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ABSTRACT

We study the behavior of massless Dirac particles, i.e., solutions of the Dirac equation withm = 0

in the presence of an electromagnetic field. Our main result (Theorem 1) is that for purely real

or imaginary fields any Huygens type (in Hadamard’s sense) Dirac operators is equivalent to the

free Dirac operator, equivalence given by changes of variables and multiplication (right and left)

by nonzero functions.
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1. INTRODUCTION

By 1690 two different theories were disputing the nature of light: for Newton (Newton, 1979),

light was composed of particles propagating along straight lines; whereas Huygens believed that

light was a mechanical wave propagating in the æther, the hypothetical medium that fulfilled all

the space (Shapiro 1980).

Huygens’ theory was particularly useful to explain diffraction (‘‘the strange refraction of the

Iceland crystal’’), but had some remarkable difficulties to explain the apparent propagation of the

light along straight lines. To overcome this difficulty, he wrote his masterpiece ‘‘Treatise on Light’’

(Huygens 1920) where he formulated the principle that bears his name.

In more modern terms (in a formulation essentially due to Fresnel (Fresnel 1816) — for a

historical overview, see (Born and Wolf 1980)) we say that each point in the wave front acts as a

secondary source of wave and all these waves interfere to produce the new wave front. See Figure 1.

Despite the large use of the term ‘‘Huygens’ principle’’ in the physical community, its precise

mathematical formulation is seldom made clear. In 1923, the French mathematician J. Hadamard,
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Fig. 1 – Huygens’ construction of a wave front from the previous one (left). Forward light cone with vertex iny (right).

in a series of lectures atYale University, formulated in mathematical terms three different meanings

of ‘‘Huygens’ principle’’ he found in the literature of his time (Hadamard 1953). This work is

concerned with the second definition, called ‘‘Hadamard’s minor premise.’’

We define the forward light cone with vertex iny as

C+(y) =
{
x ∈ R

n+1
∣∣∣(x0 − y0)2 −

n∑
i=1

(xi − yi)2 = 0, x0 > y0

}
.

and the fundamental solution (also known as Green’s function)φ of an operatorL
Lφ = δy ,

whereδy is the Dirac-delta distribution supported iny.

We say thatL (and, by extension, its fundamental solutionφ) possesses Huygens’ property

(or obeys Huygens’ principle) if, for everyy, φ is supported in the forward light cone with vertex

in y.

This definition is called ‘‘Hadamard’s minor premise.’’ See Figure 1.

As Huygens’ principle was originally formulated for light propagation, a physical phenomenon

modeled by the wave equation, it is useful to discuss Huygens’ principle in Hadamard’s minor

premise sense in this case first.

The wave equation is a partial differential equation inn+1 variables,(x0, x1, · · · , xn), where

x0 is taken astime, and the other variables are thespace variables. Explicitly, it is an equation for

a functionu such that

�u
def= ∂2u

(∂x0)2
−

n∑
i=1

∂2u

(∂xi)2
= 0 .

The above equation is known as the wave equation inn space variables. With these definitions we

take the velocity of propagationc equals 1. If we do not want to fix the value ofc, we change in

the above and the following expression the value ofx0 by cx0.
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It is a well known fact that the wave operator possesses Huygens’ principle for oddn greater

than or equal to 3 and does not posses it otherwise. See (Folland 1997).

Hadamard’s problem consists in classifying all second order hyperbolic operators which obey

Huygens’ principle, up to trivial relations. The latter consist in successive combinations of changes

of variables, and left or right multiplication of the operator by a never-singular smooth function.

This problem has not been fully solved, but progress has been made recently. An extensive and

up-to-date review can be found in Berest’s work (Berest 1998). Previous work on the subject of

Huygens’ principle for Dirac operators are (Chalub and Zubelli 2000, Chalub and Zubelli 2001a).

In this work we will study the validity of Huygens’ principle for Dirac operators in the presence

of an electromagnetic field. In Section 2, we briefly introduce Clifford Algebras, that are instru-

mental to the definition of Dirac Operators. In Section 3, we present the Hadamard expansion and

re-define Huygens’ principle in terms of its truncation. In Section 4, we develop some comments

about the physical nature of Huygens’ principle, in particular in the presence of electromagnetic

field and prove the main theorem of this article, namely, that every Dirac operator in the presence

of a real or purely imaginary field with Huygens’ property is trivially equivalent to the free Dirac

operator (Theorem 1).

2. CLIFFORD ALGEBRAS AND DIRAC OPERATORS

Dirac operators appear in Mathematical Physics in the framework of the construction of a relativistic

electron theory. In a celebrated paper, Dirac (Dirac 1928) defined a Lorentz-covariant Hamiltonian

(and consequently first-order in space variables, as Schrödinger equation is first order in time)

whose square furnishes the Klein-Gordon equation.

Let gµν = diag[1,−1, · · · ,−1] denote the Minkowski tensor. Associated togµν we can

construct a Clifford Algebra. It is an associative algebra (with identityI ) over the reals generated

by all linear combinations of the form(γ 0)m0(γ 1)m1 · · · (γ n)mn, mµ ∈ {0,1}, where the matrices

{γ µ}, obey the relationγ µγ ν+γ νγ µ = 2gµνI . The matrices{γ µ}, which are called Dirac matrices,

are linearly independent (Gilbert and Murray 1991, Marchuk 1998).

Dirac operators are defined by:

D = γ µ∂µ + v ,

where the summation for repeated indices is implied. See (Thaller 1992) for an introduction on

the subject. We shall adopt the notation�∂ = γ µ∂µ and restrict ourselves to the case wherev is of

electromagnetic (orvector) form, v = aµγ
µ.

3. HUYGENS’ PRINCIPLE AND HADAMARD EXPANSIONS

In this section we shall look for fundamental solutions of Dirac operators. Afundamental solution

for �∂ + v is a solution of(�∂ + v)� = δy , whereδy denotes Dirac-delta distribution supported at

an arbitrary pointy in space-time.
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Let λ(x, y) = √
(xµ − yµ)(xµ − yµ) denote the Minkowski distance between two pointsx

andy.

The first important concept to be recalled is the so-called Riesz kernel. It was introduced by

M. Riesz in order to unify the treatment of elliptic and hyperbolic problems. They are given by

distributions inD′(Rn+1) defined first forRe(α) sufficiently large by

�α =
{

N(α)λα , if (xµ − yµ)(xµ − yµ) ≥ 0

0 , otherwise.

Here, the normalizations constantN(α) is given by

N(α) = [2α+nπ(n−1)/2�(
α + n + 1

2
)�(

α

2
+ 1)]−1 .

Then,�α is extended analytically for all values ofα in the complex plane by means of��α =
�α−2 , which is satisfied for allα with sufficiently large real part. It is not hard to check that

�−n−1 = δy . See (Folland 1997).

We shall say that a fundamental solution� obeysHuygens’ principle if supp � ⊂ C+(y) ∀y ∈
R

n+1.

Adapting Hadamard’s seminal idea from the wave operator case to the one at hand, we look

for series expansion for the fundamental solution

� =
∞∑

m=0

�∂−m"−α0sm =
∞∑

m=0

{
"α0+2ms2m + �α0+2ms2m+1

}
,

wheresm is a matrix coefficient,α0 → −n + 1, "α = �∂�α, which we call Dirac kernels, and�α

are Riesz kernels. It can be shown that"α satisfies Huygens’ property forα = 0,−2,−4, · · · ;

while �α does it forα = −2,−4, · · · .

If � is a fundamental solution, using the properties of Riesz and Dirac kernels, we have the

Hadamard’s recursion for the coefficientssm

s0 + 2

α0 + n − 1
(xµ − yµ)(∂µ + aµ)s0 = 1 , α0 → −n + 1 , (1)

s2m+1 = (�∂ + v)s2m , (2)

s2m + 1

m
(xµ − yµ)(∂µ + aµ)s2m = −(�∂ + v)s2m−1 . (3)

In all these casessm should be smooth (in particular whenyµ → xµ) and we impose normalization

s0(y, y) = 1.

We solve equation (1)

s0(x, y) = exp

(
−

∫ 1

0
(xµ − yµ)aµ(y + z(x − y))dz

)
.
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An important property of this series is that it is unique, provided we requiresm to be smooth. The

uniqueness for (2) is trivial. In the case of (3) it should be proved. Lets1 ands2 be two different

solutions of (3). So, the differences1 − s2 = S2m is smooth and satisfies

S2m + 1

m
(xµ − yµ)(∂µ + aµ)S2m = 0 .

We find that

S2m = S̃ exp

(
−

∫ 1

0
(xµ − yµ)aµ(y + z(x − y))dz

)
,

with S̃ satisfying

S̃ + 1

m
(xµ − yµ)∂µS̃ = 0 .

The only smooth solution in the vicinity of the vertexy is given byS̃ = 0, thenS2m = 0.

Bearing in mind this fact it is easy to prove the equivalence between Huygens’ principle and

the truncation of the Hadamard series:

Remark 1. A Dirac operator in the form�∂ + v possesses Huygens’ property in odd spatial

dimensionn ⇐⇒ its Hadamard series truncates atn, i.e,sm = 0 for m ≥ n.

Proof. Proving this remark is quite simple. In the⇐ direction, it follows from the properties

of Dirac and Riesz kernels. In the other direction, it is a consequence of the uniqueness of the

Hadamard expansion. �

4. HUYGENS’ PRINCIPLE IN AN ELECTROMAGNETIC FIELD

In this section we shall consider potentials of the formv = aµγ
µ.

Potentials of the formaµγ
µ are calledelectromagnetic potentials because they correspond

to including an electromagnetic field in the physical situation under consideration, except for a

multiplication by the complex uniti. If the physical potential is given by the ‘‘four-vector’’Aµ

the new momentum is given byi∂µ − Aµ, so the ‘‘physical case’’, in the expression ofv, is given

by purely imaginary components.

If we write the potential as a 1-forma = aµdx
µ, the electromagnetic field is given by its

exterior derivative

F = da .

The 2-formF is often described by its tensor components,

Fµν = ∂µaν − ∂νaµ .

Electromagnetic fields obey Maxwell’s equation, which in vacuum are written

∂µFνµ = jν ∂[µFνρ] = 0 .
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In these equationsjν is the density of electrical charge and current, and the notation[·] means

that we sum over all the permutation of the indexes in brackets, taking in consideration the parity

of the permutation (For example:B[µν] = Bµν − Bνµ, B[µCν] = BµCν − BνCµ andB[µCνρ] =
BµCνρ + BνCρµ + BρCµν − BµCρν − BνCµρ − BρCνµ.). The second equation is automatically

obeyed, as long asFµν is obtained from a potential. Inside matter the second Maxwell equation

remains valid (which implies, from Poincaré’s lemma that, locally, the electromagnetic field can

be obtained from a potential).

In classical physics the field at each point is observable, while the potentials are considered

just a technique for calculating such field, having no separate reality (This changes dramatically

in Quantum Mechanics, as can be seen by the Aharonov-Bohm effect. See, for example (Sakurai

1967)). This means that adding an exact formdθ to the potential should not change the field (which

is obvious from the fact thatd2=0). In terms of its components, this means to change fromaµ

to a′
µ = aµ + ∂µθ . As the Huygens’ property is a physically sound problem, the validity or not

of the Huygens’ principle cannot depend on the particular choice of the electromagnetic gauge

(to understand the idea that Huygens’ principle is physically observable we should understand the

meaning of,, the solution of Dirac equation. Following Section 1.7.3 of (Thaller 1992), we say

that for every Borel-measurable setB ∈ R
3 the probability of finding the particle inB is given by

〈,,E(B),〉, whereE(B) is a projection operator inB and the inner product should be interpreted

as Hilbert space inner product where the Dirac operator is acting and the solution, lives. In

simpler words, we have a non-zero probability of finding the particle only on the support of the

wave-function.).

The change of the gauge is a particular kind of trivial transformation, as defined in the intro-

duction. We see immediately

�∂ + (aµ + ∂µθ)γ
µ = e−θ (�∂ + aµγ

µ)eθ ,

so the change of the gauge does not change the validity of the Huygens’ principle.

Thus, the invariance of Huygens’ principle by change of gauge can be concluded by two

distinct reasonings, coming from two different points of view, historically unrelated. We point out

that, as far as we know, the fact that the change of electromagnetic gauge is a particular case of

trivial transformations as defined by Hadamard was never mentioned in the literature.

After these remarks we are ready to state:

Theorem 1. If a Dirac operator �∂ + aµγ
µ obeys Huygens’ property for real or purely imaginary

potentials aµ in 3+1 dimensions, then it is equivalent to the free operator �∂ .

Proof. Let us define

fµ(x, y)
def= aµ(x) − ∂µ

∫ 1

0
(xν − yν)aν(ξ(z))dz ,

whereξ(z) = y + z(x − y). The first remark is that

∂µfν − ∂νfµ = ∂µaν − ∂νaµ ,

An. Acad. Bras. Cienc., (2001)73 (4)



HUYGENS’ PRINCIPLE FOR DIRAC OPERATORS 489

which shows thatf anda are gauge equivalent. Explicitly, the change of gauge is given by

�∂ + fµγ
µ = e−θ (�∂ + aµγ

µ)eθ ,

where

θ(x, y)
def= −

∫ 1

0
(xµ − yµ)aµ(ξ(z))dz .

From now on, the calculations will be made in the new gauge.

The functionsfµ can be re-written as

fµ(x, y) =
∫ 1

0
(xν − yν)Fνµ(ξ(z))z dz , (4)

and, so, by the anti-symmetry of the tensorFµν we have

(xµ − yµ)fµ(x, y) = 0 ∀x, y ∈ R
4 . (5)

Since Hadamard’s recursion stops at the second term, Hadamard’s recursion becomes

s0 + 2

α0 + n − 1
(xµ − yµ)∂µs0 = 1 , α0 → −n + 1 ,

s1 = (�∂ + fµγ
µ)1 = γ µfµ

def= f .

s2 + (xµ − yµ)∂µs2 = −(�∂ + f )f ,

(�∂ + f )s2 = 0 .

(6)

The first equation can be easily solved to gets0 = 1.

We shall study compatibility conditions between the last two equations. We start applying

Dirac operator to the first:

2�∂u2 + (xµ − yµ)∂µ �∂u2 = −�∂(�∂ + f )f .

With the second condition this can be written

2f u2 + (xµ − yµ)(∂µf )u2 + f (xµ − yµ)∂µu2 = �∂(�∂ + f )f .

Applying ∂ν to equation (5) we find that(xµ − yµ)∂νfµ = −fν which allows one to write the

equation

(xµ − yµ)∂µf = γ µ(xν − yν)Fνµ − f .

Finally we write

γ µ(xν − yν)Fνµu2 = (�∂ + f )( �∂ + f )f . (7)

The RHS of last equation is

(�∂ + f )(�∂ + f )f = �f + �∂f 2 + f �∂f + f 3 .
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For x = y, it is immediate to see thatf (x, y) = 0. So, the only non-zero term inx = y in the

RHS is�f . Actually,

�fµ = ∂ρ∂ρ

∫ 1

0
(xν − yν)Fνµ(ξ)z dz = 2

∫ 1

0
∂ρFρµ(ξ)z

2dz +
∫ 1

0
�Fνµ(ξ)z

3dz .

Lettingy → x

�f (x, x) = 2

3
γ µ∂νFνµ(x) .

As the LHS of equation (7) is zero at(x, x), we conclude that

∂νFµν = 0 µ = 0, · · · , n (8)

is a necessary condition for the operator�∂ + aµγ
µ to be a Huygens one. This can be interpreted

as the absence of sources.

To get a second necessary condition, we apply

∂̃η
def= ∂

∂yη

to the LHS of equation (7) and evaluate it at(x, x). We get

∂̃η�f (x, x) = 1

6
γ µ∂η∂

ρFρµ − 1

4
γ µ�Fηµ ;

∂̃η �∂f (x, x)2 = 2γ µ(∂µfν)(x, x)(∂̃ηf
ν)(x, x) ;

∂̃η(f �∂f )(x, x) = (∂̃ηf )(x, x)( �∂f )(x, x) ;
∂̃ηf (x, x)3 = 0 .

Taking into account equations (4) and (8) the above system can be re-written as

∂̃η(�∂ + f )2f (x, x) = 1

2
γ µ(F 2)µν − 1

4
γ µγ νγ ρFηµFνρ ,

where(F 2)µν indicates the(µ, ν) component of the tensor given by the square of the matrixF ,

(F 2)µν
def= FµρF

ρ
ν .

The RHS of equation (7) gives

∂̃η[γ µ(xν − yν)Fνµu2](x, x) = −γ µFηµu2(x, x) ,

andu2(x, x) can be easily obtained from equation (6):

u2(x, x) = −(�∂ + f )f (x, x) = 1

2
γ µγ νFµν .

We gather all this information in a single equation, written in the Clifford base as

γ µ(F 2)µη + 3

4

∑
µ<ν<ρ

γ µγ νγ ρFη[µFνρ] = 0 ,
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where, as before[·] means that we sum over all the permutation ofµ, ν andρ taking in consideration

the parity of the permutation.

From the independence of the generators of the Clifford Algebra, we conclude that

(F 2)µν = 0 and Fη[µFνρ] = 0 ∀µ, ν, ρ, η = 0, · · · ,3 .

Let us write(F 2) componentwise:

(F 2)µν = FµρF
ρ
ν =

=




E2
x + E2

y + E2
z EzBy − EyBz ExBz − EzBx EyBx − ExBy

EzBy − EyBz B2
y + B2

z − E2
x −ExEy − BxBy −ExEz − BxBz

ExBz − EzBx −ExEy − BxBy B2
x + B2

z − E2
y −EyEz − ByBz

EyBx − ExBy −ExEz − BxBz −EyEz − ByBz B2
x + By − E2

z


 ,

whereEx , Ey , Ez, Bx , By andBz are thex, y andz components of the electric and magnetic fields,

respectively.

From the conditionF 2 = 0 and the hypothesis that all the potentials are either real or purely

imaginary (so are the fields), we conclude thatEx = Ey = Ez = Bx = By = Bz = 0, soFµν = 0

anda is gauge equivalent to the zero field. �

Remark 2. If we relax the hypothesis that the potential is real or purely imaginary, then we can

find a large class of Huygens potentials. One family of examples is given by

a0 = −a3 =
∫

R

ε(ω)eiω(x3−x0)(x1 − ix2)dω a1 = a2 = 0 ,

whereε(ω) is any function such thatε(ω) = ε∗(−ω) and∗ denotes complex conjugation.

5. CONCLUSIONS

Huygens’ principle has been subject of extensive investigation in recent times. For reviews in

two different directions, see (Berest 1998) and (Belger et al. 1997). One of its most striking

characteristics is its relations to integrability (see (Berest and Veselov 1994)). In the wave operator

case, potentials of Huygens’ type are, after a suitable change of variables, solutions of the Korteweg-

de Vries equation

ut = uxxx − 6uux .

For Dirac operators, the relation between Huygens’ principle and integrability involves the

AKNS (afterAblowitz, Kaup, Newell and Segur) hierarchy, which in turn is an example of integrable

matrix systems. This is proved in (Chalub and Zubelli 2001b).

A natural follow up of the present work is to relate Huygens’ principle for Dirac operators

associated to the electromagnetic field and integrable systems.
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RESUMO

Neste artigo estudamos o comportamento das soluções da equação de Dirac sem massa (‘‘massless Dirac

particles’’) na presença de um campo eletromagnético. Nosso resultado (Teorema 1) indica que para campos

reais ou puramente imaginários todo operador de Dirac que obedece ao princípio de Huygens é equivalente

ao operador trivial, equivalência dada por mudanças de variáveis e multiplicação, à direita ou esquerda, por

funções não singulares.

Palavras-chave: princípio de Huygens, operadores de Dirac, campos eletromagnéticos, problema de

Hadamard.
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