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ABSTRACT

We investigate finite approximate controllability for semilinear heat equation in noncylindrical

domains. First we study the linearized problem and then by an application of the fixed point

result of Leray-Schauder we obtain the finite approximate controllability for the semilinear state

equation.

Key words: heat operator, finite approximate controllability, Leray-Schauder fixed point, non-

cylindrical.

1 INTRODUCTION AND MAIN RESULT

We consider a semilinear parabolic problem in a domain Q̂ of R
n+1 = R

n × Rt which is not a

cylinder, but it is a union of open domains �t of R
n, 0 < t < T , images of a reference domain

�0 by a diffeomorphism τt : �0 → �t .

To make clear the notation, we identify �0 to a non empty bounded open et � of R
n. The

points of � are represented by y = (y1, y2, . . . , yn), yi ∈ R, for i = 1, 2, . . . , n and those of �t
are represented by x = (x1, x2, . . . , xn), xi ∈ R, i = 1, 2, . . . , n. Thus, we have x = τt (y) or

x = τ(y, t), 0 < t < T .
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We define the noncylindrical domain Q̂ contained in R
n+1 by

Q̂ =
⋃

0<t<T

{�t × {t}}.

The boundary of �t is represented by �t and the lateral boundary �̂ of Q̂ is defined by

�̂ =
⋃

0<t<T

{�t × {t}}.

By Q we represent the cylinder

Q = �× (0, T ),

with � the reference domain, with lateral boundary � given by

� = � × (0, T ),

where � is the boundary of �.

Thus we have the diffeomorphism τt : Q → Q̂ given by

(y, t) ∈ Q → (x, t) ∈ Q̂ with (x, t) = (τt (y), t) = (τ (y, t), t).

We need the following assumptions:

(A1) τt is a C2 diffeomorphism from � to �t , for all 0 < t < T .

(A2) τ(y, t) ∈ C0(0, T ;C2(�)).

Note that � is a non empty bounded open set of R
n which boundary � we suppose C2.

In this article we investigate finite approximate controllability for the following semilinear

parabolic system ∣∣∣∣∣∣∣∣
u′ −�u+ f (u) = h(x, t)χq̂ in Q̂

u = 0 on �̂

u(x, 0) = u0(x) in �

(1.1)

In (1.1) we denote u = u(x, t), u′ = ∂u

∂t
, � is the Laplace operator in R

n; q̂ is an open

subset contained in Q̂. Note that we consider q̂ the image by τt of a cylinder q contained in Q,

of the type q = w × (0, T ), w ⊂ �. We denote by wt the sections of q̂ at level 0 < t < T ,

wt ⊂ �t . By χq̂ we represent the characteristic function of q̂. The function h = h(x, t) is the

control function such that h(x, t)χq̂ acts on the state u = u(x, t) localized in q̂.

The non linear function f = f (u) is real, globally Lipschitz and we suppose that f (0) = 0,

that is, there exists a positive constant K0 , such that

|f (ξ)− f (η)| ≤ K0|ξ − η| (1.2)
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for all ξ, η ∈ R.

To formulate our problem, let E be a finite dimensional subspace of L2(�T ) and denote by

πE the orthogonal projection from L2(�T ) onto E.

The problem of finite approximate controllability for (1.1) can be formulate as follows: given

T > 0, u0 ∈ L2(�), u1 ∈ L2(�T ) and ε > 0, to find a control h ∈ L2(q̂) such that the

corresponding solution u = u(x, t) of (1.1), satisfies the conditions

|u(T )− u1|
L2(�T )

< ε (1.3)

πE u(T ) = πE u
1. (1.4)

This means that the control h = h(x, t) can be chosen such that u(T ) satisfies (1.3) and

simultaneously a finite number of constrains, that is the condition (1.4).

There is an extensive literature about finite-approximate controllability for linear and semilinear

heat equation in cylindrical domains. Among these works, it is worth mentioning the articles of

Fernandez and Zuazua 1999, Lions 1991 and Zuazua 1997, 1999. For basic results on Sobolev

spaces see Lions and Magenes 1968.

In the context of linear heat equation in noncylindrical domains, Limaco et al. 2002 proved the

finite-approximate controllability. In Menezes et al. 2002 is given a proof of null controllability

of the semilinear case (1.1). In Limaco et al. 2002 is mentioned some basic references on the

mathematical analysis of partial differential equations in noncylindrical domains.

The main result in the present article is:

Theorem 1.1. Assume f is C1 and satisfies (1.2) with f (0) = 0. Then, for all T > 0, the system

(1.1) is finite-approximately controllable.

This means, for any finite-dimensional subspace E of L2(�T ), u0 ∈ L2(�), u1 ∈ L2(�T )

and ε > 0, there exists a control h ∈ L2(q̂) such that the solution u of (1.1) satisfies (1.3) and (1.4),

for T > 0 given.

The methodology of the proof of the Theorem 1.1 is based in the fixed point argument, see

Zuazua 1999.

There is however a new and no trivial difficulty related to the fact that Q̂ is noncylindrical. To

set up this point we employ the idea contained in Limaco et al. 2002.

The first step in the fixed point method is to study the finite-approximate controllability for a

linearized system. The application of this method is based on the unique continuation property due

to Fabre 1996.

The present paper is organized as follows: Section 2 is devoted to prove the finite-approximate

controllability for the linearized system. In Section 3 we prove Theorem 1.1 by a fixed point

method.
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2 ANALYSIS OF THE LINEARIZED SYSTEM

The main result of this paper is proved in Section 3 by argument of fixed point. As an step

preliminary we need to analyse the finite-approximate controllability of the following linearized

system: ∣∣∣∣∣∣∣∣
u′ −�u+ a(x, t)u = h(x, t) in Q̂

u = 0 on �̂

u(x, 0) = u0(x) in �,

(2.1)

where the potential a = a(x, t) is assumed to be in L∞(Q̂).
As in Limaco et al. 2002 a function u = u(x, t) defined in Q̂ is said to be strong solution for

the boundary value problem (2.1), if

u ∈ C0([0, T ], H 1
0 (�t)) ∩ L2(0, T ;H 2(�t) ∩H 1

0 (�t)) ∩H 1(0, T ;L2(�t)) (2.2)

and the conditions in (2.1) are satisfied almost everywhere in their corresponding domains.

We say that a function u = u(x, t) is a weak solution of (2.1) if

u ∈ C0([0, T ];L2(�t)) ∩ L2(0, T ;H 1
0 (�t)) (2.3)

and ∫ T

0

∫
�t

u ϕ′ dxdt +
∫
�

u0(x)ϕ(x, 0) dx +

+
∫ T

0

∫
�t

a(x, t)uϕ dxdt +
∫ T

0

∫
�t

∇xu · ∇xϕ dxdt =
∫ T

0

∫
�t

hϕ dxdt

(2.4)

for all ϕ ∈ L2(0, T ;H 1(�t)) ∩ C1([0, T ];L2(�t)) such that ϕ(T ) = 0.

Theorem 2.1. (Existence of Strong and Weak Solution).

a) If u0 ∈ H 1
0 (�), a(x, t) ∈ L∞(Q̂) and h ∈ L2(0, T ;L2(�t)), the problem (2.1) has a

unique strong solution.

b) Given u0 ∈ L2(�), a(x, t) ∈ L∞(Q̂) and h ∈ L2(0, T ;H−1(�t)), there exists a unique

weak solution of (2.1).

Proof. See Menezes et al. 2002 where the authors employ the argument consisting in transforming

the heat equation in the noncylindrical domain Q̂ into a variable coefficients parabolic equation in

a reference cylinder Q, by means of the diffeomorphism

(x, t) = (τt (y), t) = (τ (y, t), t) for x ∈ �t , y ∈ �

and 0 ≤ t ≤ T , that is, for (x, t) ∈ Q̂ and (y, t) ∈ Q.
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In fact, set

v(y, t) = u(τt (y), t) = u(τ(y, t), t) for y ∈ � and 0 ≤ t ≤ T . (2.5)

Equivalently

u(x, t) = v(τ−1
t (x), t) = v(ρ(x, t), t) for x ∈ �t and 0 ≤ t ≤ T , (2.6)

where τ−1
t denotes the inverse of τt , which, according to (A1) is a C2 application from �t to �

for 0 ≤ t ≤ T which we denote by ρt . We shall also employ the notation ρ(x, t) = ρt(x),

yj = ρj (x, t), 1 ≤ j ≤ n.

It follows that u = u(x, t) solves (2.1) if and only if v = v(y, t) satisfies:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂v

∂t
−

n∑
i=1

∂2v

∂yj∂yk

∂ρi

∂xi

∂ρk

∂xi
−

n∑
i=1

∂v

∂yj
�ρj +

+ b̃ · ∇yv + a(y, t)v = h(y, t) in Q

v = 0 on �

v(y, 0) = u0(y) in �.

(2.7)

In (2.7) we have b̃ = b̃(x, t) = ∂ρ(x, t)

∂t
· Note that according to (A1) we have

b̃ ∈ C1(�). (2.8)

Analysis of the Operator. A(t)v = −
n∑
i=1

∂2v

∂yj∂yk

∂ρi

∂xi

∂ρk

∂xi

For v, ϕ ∈ L2(0, T ;H 1
0 (�)) and Gauss’ Lemma we obtain the bilinear form a(t, v, ϕ) defined

by

a(t, v, ϕ) = (A(t)v, ϕ) =
n∑
i=1

∫
�

∂v

∂yj

∂ϕ

∂yk

∂ρi

∂xi

∂ρk

∂xi
dx. (2.9)

This bilinear form is bounded and H 1
0 (�)-coercive.

In (2.7) set

b(y, t) = b̃(y, t)−�ρ(y, t), where b ∈ [L∞(Q)]n.
Thus, from (2.7) the transformed of (2.1) in Q is the following system∣∣∣∣∣∣∣∣

v′ + A(t)v + a(y, t)v + b · ∇v = h(y, t) in Q

v = 0 on �

v(y, 0) = u0(y) in �.

(2.10)
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Note that (2.10) is a linear parabolic system with variable coefficients in a cylinder Q =
� × (0, T ), � a regular bounded non empty open set of R

n. Since A(t) is coercive, the initial

boundary value problem (2.10) is a classical problem investigated in Lions and Magenes 1968.

It follows that if we take u0 ∈ H 1
0 (�) (resp. u0 ∈ L2(�)) and h ∈ L2(0, T ;L2(�)) (resp. h ∈

L2(0, T ;H−1(�)), then (2.10) has a unique strong (resp. weak) solution v ∈ C0([0, T ];H 1
0 (�))∩

L2(0, T ;H 2(�)) ∩H 1(0, T ;L2(�)) (resp. v ∈ C0([0, T ];L2(�)) ∩ L2(0, T ;H 1
0 (�))).

By means of the change of variable y → x we deduce the existence of a unique strong (resp.

weak) solution u for the system (2.1).

At this point we underline that, under assumptions (A1) and (A2), the transformation y → x

does indeed, map the space of functions given in (2.2) (resp. (2.3)) into the space

C0([0, T ];H 1
0 (�)) ∩ L2(0, T ;L2(�t)) ∩H 1(0, T ;L2(�))

(resp. C0([0, T ];L2(�t)) ∩ L2(0, T ;H 1
0 (�t))).

We have the following result

Theorem 2.2. The system (2.1) is finite-approximate controllable. More precisely, for any T > 0,

u0 ∈ L2(�), u1 ∈ L2(�T ), ε > 0 and E, finite dimensional subspace of L2(�T ), there exists a

control h ∈ L2(q̂) such that the corresponding solution of (2.1) satisfies

|u(T )− u1|
L2(�T )

< ε (2.11)

πE u(T ) = πE u
1. (2.12)

Moreover, for any R > 0 there exists a constant C(R) > 0 such that

|h|
L2(q̂)

≤ C(R) (2.13)

for any a ∈ L∞(Q̂) satisfying

|a|
L∞(Q̂) ≤ R. (2.14)

Remark 2.1. Theorem 2.2 does not provide any estimation how the norm of the control h depends

�, u0, u1 and ε > 0. However, (2.13) guarantees that h remains uniformly bounded when the

potential a remains bounded in L∞.

The control h is not unique. The method we develop below provides the control of minimal

L2-norm. It is this control of minimal norm which satisfies the uniform boundness condition

(2.13). �

Proof of Theorem 2.2. To prove it we employ exactly the same argument as in Limaco et al.

2002. Without loss of generality we may assume u0 = 0. Indeed, otherwise, we consider the
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solution z of ∣∣∣∣∣∣∣∣
z′ −�z+ az = 0 in Q̂

z = 0 on �

z(x, 0) = u0 in �.

Then, the solution u of (2.1) may be decomposed as u = w + z where w solves∣∣∣∣∣∣∣∣
w′ −�w + aw = hχq̂ in Q̂

w = 0 on �̂

w(x, 0) = 0 in �.

Then (2.11)-(2.12) are equivalent to∣∣∣∣∣
|w(T )− [u1 − z(T )]|

L2(�T )
< ε

πE w(T ) = πE[u1 − z(T )].

Therefore we will consider u0 = 0. The regularizing effect of the heat equation allows to show

that ∣∣∣∣∣∣∣∣
z(T ) remains in a relatively compact set of L2(�T )

when the potential a belongs to the class (2.14).

This is important to obtain the uniform bound (2.13).

Let us consider the adjoint system∣∣∣∣∣∣∣∣
− ϕ′ −�ϕ + aϕ = 0 in Q̂

ϕ = 0 on �̂

ϕ(x, T ) = ϕ0 in �T .

(2.15)

Taking in account that the potential a is bounded it follows that for any ϕ0 ∈ L2(�T ), the

system (2.15) has a unique solution ϕ ∈ C0([0, T ];L2(�t)) ∩ L2(0, T ;H 1
0 (�t)).

We consider the functional J defined in L2(�T ) by

J (ϕ0) = 1

2

∫
q̂

ϕ2 dxdt + ε|(I − πE)ϕ
0|
L2(�T )

−
∫
�T

u1ϕ0 dx, (2.16)

where ϕ is the unique solution of (2.15) with initial data ϕ0.

The functional J is continuous and strictly convex inL2(�T ). More precisely, by the argument

of Limaco et al. 2002 we can prove that

lim inf
|ϕ0|

L2(�T )
→∞

J (ϕ0)

|ϕ0|
L2(�T )

≥ ε, ε > 0. (2.17)
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One of the key point of the proof of (2.17) is the unique continuation result of Fabre 1996.

Thus, it follows that J has a unique minimizes ϕ̂0 in L2(�T ). If ϕ̂ is the solution of (2.15)

associated to the minimizer ϕ̂0, then the control h = ϕ̂ is such that the solution of (2.1) satisfies

(2.11) and (2.12).

Thus it is proved the finite-approximate controllability. �

In order to prove the uniform boundedness (2.13) for h = ϕ̂, the problem may be reduced to

the case u0 = 0 as indicated above, provided u1 belongs to a relatively compact set of L2(�T ).

Proposition 2.3. Let R > 0 and K be a relatively compact set of L2(�T ). Then, the coercivity

property (2.7) holds uniformly for u1 ∈ K and potential a satisfying (2.14).

Remark 2.2. Note that the functional J depends on the potential a and the target u1. Thus, the

Proposition 2.3 guarantees the uniform coercivity of the functional when u1 ∈ K , K compact set

in L2(�T ) and the potential a is uniformly bounded. �

As a consequence of the Proposition 2.3 we deduce that the minimizers ϕ̂0 of the functional

J are uniformly bounded, u1 ∈ K and the potential a is uniformly bounded. Consequently, the

controls h = ϕ̂ are uniformly bounded.

Therefore, the proof of Theorem 2.2 is a consequence of the proof of Proposition 2.3.

Proof of Proposition 2.3. We argue by contradiction. If the coercivity property (2.17) does not

hold uniformly, we deduce the existence of sequences

u1
j ∈ K (2.18)

ϕ0
j ∈ L2(�T ), |ϕ0

j |L2(�T )
→ ∞ (2.19)

and ∣∣∣∣∣ aj ∈ L∞(Q̂)

|aj |L∞(Q̂) ≤ R,
(2.20)

such that

Jj (ϕ
0
j )

|ϕ0
j |L2(�T )

≤ ε − δ, (2.21)

for some 0 < δ < ε.

Note that Jj is the functional (2.16) corresponding to u1
j and aj .

Set

ϕ̂0
j = ϕ0

j

|ϕ0
j |L2(�T )

; ϕ̂j = ϕj

|ϕ0
j |L2(�T )

· (2.22)
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We have

J (ϕ0
j )

|ϕ0
j |L2(�T )

= |ϕ0
j |L2(�T )

2

∫
q̂

|ϕ̂j |2 dxdt +

+ ε|(I − πE)ϕ̂
0
j |L2(�T )

−
∫
�T

u1
j ϕ̂

0
j dx.

(2.23)

By (2.19) and (2.21) we deduce ∫
q̂

|ϕ̂j |dxdt → 0 as j → ∞. (2.24)

Extracting a sequence we also have

ϕ̂0
j ⇀ ϕ̂0 weakly in L2(�T ) (2.25)

ϕ̂j ⇀ ϕ̂ weakly in L2(0, T ;H 1
0 (�T )) (2.26)

u1
j → u1 strongly in L2(�T ) (2.27)

aj ⇀ a weak star in L∞(Q̂) (2.28)

By (2.24) we have

ϕ̂ = 0 a.e. in q̂. (2.29)

On the other hand, ϕ̂ solves∣∣∣∣∣∣∣∣
− ϕ̂′ −�ϕ̂ + aϕ̂ = 0 in Q̂

ϕ̂ = 0 on �̂

ϕ̂(T ) = ϕ̂0 in �T

(2.30)

Note that a is given by (2.28) and ϕ̂0 by (2.25).

In order to obtain (2.30) we need to show that

aj ϕ̂j ⇀ aϕ̂ weakly in L2(Q̂). (2.31)

In fact, with the change of variables x → y form Q̂ into Q, the system∣∣∣∣∣∣∣∣
− ϕ̂′ −�ϕ̂j + aj ϕ̂j = 0 in Q̂

ϕ̂j = 0 on �̂

ϕ̂j (T ) = ϕ̂0
j in �T ,

(2.32)

An Acad Bras Cienc (2004) 76 (3)



484 SILVANO B. DE MENEZES, JUAN LIMACO and LUIS A. MEDEIROS

is transformed in a new system in Q with ψj(x, t) = ϕj (y, t) for y = τt (x), given by

∣∣∣∣∣∣∣∣
− ψ ′

j + A(t)ψj + ajψj + b · ∇ψj = 0 in Q

ψj = 0 on �

ψj(T ) = ψ̂0 in �

(2.33)

For the parabolic problem with unknow ψj , in cylindrical domain Q, we obtain estimates

which permites to apply the Aubin-Lions compactness argument for ψj . Then when we change

variables y → x we obtain a subsequence (ϕ̂j ) in L2(Q̂) such that

ϕ̂j → ϕ̂ strong L2(Q̂). (2.34)

This implies

aj ϕ̂j ⇀ aϕ̂ weakly in L2(Q̂). (2.35)

This justifies the conclusion that ϕ̂ is solution of (2.30).

According to Fabre 1996 and (2.29) and (2.30) we have ϕ̂ = 0 in Q̂. If we observe (2.25) we

conclude that

ϕ̂0
j ⇀ 0 weakly in L2(�T ) (2.36)

By (2.36) and (2.27) we conclude

∫
�T

u1
j ϕ̂

0
j dx → 0. (2.37)

But, since E is finity dimensional, we have

πE ϕ̂
0
j → 0 strongly in L2(�T ) (2.38)

and therefore

|(I − πE)ϕ̂
0
j |L2(�T )

→ 1, (2.39)

because |ϕ̂0
j |L2(�T )

= 1 for all j .

Therefore,
Jj (ϕ

0
j )

|ϕ0
j |L2(�T )

≥ ε|(I − πE)ϕ̂
0
j |L2(�T )

−
∫
�T

u1
j ϕ̂

0
j dx → ε

which is a contradiction with (2.21).

This complete the proof of Proposition 2.3 and consequently that of Theorem 2.2. �
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3 PROOF OF THE MAIN RESULT

Now we will prove Theorem 1.1 as a consequence of Theorem 2.3 and a fixed point argument. We

will begin with an existence theorem.

Theorem 3.1. Let f : R → R be a C1 function, globally Lipschitz such that

f (0) = 0. Consider u0 ∈ L2(�) and h ∈ L2(Q̂). Then, there exists only one function

u ∈ C0([0, T ];L2(�t)) ∩ L2(0, T ;H 1
0 (�t))

solution of the problem (1.1).

Proof. We consider the change of variable (2.5) or (2.6) transforming (1.1) into∣∣∣∣∣∣∣∣
v′ + A(t)v + b · ∇yv + f (v) = h(y, t), for (y, t) ∈ Q
v = 0 for (y, t) ∈ �
v(y, 0) = v0(y) for y ∈ �

(3.1)

We know that (3.1) admits a unique solution

v ∈ C0([0, T ];L2(�)) ∩ L2(0, T ;H 1
0 (�))

By the change of variable y → x we deduce the existence of a unique solution u of (1.1) in

the class

C0([0, T ];L2(�t)) ∩ L2(0, T ;H 1
0 (�t)). (3.2)

Proof of Theorem 1.1. As in Menezes et al. 2002 we define the function

g(s) =
∣∣∣∣∣∣
f (s)

s
if s 
= 0

f ′(0) if s = 0.

Given z ∈ L2(Q̂) let us consider the linearized system∣∣∣∣∣∣∣∣
u′ −�u+ g(z)u = hχq̂ in Q̂

u = 0 on �̂

u(x, 0) = u0(x) in �

(3.3)

The system (3.3) is linear in u = u(x, t) with potential a = f (z) ∈ L∞(Q̂) and

||a||
L∞(Q̂) ≤ ||f ′||

L∞(R) . (3.4)

Thus, will be rewritten (3.3) as∣∣∣∣∣∣∣∣
u′ −�u+ au = hχq̂ in Q̂

u = 0 on �̂

u(x, 0) = u0(x) in �.

(3.5)

An Acad Bras Cienc (2004) 76 (3)



486 SILVANO B. DE MENEZES, JUAN LIMACO and LUIS A. MEDEIROS

By Theorem 2.2, for each z ∈ L2(Q̂) we find a control h = h(x, t) ∈ L2(q̂) such that

the solution u of (3.5) satisfies (1.3) and (1.4). Moreover, for every R > 0 and all potential

a = a(x, t) ∈ L∞(Q) such that |a|
L∞(Q̂) ≤ R we have

|h|
L2(q̂)

≤ C. (3.6)

Now we define the nonlinear mapping N

N : L2(Q̂) → L2(Q̂), N(z) = u. (3.7)

The problem is reduced to finding a fixed point for N . Indeed, if z ∈ L2(Q̂) is such that

N(z) = u = z, u solution of (3.3) is actually solution of (1.1). Then the control h = h(x, t) is

that one we were looking for, since, by construction, u = u(z) satisfies (1.3) and (1.4).

The nonlinear map N : L2(Q̂) → L2(Q̂) satisfies the properties:

N is continuous and compact (3.8)

∣∣∣∣∣ The range of N is bounded, i.e., there exists M > 0

such that |N(z)|
L2(Q̂)

≤ M for all z ∈ L2(Q̂).
(3.9)

The proof of (3.8) and (3.9) is given in Menezes et al. 2002.

It follows from (3.8), (3.9) and Leray-Schauder’s fixed point theorem, the mapping N has a

fixed point. This completes the proof of Theorem 1.1. �
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RESUMO

Este artigo é dedicado ao estudo da controlabilidade finito-aproximada para a equação não linear de trans-

ferência de calor em domínios com fronteira móvel. A demonstração do resultado principal baseia-se no

princípio de continuação única de Carolina Fabre 1996 e em argumentos de ponto fixo do tipo Leray-

Schauder.

Palavras-chave: transferência de calor, controlabilidade aproximada finita, ponto fixo de Leray-Schauder,

não cilíndrico.
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