explained
in 2.4. Miraculously, the deformed metric encodes all this combinatorics of diagonal classes. Put
Iy, = %F andTl . 1= Yo g,»jeg"f Iy, (the directional derivative with respect ©u 7).
Then,The tangency potential satisfies the differential equations

Fyk)CiJCj = ka(xixj) - F(kai)x‘,' - F(xkxj')x,- + Z kaxg Vef Fxfx,-xj-
e f

These equations determine all first enumerative descendants from the Gromov-Witten invariants.
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4 THE TANGENCY QUANTUM PRODUCT AND FROBENIUS STRUCTURE
4.1. THE TANGENCY QUANTUM PrRODUCT

Define a multiplication orf ® Q[[X, y]] by the rule

TixTj=TuT;+ Y Tyey’ Ty.
e.f
Here and in the sequel, for simplicity, we dit=T',,.
Now the crucial result is that thtangency quantum product is associative. The proof follows
the proof of associativity of the usual quantum product (cf. Fulton-Pandharipande 1997), and again
the deformed metric enters in the quadratic term to encode the combinatorics of the diagonal
classes. (In the special cake= P?, this product was previously constructed by ad hoc methods
in Ernstrom-Kennedy (1999).)

4.2. FROBENIUS STRUCTURE

From the observatioff; uT; = " yi;.y* Ty, it follows that if we extend the tangency quantum
potential tog = O setting

® =T 4 ZXi.xj"Xk

/ T;uT;uT,
ij.k 3 y

then the tangency quantum product can be written
TixTj=) Oy Ty,
e f
and the associativity equations become
Y Doy Qpu =" Py v i
e.f e.f

It follows readily from these constructions thEte cohomology Q[[y]]-module H [[y]] with
bilinear non-degenerate pairing v : H[[y]] ® H[[y]] — QI[y]], equipped with the tangency
guantum potential ® € QI[x, y]] constitutes a formal Frobenius manifold over Q[[y]]. (See
Manin (1999) for definitions and theory of Frobenius manifolds.)

5 CHARACTERISTIC NUMBERS
5.1. TANGENCY CONDITIONS

Let Z C X be a very ample hypersurface, and denote bthe pull-back of the class df along
thei’th evaluation morphism. Now one can show that the locus of maps which are tangeat to
thei’'th marked point is of class

nm; + ¥
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The proof of this involves a jet-bundle construction, Porteous’ formula, and a transversality argu-
ment. Furthermore, the top intersections of such loci are transverse for general hypersurfaces, so
that the characteristic numbers are expressed as top products of modified psi classes and evaluation
classes.

5.2. CHARACTERISTIC NUMBER POTENTIAL AND COORDINATE CHANGES

Let G be the generating function for the characteristic numbers of rational cunZs how a
combinatorial argument shows th@tis a linear change of coordinatesiof In this way, an easy
application of the chain rule translates the equations of 3.3 and 4.1 into differential equations for
G, completely determining the characteristic numbers form the numbers involving only incidence
conditions (i.e., the Gromov-Witten invariants).

5.3. EXAMPLE: PLANE CURVES

To give the idea, leN,(a, b, ¢) be the number of rational plane curves of degrgeassing through
a points, tangent té lines, and tangent tolines at given points (witlk + b + 2c = 3d — 1). The
characteristic number potential

G(s,u,v, w) = Zexp(ds)Z——— Ny(a, b, c)

I p!
d>0 a,b,c bt

is related to the tangency quantum poteriiddy

G(s,u, v, w) = I'(x1, x2, y1, ¥2),
subject to the change of variables:

xo=20 X1=3s Xo=u-+v

Il
S]

yo=0 1 Y2 =w

The deformed metric reads

0 0 1 0 0 1
H=0 1 21 =10 1 iy ,
1 2y 2y2+2y, 1 2 20°+2w

and 3.3 translates into the following the differential equation satisfie@.by
GUS - GMS - Gu + %GSSGSS + ZUGSSGMS + (Uz + w)GusGux‘
6 FURTHERAPPLICATIONS

6.1. CODIMENSION-2 CORRECTIONS

In many further applications, curves with a “marked node” contribute where they shouldnli; Let
denote the sum of all codimension-2 boundary cycles whose middle twig has degree 0 and carries
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the markp;, while the two other twigs have positive degree. The potential for “first enumerative
descendants integrated ovéy” is related toI" through a quadratic differential equation, since an
integral over1; can be expressed as a product of integrals over the moduli spaces corresponding to
its twigs. (A similar observation applies to the potential of “first enumerative descendants integrated
against a single facthl”: this follows from one step of topological recursion.)

6.2. CuspiDAL CURVES

Taking the above boundary classes into account, the techniques of modified psi classes also yielc
the characteristic numbers of cuspidal rational curve®{iar P! x PY). For example, fo?, the
locus of curves having cusp at the first mark is shown to be of class

33+ 3 ¥1 + 1 — M.

In cuspidal environment, the tangency formula of 5.1 fails, because the cusp mapping to the
given line will count as tangency, although it is not a limit of a honest tangency. The correct formula
in this case is

n(n; + ¥ — 81).

Now the characteristic number problem is solved like this. First, the diagonal classes are
expanded using the formulae of 2.4, and next the differential equations for the enriched potentials
of 6.1 are used to eliminafd; and%i. The final result of these manipulations is three differential
equations which effectively determine the cuspidal characteristic numbers from the usual ones.

6.3. OTHER EXAMPLES

Many other conditions allow an easy description in terms of the classes introduced above. For
example, the locus of maps which have triple contact to a given hypersuffacé” is of class

n,(n; +¥) (1, +2¥;) —[1;13—n,T1;. (Here[l;]3 denotes a certain correction consisting of two-twig
maps with a linear twig mapping intd, but it turns out never to give any contribution.) The locus

of maps which are secant to a codimension-2 plang{a&nd p,) is of classpn3 — 812(2n3 +

ﬂi%l) — n2I14,. (For the plane, this is the locus of curves with specified double point.) Cutting
this locus withd,, forces the two secant points together, and we find the class of being tangent to
the codimension-2 plane.
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RESUMO

Este trabalho estabelece uma conexao entre co-homologia quéntica gravitacional e geometria enumerativa
de curvas racionais (em uma variedade homogénea projetiva) sujeita a condi¢cdes de natureza infinitesimal
como, por exemplo, tangéncia. O conceito chave é de classes psi modificadas, que sdo bem apropriadas para
propositos enumerativos e substitui as classes psi tautolégicas de gravidade 2D. Os resultados principais
séo dois sistemas de equacdes diferenciais para a funcéo geradora de certos produtos de ordem superior de
tais classes. Um é recorréncia topoldgica enquanto o outro € Witten-Dijkgraaf-Verlinde-Verlinde (WDVV).

Em ambos os casos, entretanto, a métrica Riemanniané adnétrica usual de Poincaré, mas, uma certa
deformacédo desta que, surpreendentemente, codifica todas as possibilidades combinatérias do modo peculiar
pelo qual classes psi modificadas restringem-se ao bordo. Esta maquinaria € aplicada a varios problemas
enumerativos, entre 0s quais nimeros caracteristicos em qualquer variedade homogénea projetiva, nimeros
caracteristicos para curvas com cuspides, contato triplo prescrito, ou pontos duplos.

Palavras-chave: geometria enumerativa, nimeros caracteristicos, co-homologia quéantica, invariantes

Gromov-Witten.
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