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ABSTRACT

In this note, we consider self-similar immersions of the mean curvature flow and show that a
graph solution of the soliton equation, provided it has bounded derivative, converges smoothly to
a function which has some special properties (see Theorem 1.1).
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1 INTRODUCTION

Let Mn+k be a Riemannian manifold of dimension n + k. Assume that �n be a Riemannian

manifold of dimension n without boundary. Let F : �n → Mn+k be an isometric immersion.

Denote ∇ (respectively D) the covariant differentiation on � (on M). Let T � and N� be the

tangent bundle and normal bundle of � in M respectively. We define the second fundamental form

of the immersion � by

II : T � × T � → N�,

with

II (X, Y ) = DXY − ∇XY,

for tangential vector fields X, Y on �. We define the mean curvature vector field (in short, MCV)

by

H = tr�II.

In recent years, many people are interested in studying the evolution of the immersion F :
�n → Mn+k along its Mean Curvature Flow (in short, just say MCF). The MCF is defined as
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follows. Given an one-parameter family of sub-manifolds �t = Ft(�) with immersions Ft :
� −→ M . Let H(t) be the MCV of �t . Then our MCF is the equation/system

∂F (x, t)

∂t
= H(x, t).

This flow has many very nice results if the codimension k = 1. See the work of Huisken 1993 for

a survey in this regard. Since there is very few result about MCF in higher codimension, we will

study it in the target when Mn+k = Rn+k, which is the standard Euclidian space.

In this short note, we will consider a family of self-similar graphic immersions F(·, t) : R
n →

R
n+k of the Mean Curvature Flow (MCF):

∂

∂t
F (x, t) = H(x, t), ∀x ∈ R

n, ∀t ∈ (−∞, 0).

Write

�t = F(Rn, t),

and

F = (FA), 1 ≤ A ≤ n + k.

By definition, we call the family �t self-similar if

�t = √−t�−1, ∀t < 0.

In this case, we can reduce the MCF into an elliptic system. In the other word, we have the following

parametric elliptic equation for the family �t :

H(x) + F⊥(x) = 0, ∀x ∈ �−1 := �.

We will call this system as the soliton equation of the MCF. Note that this equation is usually

obtained from the monotonicity formula of Huisken 1989 for blow-up. It is a hard and open

problem to classify solutions of this equation.

Fix � = �t . Assume that F(x) = (x, f (x)). Let

Q = (QA
α ), n + 1 ≤ α ≤ n + k 1 ≤ A ≤ n + k

is the orthogonal projection onto Np�, where p ∈ �. Then the second fundamental form of �

can be written as

IIAij = QA
α D2

ij f
α.

Hence, we have the expression for the mean curvature vector of � in R
n+k:

H
A = gijQA

α D2
ij f

α.

Our main result in this paper is the following
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Theorem 1.1. Let F(x) = (x, f (x)), x ∈ R
n be a graph solution to the soliton equation

H(x) + F⊥(x) = 0.

Assume sup
Rn |Df (x)| ≤ C0 < +∞. Then there exists a unique smooth function f∞ : R

n → R
k

such that

f∞(x) = lim
λ→∞ fλ(x)

and

f∞(rx) = rf∞(x)

for any real number r 	= 0, where

fλ(x) = λ−1f (λx).

We remark that the proof of this result given below is very simple. But it is based on a nice

observation. We just use the divergence theorem with a nice test function. In the next section, we

recall the form of divergence theorem for convenient of the readers. In the last section we give a

proof of our Theorem.

We point out that we may consider F∞(x) = (x, f∞(x)) obtained above as a tangential minimal

cone along the research direction done by Simon 1983 (see also Ecker and Huisken 1989).

2 PRELIMINARY

Given a vector field X : � → T M . Let XT and XN denote the projection of X onto T � and N�

respectively. We define the divergence of X on � as

div�X =
∑

gij

〈
DiX,

∂

∂xj

〉

where (gij ) = (gij )
−1, and (gij ) is the induced metric tensor written in local coordinates (xi) on

�.

Note that, for any tangential vector field Y on �,

DY X = DY XT + DY XN.

So

〈DY X, Y 〉 = 〈DY XT , Y 〉 + 〈DY XN, Y 〉
= 〈∇Y XT , Y 〉 − 〈DY Y, XN 〉
= 〈∇Y XT , Y 〉 − 〈II (Y, Y ), X〉.

Hence

div�XT = div�X + 〈X, H 〉,
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and by the Stokes formula on �, we have

∫
�

divXT =
∫

∂�

〈X, ν〉dσ

and ∫
�

div�Xdν = −
∫

�

〈H, X〉dν +
∫

∂�

〈X, ν〉dσ,

where ν is the exterior normal vector field to � on ∂�.

3 PROOF OF MAIN THEOREM

In the following, we take Mn+k = R
n+k as the standard Euclidean space. We assume that the

assumption of our Theorem 1.1 is true in this section.

Define the vector field

X = −(1 + |F |)−sF

where s ∈ R to be determined.

Note that, ∇|F | = F�
|F | and div�F = n. So

div�X = −〈∇(1 + |F |)−s, F 〉 − (1 + |F |)−sdiv�F

= s(1 + |F |)−s−1

|F | |F�|2 − n(1 + |F |)−s .

Locally, we may assume that � is a graph of the form (x, f (x)) ∈ BR(0) × R
k, where BR(0) is

the ball of radius R centered at 0. Let �R = � ∩ (BR(0) × R
k). By the divergence theorem we

have (d): ∫
�R

div�X = −
∫

�R

〈H, X〉 +
∫

∂�R

〈X, ν〉

Clearly we have that the left side of (d) is

∫
�R

div�X = s

∫
�R

(1 + |F |)−s−1

|F | |F�|2 − n

∫
�R

(1 + |F |)−s .

By direct computation, the right side of (d) is

−
∫

�R

〈H, X〉 +
∫

∂�R

〈X, ν〉 =
∫

�R

(1 + |F |)−s |F⊥|2 +
∫

∂�R

(1 + |F |)−s〈F, ν〉

=
∫

�R

(1 + |F |)−s |H |2 +
∫

∂�R

(1 + |F |)−s〈F, ν〉.

Hence, we have

∫
�R

(1 + |F |)−s |H |2 = s

∫
�R

(1 + |F |)−s−1

|F | |F�|2 − n

∫
�R

(1 + |F |)−s −
∫

∂�R

(1 + |F |)−s〈F, ν〉.
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Since |F�| ≤ |F | ≤ 1 + |F |, we have

∫
�R

(1 + |F |)−s−1

|F | |F�|2 ≤
∫

�R

(1 + |F |)−s .

Clearly we have ∣∣∣∣∣
∫

∂�R

(1 + |F |)−s〈F, ν〉
∣∣∣∣∣ ≤

∫
∂�R

(1 + |F |)1−s .

Combining these two inequalities together we get

∫
�R

(1 + |F |)−s |H |2 ≤ (s − n)

∫
�R

(1 + |F |)−s +
∫

∂�R

(1 + |F |)1−s .

Choosing s = n yields (∗):

∫
�R

(1 + |F |)−n|H |2 ≤
∫

∂�R

(1 + |F |)1−n.

By our assumption we have that ∃C > 0 such that for F(x) = (x, f (x)) on � = R
n, we have

det(I + (df )�df ) ≤ C

on �. Since

gij = δij + Dif
α · Djf

α,

we know that

I ≤ (gij ) ≤ CI.

Hence

(1 + |x|) ≤ (1 + |F(x)|) ≤ C(1 + |x|).
Therefore we get from (∗) the key estimate (K):

∫
BR(0)

(1 + |x|)−n|H |2dx ≤ C

∫
∂BR(0)

(1 + |x|)1−n ≤ C.

We now go to the proof of our Theorem 1.1.

Proof. Note that the mean curvature flow for the graph of f can be read as

∂f α

∂t
= gijD2

ij f
α, α = 1, · · · , k.

The important fact about this equation is that it is invariant under the transformation

f (x) → 1

λ
f (λx), ∀λ > 0.
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Compute

d

dλ
fλ(x) = −λ−2f (λx) + λ−1Df (λx) · x

= λ−2[Df (λx) · λx − f (λx)]
= λ−2〈(Df (λx), −1), (λx, f (λx))〉
= λ−2〈(Df (λx), −1), F (λx)〉
= λ−2〈(Df (λx), −1), F (λx)⊥〉.

Here we have used the fact that

(Df (λx), −1)⊥Tp�.

So
d

dλ
fλ(x) = λ−2〈(−Df (λx), 1), H 〉.

Hence ∣∣∣∣ d

dλ
fλ(x)

∣∣∣∣ ≤ Cλ−2|H |.

So, for x ∈ Sn−1, we have

|fλ(x) − fµ(x)| ≤ C

∫ µ

λ

H(λx)

σ 2
dσ

≤ C

( ∫ µ

λ

1

σ 3
dσ

)( ∫ µ

λ

|H 2|(σx)

σ
dσ

)

≤ C|µ−2 − λ−2|
∫ µ

λ

|H(σx)|2
σ

dσ.

Notice that, for µ ≥ λ > 1,
∫

Sn−1
dx

∫ µ

λ

|H(σx)|2
σ

dσ ≤
∫ ∞

0

∫
Sn−1

|H(σx)|2
(1 + σ)n

σ n−1dxdσ ≤ C.

The last inequality follows from the inequality (K). Therefore, we have the estimate (∗∗):∫
Sn−1

|fλ(x) − fµ(x)|2dx ≤ C|µ−2 − λ−2|.

This implies that (fλ) is a Cauchy sequence in L2(Sn−1). Let f∞ be its unique limit. Since

sup
Rn |Dfλ| = sup

Rn |Df | ≤ C0, the Arzela-Ascoli theorem tells us that (fλ) is compact in

Cα(Sn−1), ∀α ∈ (0, 1). Therefore

f∞(x) = lim fλ(x) uniformly on Sn−1,

and

f∞(rx) = rf∞(x), ∀0 	= r ∈ R.

This finishes the proof of Theorem 1.1. �
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In the following, we pose a question about the stability of self-similar solutions of (MCF). Let

f0 : R
n → R

k be a smooth function with uniformly bounded (Lipschitz) gradient. Assume

lim
λ→∞ f0λ = f ∞

0 , uniformly on Sn−1.

Assume f : R
n × [0, ∞) → R

k such that F(x, t) = (x, f (x, t)) is a solution of (MCF) with the

initial data F(x, 0) = (x, f0(x)). We ask if there is a smooth mapping f̂ : R
n → R

k such that

f̂ (·, s) → f̂ (·) uniformly on compact subsets of R
n as s → ∞. Here f̂ is defined by

f̂ (x, s) = t−
1
2 f (

√
tx, t), s = 1

2
log t, 0 ≤ s < ∞ with t ≥ 1.

A related stability result is done by one of us in Ma 2003.

According to the remark of the referee, the codimension 1 case is settled in reference Stavrou

1998 with the trivial cone as only possible limit. A nice question now is that, can one give a

condition that enforces the trivial cone in higher codimension? In Stavrou 1998, the stability for

codimension 1 entire graphs with bounded gradient is treated – showing that they converge to

asymptotically expanding solutions if they have a unique tangent cone at infinity. (This is of course

not so relevant for the present paper, but may be related to our result in an interesting way).
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RESUMO

Nesta nota, consideramos imersões auto-semelhantes do fluxo de curvatura média, e mostramos que uma

solução em forma de gráfico da equação de soliton converge diferencialmente, contanto que tenha derivada

limitada, para um gráfico cuja função tem propriedades especiais (V. Teorema 1.1).
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