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ABSTRACT

In this short note, we announce a result relating the geometry of a riemannian surface to the

positivity of some operators on this surface (the operators considered here are of the form surface

Laplacian plus a scalar multiple of the curvature function). In particular we obtain a theorem ‘‘à

la Huber’’: under a spectral hypothesis we prove that the surface is conformally equivalent to a

Riemann surface with a finite number of points removed.

This problem has its origin in the study of stable minimal surfaces.
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1 INTRODUCTION

Minimal submanifolds are solution of a variational problem: they are critical points of the volume

functional for deformations with compact support. The second derivative of the volume functional

is given by a quadratic form associated to a selfadjoint operator (the stability operator). A minimal

immersion is called stable when it is a local minimum of the volume functional, that is when the

stability operator is a positive operator.

For a minimal surfaceM in R
3, the stability operator is given byS = � + 2K, whereK is the

(intrinsic) curvature ofM. For a surface immersed in a manifold with nonnegative scalar curvature,

the positivity of the stability operator implies the positivity of the operatorL = � + K. In order

to study stable minimal surfaces, these remarks lead the authors of Fischer-Colbrie and Schoen

(1980) to consider the problem of relating the positivity of operators of the form� + λK (λ ∈ R)

on a surface to the geometry of the surface.

Let (M, h) be a complete noncompact Riemannian surface and letK be its curvature. For all

λ ∈ R, consider the operatorLλ = � + λK andqλ the associated quadratic form. It is easy to see

(cf. Fischer-Colbrie and Schoen 1980) that the setIh = {λ ∈ R | qλ positive} is a closed interval:
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Ih = [ah, bh] with −∞ ≤ ah ≤ 0 ≤ bh ≤ +∞. The general problem is to find relations between

the geometry ofM and the numbersah andbh.

In Fischer-Colbrie and Schoen (1980), the authors asked the following question:On the disc

D = {z ∈ C | |z| < 1}, consider the complete metrics which are conformal to the Euclidean one;

for such a metric h, what are the possible values of bh which can occur? As a first step to answer

this question, they remark thatbh = 1/4 if h is the Poincaré metric and they prove thatbh < 1 for a

complete conformal metric onD (cf. Fischer-Colbrie and Schoen 1980: remark 1 and theorem 2).

The purpose of this note is to give the great lines of the proof of the following result which

answers the question.

Theorem A. Let (M, h) be a complete noncompact Riemannian surface. If bh > 1/4 then M is

conformally equivalent to C or C
∗ = C \ {0}.

A straightforward corollary is thatbh ≤ 1/4 whenh is a complete conformal metric on the

disc. Moreover, the inequality in the statement of theorem A is optimal sincebh = 1/4 for the

Poincaré metric on the disc. Notice also thatC andC
∗ admit complete flat metrics for which

bh = +∞.

On the other hand, with a similar proof we get the following theorem which is to be compared

with Huber’s theorem (cf. Huber 1957):

Theorem B. Let (M, h) be a complete noncompact Riemannian surface. If there exists a compact

domain � ∈ M and a real λ > 1/4 such that qλ(u) ≥ 0 for every C∞-function u with compact

support in M \ �, then M is conformally equivalent to a compact Riemann surface minus a finite

number of points.

In this short communication we only give the great lines of the proofs. Detailed proofs will

appear elsewhere.

2 SKETCH OF PROOFS

Notations

Let x0 be a point inM. In the sequel we shall noter(x) = dM(x0, x) the distance function tox0,

Bs = {x ∈ M | r(x) < s} the ball of radiuss, andCt
s = {x ∈ M | s < r(x) < t}.

Moreover, we shall noteV (s) the volume of the ballBs , �(s) the length of the geodesic circle of

radiuss (i.e. �(s) = vol(∂Bs)) andG(s) the total curvature of the ballBs (i.e. G(s) = ∫
Bs

Kdvh).

Using the coarea formula, we easily haveV ′(s) = �(s) andG′(s) = ∫
∂Bs

Kdσs wheredσs is the

volume form on∂Bs .

Sketch of Proof of Theorem A

Using the fact thatqλ is a positive form for someλ > 1/4, the proof consists in estimatingqλ(f )

for suitable functionsf (with compact support) of the formf = ξ(r). To do this, we have to

An Acad Bras Cienc (2002)74 (4)



SPECTRAL PROPERTIES AND CONFORMAL TYPE OF SURFACES 587

handle with terms of the form
∫
C

Q
R

Kξ(r)2dvh. These terms can be estimated using the following

technical lemma:

Lemma 1. Let R < Q, and let ξ : [R, Q] → R such that ξ(Q) = 0, ξ ≥ 0, ξ ′ ≤ 0 and ξ ′′ ≥ 0. If

there exists a constant A such that χ(Bs) ≤ A for all s ∈ [R, Q], then

∫
C

Q
R

Kξ(r)2dvh ≤ −ξ(R)2G(R) − 2ξ(R)ξ ′(R)�(R) + 2πAξ(R)2 −
∫

C
Q
R

(ξ2)′′(r)dvh.

The proof of this lemma is based on the method used by Colding and Minicozzi (2002) which

makes a heavy use of the function�(s). In Colding and Minicozzi (2002), the authors use this

function as if it were absolutely continuous, which is not the case in general. However, this difficulty

can be bypassed using the following two properties of� (cf. Shiohama and Tanaka (1989) and

Shiohama and Tanaka (1993) for proofs of these two facts):

Theorem 2. The function � is differentiable almost everywhere and

i. for almost all s ∈ R, �′(s) ≤ 2πχ(Bs) − G(s);

ii. for all a < b, �(b) − �(a) ≤ ∫ b

a
�′(s)ds.

With the lemma 1 in hand, it remains to use suitable functionsξ . The first step consists in

controling the topology: under the hypothesis of theorem A we prove thatM is of finite topology

and thatχ(M) ≥ 0. The second step consists in controling the volume growth unsing a different

functionξ : we prove that there exists a constantcM such that vol(Bs) ≤ cMs2. Then it is a standart

argument in potential theory that a surface with quadratic volume growth must be parabolic (ie.

each end must be conformally equivalent to the punctured disc).

The proof of theorem B follows the same steps, but since the operatorLλ is assumed to be

positive only outside a compact set�, we have to use functions of the formf = ξ(r) with compact

support outside�. The consequence is that we can only prove that the topology is finite, without

estimatingχ(M).

Some Remarks

In order to give a complete answer to the question stated in [3], we have to see what happens for

λ ∈
[
0, 1

4

]
.

Consider a conformal metrich = µ2|dz|2 on the unit disc, letα ∈ R+, and lethα = µ2α|dz|2
be a new conformal metric onD. Writing the formsqλ for these two metrics in terms ofµ, α and

the Euclidean metric, it is easy to see that, when the metrichα is complete, we havebhα
= 1

α
bh.

If h is the Poincaré metric
(
ie. µ(z) = 2

1−|z|2
)
, thenhα is complete forα ≥ 1 andbhα

= 1
4α

.

Moreover, for the metrich∞ = eµ(z)|dz|2 it is not hard to see thatbh∞ = 0. Thus, we have the

following proposition:
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Proposition 3. For all λ ∈
[
0, 1

4

]
there exists a complete conformal metric h on the unit disc

such that bh = λ.

Another natural question is to know wether the valuebh = 1/4 is characteristic of the Poincaré

metric. The answer is negative, and the following proposition give a sufficient condition for a

complete conformal metrich on the unit disc to satisfybh = 1/4:

Proposition 4. There exists a universal constant ε such that for all complete conformal metric h

on the unit disc satisfying

K ≤ −1 and
∫

D

|K + 1| 3
2 dvh ≤ ε

we have bh = 1/4.

The proof of this proposition is based on a theorem by E. Lieb (cf. for example Castillon 2002:

theorem 1.3).

RESUMO

Nesta comunicação, anunciamos um resultado que relaciona a geometria de uma superfície riemanniana

com a positividade de certos operadores na superfície (os operadores considerados têm forma ‘‘Laplaciano

mais um múltiplo da curvatura’’). Em particular, obtemos um teorema ‘‘à la Huber’’: usando uma condição

espectral, provamos que a superfície é conformemente equivalente a uma superfície de Riemann menos um

número finito de pontos. Este problema tem origem no estudo das superfícies mínimas estáveis.

Palavras-chave: teoria espectral, superfícies mínimas, operador de estabilidade.
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