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ABSTRACT

The biological mechanisms underlying the neuropathology of Alzheimer’s disease (AD) are complex, as

several factors likely contribute to the development of the disease. Therefore, it is not surprising that a

number of different possible therapeutic approaches addressing distinct aspects of this disease are currently

being investigated. Among these are ways to prevent amyloid aggregation and/or deposition, to prevent

neuronal degeneration, and to increase brain neurotransmitter levels. Here, we discuss possible roles of

endogenous modulators of Aβ aggregation in the physiopathology of AD and some of the strategies currently

under consideration to interfere with brain levels ofβ-amyloid, its aggregation and neurotoxicity.
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1. INTRODUCTION

Alzheimer’s disease (AD) is characterized by a slow,

progressive decline in cognitive function and be-

havior. Progression of the disease leads to marked

deterioration in memory, judgement, attention and

speech and to behavioral changes including depres-

sion and psychiatric disturbances. AD poses a sig-

nificant challenge to health care systems worldwide.

It is estimated that about 20 million people currently

suffer from dementia caused by AD (Haass and De

Strooper 1999), with 20% of the individuals above

75 years old (and∼ 50% of those above 85) at risk

of developing the disease. Despite considerable ef-

forts aiming at understanding the molecular basis

and physiopathology of AD, there are currently no
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effective, clinically accepted treatments to cure it or

stop its progression.

The β-amyloid peptide (Aβ) plays a central

role in the neuropathology of AD (Selkoe 1994,

1999, Yankner 1996, Verbeek et al. 1997). Aβ is

a peptide of 39-43 amino acid residues produced by

proteolytic cleavage of a large precursor known as

the amyloid precursor protein (APP), encoded by a

gene located on chromosome 21 in humans (Glen-

ner and Wong 1984) (Fig. 1). APP is an integral

membrane glycoprotein, with a short cytoplasmic

C-terminal tail and a large extracellular N-terminal

domain (Kang et al. 1987). Enzymes known as sec-

retases are responsible for proteolysis of APP and

release of Aβ (Verbeek et al. 1997). The first 28

amino acid residues of Aβ originate from the ex-

tracellular domain of APP and the remaining 11-15

residues originate from the transmembrane region

of APP (Kang et al. 1987). Aβ is released follow-
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ing cleavage of APP at positions 597 and 637-639

by β- andγ -secretases, respectively (Verbeek et al.

1997, Nunan and Small 2000).β-secretase has re-

cently been identified as an aspartic protease (Vassar

et al. 1999, Yan et al. 1999, Sinha et al. 1999, Lin

et al. 2000).γ -secretase may cleave APP at the C-

terminal end of Aβ at four different positions, giv-

ing rise to Aβ peptides that are 39-43 amino acids

long. The exact position of C-terminal cleavage ap-

pears critical to the development of AD, since gen-

eration of the more amyloidogenic peptides (such as

Aβ1-42 or Aβ1-43) is strongly correlated with the de-

velopment of AD (Scheuner et al. 1996, Small and

McLean 1999, Nunan and Small 2000). The precise

molecular identity ofγ -secretase remains elusive.

However, recent evidence suggests that presenilins

1 and 2, acting in association with another protein

known as nicastrin, may constitute theγ -secretase

complex responsible for the release of Aβ (Yu et al.

2000).

Aβ is the major protein constituent of the senile

plaques found in the brains of AD patients (Glenner

and Wong 1984, Masters et al. 1985). Aβ forms

characteristic non-covalent fibrillar aggregates both

in vitro andin vivo, and its aggregation and ensuing

amyloid deposition in the brain have been related

to AD neurotoxicity (Pike et al. 1993, Lorenzo and

Yankner 1994, Geula et al. 1998) (Fig. 1).In vitro,

amyloid fibril formation can be influenced at vari-

ous stages by factors that either stimulate or inhibit

aggregation. Such factors include peptide concen-

tration, changes in its primary sequence, pH and in-

teractions with various biomolecules (for examples,

see Levy et al. 1990, Wisniewski et al. 1991, Fraser

et al. 1991, 1992, 2001, Inouye et al. 1993, Evans

et al. 1995). It is likely that the development of

amyloid plaquesin vivo also depends on the com-

bined actions of at least some of these components.

Thus, identifying physiological factors involved in

Aβ aggregation and the interactions that are impor-

tant for amyloid stability may reveal possible targets

for therapeutic intervention and prevention of amy-

loid aggregation and toxicity.

2. PHYSIOPATHOLOGICAL MODULATORS OF
AMYLOID AGGREGATION

Many different biomolecules (including proteins,

proteoglycans, lipids, metals and other small

molecules) have been reported to be associated with

amyloid plaques in AD brains. While it is possible

that some of these molecules may be related to sec-

ondary events in amyloid deposition,in vitro andin

vivo studies have demonstrated that many of them

may actually regulate Aβ aggregation (Table I). It

should be noted that a delicate balance exists be-

tween Aβ production, aggregation and clearance in

the brain, so that even agents that have a relatively

small effect on Aβ aggregationin vitro may play

significant roles in the regulation of those eventsin

vivo.

It has been shown that certain plasma proteins,

at physiological concentrations, control Aβ poly-

merization (Bohrmann et al. 1999). Albumin,α1-

antitrypsin, IgG, and IgA are potent inhibitors of

Aβ fibrillogenesis, with IC50 values substantially

lower than their plasma concentrations (Bohrmann

et al. 1999). However, these proteins are present at

low concentrations in cerebrospinal fluid, and pos-

sibly have little or no effect on Aβ aggregation.

For example, although albumin is the most abun-

dant protein in cerebrospinal fluid, it is present at a

concentration below its IC50 value, suggesting that

it might cause only partial inhibition of Aβ poly-

merization (Bohrmann et al. 1999). The acute

phase response protein,α1-antichymotrypsin, is up-

regulated as a result of inflammatory processes and

belongs to the serpin family of serine protease in-

hibitors. Co - localization ofα1 - antichymotrypsin

with amyloid deposits has been reported exclusively

in Alzheimer’s disease (Abraham et al. 1988), sug-

gesting a specific interaction withAβ. When present

at high concentrations,α1-antichymotrypsin en-

hances amyloid aggregation (Ma et al. 1994, Janci-

auskiene et al. 1996). By contrast, at low concen-

trationsα1-antichymotrypsin inhibits amyloid for-

mation and disaggregates previously formed aggre-

gates (Fraser et al. 1993, Eriksson et al. 1995,
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Fig. 1 – Proposed topology of APP in the plasma membrane, Aβ production and possible

mechanisms of neurodegeneration.Upper panel: The plasma membrane-anchored APP (shown

in pink) is cleaved byβ- andγ -secretases (vertical arrows) to yield the 39-43 amino acid residue

Aβ peptide fragment (red). Aggregation of Aβ is stimulated by physiopathological modulators

(as discussed in the text).Lower panel: Aggregated Aβ leads to neurodegeneration through a

number of possible mechanisms, including membrane damage, binding to cell-surface receptors

and activation of intracellular signal transduction events and/or alteration of ion homeostasis.

These events ultimately lead to hyperphosphorylation of tau and cell death.
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TABLE I

Physiopathological modulators of Aβ aggregation1

Modulator Aβ secondary Effect on Aβ interaction

structure Aβ aggregation domain

Plasma proteins

albumin n/d ↓ 1-28

α1-antitrypsin n/d ↓ 11-28

IgG n/d ↓ n/d

IgA n/d ↓ n/d

α1-antichymotrypsin random ↑ / ↓ 11-28, 29-42

α2-macroglobulin random ↓ 11-28

serum amyloid A n/d ↑ 1-28

Glicosaminoglycans

heparan sulfate β-sheet ↑ 13-16

keratan sulfate β-sheet ↑ n/d

dermatan sulfate β-sheet ↑ n/d

chondroitin sulfate β-sheet ↑ 13-16

Apolipoproteins

apoE β-sheet ↓ / ↑ 29-42

apoJ β-sheet ↓ / ↑ 29-42

apoA-1 n/d ↓ n/d

Complement C1q n/d ↑ 1, 3, 7, 11

Acetylcholinesterase n/d ↑ n/d

Laminin n/d ↓ n/d

Entactin random ↓ n/d

Phospholipids2

PS random ↑ 29-42

PI β-sheet ↑ 29-42

PC random no change n/d

PE random no change n/d

PA random ↑ 29-42

IS α-helix stabilize small n/d

aggregates

Lukacs and Christianson 1996). In the latter case,

independent studies have shown that interactions be-

tweenα1-antichymotrypsin and Aβ sequences 11-

28/29-42 are involved in inhibition of fibrillogene-

sis (Lukacs and Christianson 1996, Janciauskiene

et al. 1998). Recent work has also shown that

transgenic mice expressing human APP and over-

expressingα1-antichymotrypsin develop a signifi-

cantly higher number of amyloid plaques, and at

earlier ages than mice expressing only human APP
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TABLE I ( continuation )

Modulator Aβ secondary Effect on Aβ interaction

structure Aβ aggregation domain

Gangliosides

GM1 β-sheet/α-helical ↓ n/d

GM2 random no change n/d

GM3 random no change n/d

GD1a random no change n/d

GT1b random no change n/d

Glicerol/TMAO β-sheet ↑ n/d

Metals

Zn2+ β-sheet ↑ His13, His14

Cu2+ β-sheet ↑ His13

Fe3+ β-sheet ↑ His13

1Appropriate references are cited in the text (Section 2).2PS, phosphatidylserine; PI,

phosphatidylinositol; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA,

phosphatidic acid; IS, inositol stereoisomers.

(Nilsson et al. 2001). Another acute fase protein,

α2-macroglobulin, associates with Aβ, prevents fib-

ril formation (Hughes et al. 1998) and attenuates

β-amyloid peptide neurotoxicity in cultured rat fe-

tal cortical neurons (Du et al. 1998).

Different types of glycosaminoglycan (GAG)

chains, including heparan sulfate (Snow et al. 1988),

keratan sulfate (Snow et al. 1996), dermatan sulfate

(Snow et al., 1992) and chondroitin sulfate (DeWitt

et al. 1993) are found in association with amyloid

plaques inAD.A number of studies have shown that

GAGs promote formation and/or stabilize amyloid

fibrils (Fraser et al. 1992, 2001, Buee et al. 1993a,

b, Brunden et al. 1993, Snow et al. 1995, Castillo

et al. 1997, Watson et al. 1997, Gupta-Bansal and

Brunden 1998, Cotman et al. 2000). The effects of

GAGs on fibrillogenesis appear to be mediated by

electrostatic interactions betweenAβ and the highly

sulfated chains of GAGs (McLaurin et al. 1999).

These interactions take place at early stages during

the process of fibril formation and result in the struc-

tural conversion of Aβ to β-sheet structures (Sipe

1992, McLaurin et al. 1999). The importance of

sulfated groups in amyloid aggregation was high-

lighted by experiments showing a decrease in fib-

ril formation in the presence of desulfated heparan

sulfate (Castillo et al. 1999). Thus, it is believed

that understanding the interactions between Aβ and

sulfated GAGs may lead to effective inhibitors of

amyloid aggregation (Fraser et al. 2001).

Apolipoprotein E (ApoE) isoforms appear to

differentially influence Aβ aggregation and neuro-

toxicity, either facilitating or inhibiting aggregate

formation in vitro (Wood et al. 1996, Moir et al.

1999, Drouet et al. 2001). Metal-induced aggrega-

tion of Aβ has been studied in the presence of pu-

rified ApoE2, ApoE3, and ApoE4 (used at the con-

centrations at which they are found in cerebrospinal

fluid) (Moir et al. 1999). This study showed that

metal-induced aggregation of Aβ was highest for

both zinc and copper in the presence ofApoE4. A re-

cent study has shown thatApoE2 andApoE3, but not

ApoE4, protect cortical neurons against neurotoxic-

ity induced byAβ (Drouet et al. 2001). Apolipopro-
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tein J (clusterin) is a multifunctional apolipoprotein

made by cells in the brain and many other locations

and is associated with aggregated Aβ in senile and

diffuse plaques of Alzheimer’s disease (AD). It has

been shown that ApoJ partially blocks the aggre-

gation of Aβ (Oda et al. 1995, Matsubara et al.

1996). In addition, when complexed to ApoJ, Aβ

is more resistant to proteolysis by trypsin and chy-

motrypsin (Matsubara et al. 1996). Apolipoprotein

A-I (ApoA-I), a constituent of high-density lipopro-

tein complexes, has recently been shown to directly

interact with the amyloid precursor protein (APP)

and to inhibit Aβ aggregation and toxicity (Kolda-

mova et al. 2001).

Activation of the complement pathway has

been proposed as one of the mechanisms of neuro-

degeneration inAlzheimer’s disease. This activation

is a result of the binding of C1q to Aβ (Webster

et al. 1995, Head et al. 2001, Tacnet-Delorme et

al. 2001). It has been shown that C1q enhances

Aβ aggregation at physiological concentrations, and

that the kinetics of this enhancement are consistent

with a nucleating interaction (Webster et al. 1995).

Acetylcholinesterase is an enzyme involved in

the hydrolysis of the neurotransmitter acetylcholine

and consistently co-localizes with amyloid deposits

(Alvarez et al. 1997, Talesa 2001).In vitro, acetyl-

cholinesterase promotes aggregation ofAβ by form-

ing a complex with the growing fibrils (Alvarez et

al. 1997). Recently, it has been shown that acetyl-

cholinesterase interacts with Aβ via a hydropho-

bic domain close to the peripheral anionic binding

site of the enzyme (De Ferrari et al. 2001). Base-

ment membrane components, including entactin and

laminin, also co-localize with senile plaques. La-

minin inhibits Aβ fibril formation promoted by

ApoE4 in vitro (Monji et al. 1998), and, more re-

cently, entactin was also found to inhibit Aβ aggre-

gationin vitro (Kiuchi et al. 2001).

Interactions between Aβ and phosphatidyli-

nositol accelerate amyloid fibril formation, presum-

ably through the structural conversion ofβ-amyloid

from a random coil toβ-sheet structure (Terzi et

al. 1994, 1995, McLaurin and Chakrabartty 1996,

1997). By contrast, inositol stereoisomers (sug-

ars involved in lipid biosynthesis, signal transduc-

tion and control of osmolarity) stabilize small Aβ

aggregates, blocking the progress of fibril forma-

tion (McLaurin et al. 1998, 2000). Formation of

a complex between Aβ and inositol significantly

atennuates the toxicity of Aβ to neurons in culture

(McLaurin et al. 2000). Inositol stereoisomers are

phyisiological molecules that cross the blood-brain

barrier, thus representing possible pharmacological

tools in AD.

Gangliosides induce a distinctα-helical/β-

sheet conformation of Aβ at neutral pH (McLaurin

and Chakrabartty 1996). Subsequent work by the

same group showed that the interaction of Aβ with

glycolipids, such as gangliosides of the GM1 type,

prevents amyloid fibril formation and that the sialic

acid moiety of gangliosides is necessary for the in-

duction ofα-helical structure (McLaurin et al. 1998,

2000).

Trimethylamine-N-oxide, a physiological os-

molyte, and glycerol induce the conversion of Aβ

from random coil toβ-sheet structure, leading to the

formation of tetrameric Aβ globular aggregates and

early-stages protofibrils that are later transformed

into mature fibrils (Yang et al. 1999).

Metals such as Zn2+, Fe3+ and Cu2+ are also

associated with amyloid deposits found in AD pa-

tients (Lovell et al. 1998). The precise sources of

these ions are not yet completely understood, but

there is evidence indicating that they are released

from metalloproteins under slightly acidic condi-

tions during inflammatory responses (Brieland and

Fantone 1991, Lamb and Leake 1994). A number

of studies have shown that Zn2+, Ni2+ or Cu2+ in-

duce fast amyloid aggregationin vitro and in vivo

(Bush et al. 1994, Clements et al. 1996, Huang

et al. 1997, Brown et al. 1997, Atwood et al.

1998). Aminoacid replacement studies have iden-

tified His13 as the metal ion ligand of Aβ (Liu et

al. 1999). Replacement of His13 by Arg inhibits

the structural transition from random coil toβ-sheet

and fibrillogenesis (Liu et al. 1999). Recent stud-

ies have shown that Cu2+ chelators, such as trien-
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tine, penicilamine and bathophenantroline can be

used to solubilize Aβ aggregates extracted in PBS

buffer from AD brains (Cherny et al. 1999, 2000).

These studies suggest that the combined properties

of metal chelators and agents capable of dissolving

Aβ aggregates can be complementary in the treat-

ment of Alzheimer’s disease (Cherny et al. 1999,

2000, Cuajungco et al. 2000).

3. TARGETTING β-AMYLOID PRODUCTION AND
AGGREGATION AS POSSIBLE THERAPEUTIC

APPROACHES IN AD

As noted above, the search for agents capable of

blocking, decreasing or disrupting amyloid aggre-

gation has become a focus of intense research inter-

est. In this regard, a significant challenge consists in

finding agents that interfere with amyloid aggrega-

tion and, at the same time, are non-toxic, capable of

crossing the blood-brain barrier and stable against

proteolytic degradation in plasma and cerebrospinal

fluid. To date, several agents capable of interfering

with β-amyloid aggregation have been character-

ized, including low molecular weight organic com-

pounds, hormones, antibodies and peptides. Some

of the properties, advantages and possible caveats of

such agents are discussed below.

3.1. Monoclonal Antibodies

Early studies showed that immune complexes con-

taining two monoclonal antibodies (6C6 and 10D5)

raised against the N-terminal region of Aβ disag-

gregated previously formed amyloid fibrils and pro-

tected neurons in culture from the toxic effects of

Aβ (Solomon et al. 1996, 1997). Further studies

showed that the amino acid sequence EFRH, cor-

responding to residues 3-6 of theβ-amyloid pep-

tide, represents the epitope for monoclonal antibod-

ies 6C6 and 10D5, acting as a regulatory site that

controls the process of amyloid aggregation (Frenkel

et al. 1998, 1999). More recently, it has been found

that a new antibody, named 508F, directed at the

same epitope prevents the neurotoxic effects of Aβ

and disrupts amyloid fibrilsin vitro (Frenkel et al.

2000).

3.2. Peptides

Based on their complementarities to specific Aβ se-

quences, two peptides with sequences RDLPFFD-

VPID and LPFFD have been designed (Soto et al.

1996). Due to the incorporation of proline residues

in their sequences, these peptides exhibit low

propensities to formβ-sheet structures. Interest-

ingly, such "β-sheet breaker peptides" were found to

inhibit the fibrillogenesis of Aβ and to dissolve pre-

formed fibrils (Soto et al. 1996, 1998). The LPFFD

peptide also prevents the neurotoxicity of Aβ in pri-

mary neuronal cultures, reduces thein vivo depo-

sition of Aβ in a cerebral model of amyloidosis in

rats (Soto et al. 1998), and reduces the extension of

IL-1 positive microglial cells surrounding the amy-

loid deposits (Sigurdsson et al. 2000). Interestingly,

β-sheet breaker peptides have also been shown to

reverse conformational changes of the prion protein

involved in transmissible spongiform encephalopa-

thies (Soto et al. 2000). Possible problems as-

sociated with the use of peptides in the treatment

of diseases of the central nervous system are re-

lated to their rapid proteolytic degradation in the

plasma and/or cerebrospinal fluid, and low perme-

ability across the blood-brain barrier. In this re-

gard, a recent study has shown that covalent incor-

poration of polyamines to an 11-amino acid long

β-sheet breaker peptide leads to an increase in both

the permeability across the blood-brain barrier and

resistance to proteolytic degradation (Poduslo et al.

1999).

3.3. Hormones

The pineal hormone, melatonin, is involved in the

regulation of cyrcadian rythms. Melatonin levels

are known to decrease in normal aging, and are

specially low in Alzheimer’s disease (Skene et al.

1990). Recent studies have shown that melatonin in-

teracts with Aβ1-40 and Aβ1-42, inhibiting fibrilloge-

nesis (Pappolla et al. 1998) and preventing cellular

death in culture, oxidative damage and the increase

in intracellular Ca2+ induced by Aβ (Pappolla et al.

1997, 2000). Additional studies have shown that
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melatonin protects platelet membranes from lipid

peroxidation induced by Aβ (Daniels et al. 1998),

and cells in culture from mitochondrial oxidative

damage induced by Aβ (Pappolla et al. 1999). The

indol derivative, 3-indol-propionic acid, which is

structurally related to melatonin, also exhibits neu-

roprotective action against Aβ toxicity (Chyan et al.

1999) and a recent study has shown that melatonin

reduces the secrection of interleukines 1 and 6 in

mouse brain slices (Clapp-Lilly et al. 2001).

Possible biological effects of estrogen on neu-

rotransmitter activity and neuronal development

have been proposed (for a review, see Alonso-Solis

et al. 1996). These studies suggest that estrogen

(specially its prevalent form in human ovaries, estra-

diol) exihibits antioxidant properties and may affect

relevant events in Alzheimer’s disease (Behl et al.

1995, Kawas et al. 1997). In addition, estrogen has

been shown to regulate APP processing, caus-

ing increased secretion of the non-amyloidogenic

fragment sAPPα and a concomitant decrease in

β-amyloid peptide formation (Jaffe et al. 1994, Xu

et al. 1998, Manthey et al. 2001). This effect ap-

pears to be mediated via the extracellular-regulated

kinase 1 and 2 (ERK1/2) pathways (Manthey et al.

2001). Estrogen protects neurons in culture from

the toxic effects of exogenously added Aβ (Gridley

et al. 1997, Mook-Jung et al. 1997, Zhang et al.

2001) and protects neuronal cells from Aβ-induced

apoptotic cell death (Hosoda et al. 2001). A recent

study has shown that estrogen enhances Aβ uptake

in human cortical microglial cultures, suggesting an

important role of estrogen in Aβ peptide clearance

(Li et al. 2000). In line with this idea, another study

has shown that testosterone also interferes withAPP

processing, leading to an enhancement of sAPPα

production and a reduction in Aβ levels in neurons

in culture (Gouras et al. 2000). These results are in

accordance with epidemiological studies that sug-

gest that women that received estrogen replacement

therapy in the post-menopausal phase are less sucep-

tible to the development ofAlzheimer’s disease than

women not receiving estrogen (Kawas et al. 1997,

Seshadri et al. 2001). However, the protective role

of estrogen inβ-amyloid toxicity is still controver-

sial, as other epidemiological studies have failed to

identify a lower risk of developing Alzheimer’s dis-

ease in women that received hormonal replacement

therapy (Seshadri et al. 2001).

3.4. Inhibition of Aβ Peptide Formation

Current strategies to decrease or preventβ-amyloid

peptide formation are based on the inhibition of

γ - andβ-secretase activities or enhancement ofα-

secretase activity. Since Aβ formation preceeds

amyloid plaque formation and neuronal death,

blocking its production may constitute an effective

therapeutic approach in AD.

Activation of α-secretase, which forms the

sAPPα fragment, may be used as a strategy to pre-

vent APP processing byβ- andγ -secretases. In this

regard,in vitro studies have shown that phosphatase

inhibitors, protein kinase C activators and acetyl-

cholinesterase inhibitors enhanceAPP clivage byα-

secretase, increasing the release of sAPPα (Gandy

and Greengard 1994, da Cruz e Silva et al. 1995,

Giacobini 1997). Nevertheless, it is believed that

different proteases (including desintegrin, metallo-

proteases, TNF-α, ADAM-17 and ADAM-10) con-

tribute to theα-secretase activity (Nunan and Small

2000). Thus, it seems dificult to specifically regu-

late, from the pharmacological point of view, this

pathway of APP proteolysis.

β - secretase ( BACE ) has only recently been

identified (Sinha et al. 1999, Vassar et al. 1999,

Yan et al. 1999) and it remains unclear whether pre-

senilins and nicastrin are required components for

γ -secretase activity. Therefore, studies involving

pharmacological inhibition of these enzymes have

mainly been carried out in an indirect way, through

the observation of the decrease in Aβ production in

the presence of certain inhibitors (e.g., gelatinase

A, bafilomicin A, calpain inhibitor, brefeldin and

NH4Cl) (Asami-Odaka et al. 1995, Knops et al.

1995, Higaki et al. 1995, Citron et al. 1996).

Recent studies have identified new inhibitors

of BACE, including the protease inhibitor MG132

and calcium ionoforeA23187 (Steinhilb et al. 2000,
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Sennvik et al. 2001). In addition, the proteolytic do-

main structure ofβ-secretase complexed to an oc-

tapeptide inhibitor was recently solved (Hong et al.

2000). BACE has structural homology to the HIV

protease, and, thus, many inhibitors of the latter can

modulate BACE activity (Nunan and Small 2000).

Transgenic mice over-expressing APP and deficient

in BACE expression are viable, present normal phe-

notype and a decrease inAβ peptide production (Luo

et al. 2001), suggesting thatin vivo inhibition of

BACE may be therapeutically valuable. However,

it is important to note that, in humans, BACE can

have other physiological substrates in addition to

APP, and may be involved in important biological

functions that could be affected by the use of in-

hibitors (Nunan and Small 2000).

Recent studies have also identified inhibitors

of γ -secretase activity, including difluoroketone, di-

fluoro alcohol peptideomimetics, a bromoacetamide

derivative, and a benzofenone analog (Seiffert

et al. 2000, Moore et al. 2000). Of consider-

able interest, a very recent study has shown, for

the first time, thein vivo inhibition of γ -secretase

activity through the oral administration of the com-

pound N-[N-[3,5-difluorophenacetyl) -L-alanil]- S-

phenilglycin t- butyl ester to transgenic mice over-

expressing human APP, resulting in the reduction of

Aβ levels in the brain (Dovey et al. 2001). How-

ever, as in the case of BACE, it is not clear whether

the inhibition ofγ -secretase may become a realistic

therapy for Alzheimer’s disease, as these enzymes

can play other important physiological roles in addi-

tion to APP processing andβ-amyloid peptide pro-

duction, and, thus, the inhibition of secretases could

lead to important cell disfunctions.

3.5. Clearance of Aβ

The correct balance between production and cata-

bolism ofAβ appears directly related toAlzheimer’s

disease, as the over-production ofβ-amyloid peptide

is not followed by a parallel increase in its clearance

in both familiar and sporadic forms of AD (Sche-

uner et al. 1996, Hardy 1997, Selkoe 1998, Price et

al. 1998). Furthermore, recent observations suggest

that reduction of Aβ catabolism leads to brain accu-

mulation of this peptide, triggering initial processes

of the disease (Iwata et al. 2000). In this regard, an

interesting therapeutic approach toAD might consist

of increasing the degradation and clearance of Aβ.

However, knowledge of the mechanisms involved in

Aβ degradation and clearance is still limited. Early

studies showed that microglial cells uptake Aβ in

vitro through receptor-mediated mechanisms (Shaf-

fer et al. 1995, Paresce et al. 1996), and that this

process can be slowed down in the presence of pro-

teoglycans (Shaffer et al. 1995). Recently, it has

been shown that the uptake of Aβ by microglia is

induced by a chaperonin, BiP/GRP-78 (Kakimura

et al. 2001). In addition, it has been shown that in-

hibition of Aβ fibrillogenesis by 4’-iodo- 4’-deoxy-

doxorubicin (IDOX) facilitates clearance of the pep-

tide (Merlini et al. 1995).

The insulin degrading enzyme (insulysin) ap-

pears to play an important role in regulating extra-

cellular β-amyloid peptide levels (Vekrellis et al.

2000), by hydrolyzing Aβ into various fragments

that are not neurotoxic (Vekrellis et al. 2000, Mu-

kherjee et al. 2000, Chesneau et al. 2000).α2-

macroglobulin is also known to enhance Aβ clear-

ance via interaction with the LDL receptor related

protein (Qiu et al. 1999, Lauer et al. 2001). On the

other hand, serine protease inhibitors, such asα1-

antichymotrypsin, inhibit the clearance of Aβ both

in vitro andin vivo (Abraham et al. 2000), increas-

ing plaque formation in transgenic mice (Abraham

et al. 2000, Mucke et al. 2000).

Neprilysin, a neutral endopeptidase, has re-

cently been identified as responsible for the ma-

jor Aβ1-42 catabolic pathway in brain parenchyma

(Iwata et al. 2000). Infusion of thiorphan, a

neprilysin inhibitor, in rat brains causes extracel-

lular amyloid deposition of endogenous Aβ (Iwata

et al. 2000, Shirotani et al. 2001). Neprilysin

deficiency resulted in defects both in the degrada-

tion of exogenously administered Aβ and in the

metabolic suppression of endogenous Aβ in a gene

dose-dependent manner (Iwata et al. 2000) and an

inverse association between vulnerability to Aβ de-
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position and immunohistochemical localization of

neprilysin in human cerebral cortex has been re-

ported (Akiyama et al. 2000).

3.6. Immunization with Aβ Peptide

Studies using transgenic mice over-expressing hu-

man APP have shown that immunization with Aβ

peptide leads to a significant reduction in brain amy-

loid plaques (Schenk et al. 1999). In a subsequent

study, antibodies raised against theβ-amyloid pep-

tide were peripherally administered (i.e., in a passive

immunization transfer protocol), and were found to

gain access to the central nervous system and to

reduce amyloid plaque burden in transgenic mice

(Games et al. 2000). Passive immunization also

decreased astrocytosis and brain inflammatory re-

sponse induced by Aβ peptide (Bard et al. 2000).

Further studies by other groups confirmed that im-

munization of transgenic mice with Aβ reduced the

fibrillar deposition ofβ-amyloid peptide (Sigurds-

son et al. 2001) and protected against cognitive dis-

function (Janus et al. 2000, Morgan et al. 2000).

In accordance with these studies, directin vivo ob-

servations in transgenic mice brains through the use

of multi-photon fluorescence microscopy have re-

cently shown that immunization withAβ leads to the

clearance of amyloid plaques (Bacskai et al. 2001,

DeMattos et al. 2001).

It is believed that immunization can modulate

the metabolism of Aβ through distinct mechanisms,

including its destruction by microglial fagocytosis

(Bard et al. 2000) and redistribution ofAβ from neu-

ritic plaques to diffuse plaques (Janus et al. 2000).

These distinct effects can reflect differences in anti-

gen presentation, or "lineage-specific" immune re-

sponse (Schenk et al. 1999, Bard et al. 2000, Janus

et al. 2000). If indeed this is found to be the

case, such differences may complicate the use of

active immunization in humans (St.George-Hyslop

and Westaway 1999, Janus et al. 2000). Further-

more, it is important to note that despite the impor-

tant reduction of plaque formation and prevention

of cognitive decline, no study so far has been able

to demonstrate the complete reversion of amyloid

plaque formation by immunization with Aβ (Janus

et al. 2000).

3.7. Small Molecule Inhibitors of

Aβ Aggregation: Nitrophenols

Another approach that has been pursued consists in

the search for anti-amyloidogenic compounds capa-

ble of preventing the neurotoxicity ofAβ. In the lack

of detailed molecular structures of either soluble or

fibrillar Aβ (which precludes a structure-based drug

design approach), one strategy to identify potential

anti-amyloidogenic compounds has relied on an in-

vestigation of the stability of amyloid fibrils (De

Felice et al. 2001, Ferreira and De Felice 2001).

These studies have indicated that a significant con-

tribution to the stability of Aβ fibrils comes from

entropy-driven hydrophobic interactions, leading to

the hypothesis that low molecular weight hydropho-

bic compounds could be effective in destabilizing

and disaggregating amyloid fibrils.

After examining a number of moderately hy-

drophobic compounds, we found that 2,4-dinitro-

phenol (DNP) and 3-nitrophenol (NP) prevent amy-

loid aggregationin vitro and cause the disassembly

of pre-aggregated fibrils (De Felice et al. 2001). Of

greater interest, nitrophenols block the neurotoxi-

city of Aβ to rat hippocampal neurons in primary

culture, and cause a marked reduction in the area

occupied by amyloid deposits in a rat model sys-

tem of amyloidosis (De Felice et al. 2001). DNP is

known for its toxic effects related to mitochondrial

uncoupling, which raises concerns about the possi-

ble therapeutic applications of this compound. In-

terestingly, however, at the low concentrations em-

ployed to destabilize amyloid aggregates, no toxic

effects of DNP were detected in either neuronal cul-

tures or in brains slices of animals that received

intra-cerebral injections of DNP (De Felice et al.

2001). Thus, since at present there is no effective

treatment available for amyloidoses, including AD,

Type II diabetes and prion-related spongiform en-

cephalopathies, we have proposed that nitrophenols

and their derivatives should be explored as possible

drug candidates or lead compounds for the develop-
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ment of drugs to prevent amyloid aggregation and

neurotoxicity in Alzheimer’s disease.

4. CONCLUSIONS

Despite intense research efforts into elucidating the

molecular and cellular basis of Alzheimer’s disease,

no effective treatments are yet available to stop it

or to prevent its development. As reviewed above,

several different approaches addressing distinct as-

pects of the disease are being pursued in an attempt

to develop effetive therapies. Given the multifacto-

rial nature of this disease (Selkoe 1999), it seems

unlikely that a single therapeutic target may lead to

an effective treatment for AD. Instead, the simulta-

neous employment of distinct strategies aiming at

decreasing Aβ production (through manipulation of

the activities of secretases), stimulation of the physi-

ological mechanisms of clearance of the peptide and

inhibition of amyloid aggregation may eventually

constitute an effective approach to the prevention

and treatment of AD.
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RESUMO

Os mecanismos biológicos envolvidos na neuropatologia

da doença deAlzheimer (DA) são complexos, já que vários

fatores contribuem para o desenvolvimento da doença.

Portanto, não é surpreendente que diferentes abordagens

terapêuticas possíveis envolvendo aspectos distintos da

doença estejam sendo investigados atualmente. Estas

abordagens incluem a prevenção da agregação e/ou de-

posição amilóide, a prevenção da degeneração neuronal

e o aumento do nível de neurotransmissores. Nesta re-

visão, nós discutimos possíveis papéis de moduladores

endógenos da agregação de peptídeo Aβ na fisiopatologia

da DA e algumas estratéfias atualmente sob consideração

para interferir com os níveis do peptídeo Aβ, sua agre-

gação e neurotoxicidade.

Palavras-chave: doença de Alzheimer, peptídeo Aβ,

agregação, neurotoxicidade, moduladores fisiopatoló-

gicos.
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