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Cones in the Euclidean space with vanishing scalar curvature
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ABSTRACT

Given a hypersurface M on a unit sphere of the Euclidean space, we define the cone based on M

as the set of half-lines issuing from the origin and passing through M . By assuming that the scalar

curvature of the cone vanishes, we obtain conditions under which bounded domains of such cone

are stable or unstable.

Key words: stability, r-curvature, cone, scalar curvature.

1 INTRODUCTION

A natural generalization of minimal hypersurfaces in Euclidean spaces was introduced in (Reilly

1973). Reilly considered the elementary symmetric functions Sr , r = 0, 1, . . . , n, of the principal

curvatures k1, . . . , kn of an orientable hypersurface x : Mn → Rn+1 given by

S0 = 1, Sr =
∑

i1<···<ir

ki1 . . . kir .

Here, ki1, . . . , kin are the eigenvalues of A = −dg, where g : Mn → Sn(1) is the Gauss map of

the hypersurface. Reilly showed that orientable hypersurfaces with Sr+1 = 0 are critical points of

the functional

Ar =
∫

M

SrdM

for variations of M with compact support. Thus, such hypersurfaces generalize the fact that minimal

hypersurfaces are critical points of the area functional A0 = ∫
M

S0dM for compactly supported

variations.
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A breakthrough in the study of these hypersurfaces occurred in the last five years of last century:

in (Hounie and Leite 1995) and (Hounie and Leite 1999) conditions for the linearization of the

partial differential equation Sr+1 = 0 to be an elliptic equation were found. This linearization

involves a second order differential operator Lr (see the definition of Lr in Section 2) and the

Hounie-Leite conditions read as follows:

Lr is elliptic ⇐⇒ rank(A) > r + 1 ⇐⇒ Sr+2 �= 0 everywhere.

In this paper, we will be interested in the case S2 = 0. For this situation, since rank(A) cannot

be two, the ellipticity condition is equivalent to rank (A)≥ 3.

In (Alencar et al. 2003) a general notion of stability was introduced for bounded domains of

hypersurfaces of Euclidean spaces with Sr+1 = 0. In the case we are interested, namely S2 = 0, it

can be shown that if we assume that L1 is elliptic, an orientation can be chosen so that a bounded

domain D ⊂ M is stable if

d2A1

dt2
|t=0 > 0 for all variations with support in (the open set) D .

In what follows, we denote by Br(0) the ball of radius r centered at the origin 0 of Rn+1. Let

Mn−1 be a smooth hypersurface of the sphere Sn(1). A cone C(M) in Rn+1 is the union of half-lines

starting at 0 and passing through the points of M . It is clear that C(M) ∩ Sn(1) = M . It is easy

to show that C(M) − {0} is a smooth n-dimensional hypersurface of Rn+1. The manifold C(M) is

referred to as the cone based on Mn−1. The part of the cone contained in the closure of the ring

B1(0) \ Bε(0), 0 < ε < 1, is called a truncated cone and is denoted by C(M)ε.

In this note we present the following two theorems which provide a nice description of the

stability of truncated cones in Rn+1 based on compact, orientable hypersurfaces of Sn(1), with

S2 = 0 and S3 �= 0 everywhere.

Theorem 1. Let Mn−1, n ≥ 4, be an orientable, compact, hypersurface of Sn(1) with S2 = 0 and

S3 �= 0 everywhere. Then, if n ≤ 7, there exists an ε > 0 so that the truncated cone C(M)ε is not

stable.

Theorem 2. For n ≥ 8, there exist compact, orientable hypersurfaces Mn−1 of the sphere Sn(1),

with S2 = 0 and S3 �= 0 everywhere, so that, for all ε > 0, C(M)ε is stable.

Although Theorems 1 and 2 are interesting on their own right, a further motivation to prove these

theorems is that, for the minimal case, they provide the geometric basis to prove the generalized

Bernstein theorem, namely, that a complete minimal graph y = f (x1, . . . , xn−1) in Rn, n ≤ 8, is

a linear function (See (Simons 1968), Theorems 6.1.1, 6.1.2, 6.2.1, 6.2.2).

For elliptic graphs in Rn with vanishing scalar curvature the question appears in a natural way.

Of course, since we want to consider graphs with S2 = 0 and S3 never zero, we must start with

n ≥ 4, and the solution cannot be a hyperplane. Thus the question is whether there exists an elliptic

graph in Rn, n ≥ 4, with vanishing scalar curvature.
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2 PRELIMINARIES

For notational reasons, it will be convenient to denote the hypersurface of the Introduction by

x : M̄ → Rn+1. We first need to consider the Newton Transformations Pr , that are inductively

given by

P0 = I

Pr = Sr I − APr−1 ,
(1)

and then define the differential operator Lr by

Lrf = trace{PrHessf } . (2)

It turns out that Lr is self-adjoint and that Lrf = div(Prgradf ).

The second variation formula for the variational problem of the functional A1 is, up to a positive

constant, given by

I (f ) = −
∫

M̄

f (L1f − 3S3f )dM̄ , (3)

for test functions f of compact support in M̄ .

Consider now a compact orientable (n−1)-dimensional manifold M immersed as a hypersur-

face of the unit sphere Sn(1) of the Euclidean space Rn+1. The cone C(M) based on M is described

by

M × (0, ∞) → Rn+1 (4)

(m, t) → tm .

Of course, the geometry of C(M) is closely related to the one of M and it is simple to compute

the second fundamental form Ā of C(M) in terms of the second fundamental form A of M . In fact,

one finds

Ā = 1

t
A .

From this relation on the second fundamental forms it follows that

Proposition 1. If S̄r represents the elementary symmetric function of order r of C(M) and P̄r its

Newton transformations, then:

a) S̄r = (1/tr)Sr ,

b) S̄r = 0 if and only if Sr = 0 ,

c) |Ā| = (1/t)|A| ,
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d) P̄r = (1/tr)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sr

|
|

0

− − − − + − − − −−
|

0 | Pr

|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The proof is direct except for the last item. But this can be done using finite induction and

the definition of P̄r .

LetF : C(M) → R be aC2 function. For each t > 0, define F̃t : M → R by F̃t (m) = F(m, t).

Proposition 2. With the above notation we have:

L̄rF = 1

t r
Sr

∂2F

∂t2
+ n − r − 1

t r+1
Sr

∂F

∂t
+ 1

t r+1
Lr(F̃t ) .

Proof. The proof of this Lemma follows the same lines used to find the expression of the Laplacian

in polar coordinates and using the previous proposition.

3 SKETCH OF PROOF OF THEOREM 1

First of all let us observe that since S2 ≡ 0 then (S1)
2 = |A|2 ≥ 0. Hence, at a point where S1 = 0

we would have that all the entries of the matrix A are zero and so S3 = 0 what is forbidden by our

hypothesis. Therefore, we will have (S1)
2 > 0 everywhere.

According to Proposition 1, our hypotheses then imply that, for the cone C(M), we have S̄2 ≡ 0

and S̄1 and S̄3 never zero.

It was proved in (Hounie and Leite 1999) that, for a hypersurface of Rn+1 with S̄r ≡ 0,

2 ≤ r < n, the operator L̄r−1 is elliptic if and only if S̄r+1 is never zero. Then we conclude that L1

and L̄1 are elliptic.

To prove the theorem, we are going to show the existence of a truncated cone C(M)ε for

which the second variation formula attains negative values. Hence, from now on we are going to

work on a truncated cone, with test functions f that have a support contained in the interior of the

truncated cone. As we did before, for each test function f : C(M)ε → R and each fixed t we

define f̃t : M → R by f̃t (m) = f (m, t). From Proposition 2 we have that

L̄1f = 1

t
S1

∂2f

∂t2
+ n − 2

t2
S1

∂f

∂t
+ 1

t3
L1(f̃t ) . (5)

The volume element of C(M) is easily seen to be

dM̄ = tn−1dt ∧ dM . (6)

An Acad Bras Cienc (2004) 76 (4)



CONES WITH VANISHING SCALAR CURVATURE 635

Hence, using (3), (5) and the expression of the volume, the second variation formula on f becomes

I (f ) = −
∫

M×[ε,1]

(
f̃tL1(f̃t ) − 3S3(f̃t )

2
)
tn−4dt ∧ dM −

−
∫

M×[ε,1]

(
t2f

∂2f

∂t2
+ (n − 2)tf

∂f

∂t

)
tn−4S1dt ∧ dM .

(7)

Since S1 > 0, then tn−4S1dt ∧ dM is a volume element in C(M), in particular in C(M)ε . We

will represent it by dS. In fact, dS is a product of two measures. The first one on the real line:

dξ = tn−4dt ; the second, on M , given by dµ = S1dM . So, dS = dξ ∧ dµ. We can then rewrite

the second variation formula on f as:

I (f ) = −
∫

M×[ε,1]
1

S1

(
f̃tL1(f̃t ) − 3S3(f̃t )

2
)
dξ ∧ dµ

−
∫

M×[ε,1]

(
t2f

∂2f

∂t2
+ (n − 2)tf

∂f

∂t

)
dξ ∧ dµ .

(8)

Define, now, the following two operators:

L1 : C∞(M) → C∞(M) by: L1f = −(1/S1)L1f + 3(S3/S1)f .

L2 : C∞[ε, 1] → C∞[ε, 1] by: L2g = −t2g′′ − (n − 2)tg′ .
(9)

Observe that we are considering the space C∞(M) with the inner product:

� f1, f2 �=
∫

M

f1f2dµ (10)

and C∞[ε, 1] with the inner product:

〈g1, g2〉 =
∫ 1

ε

g1g2dξ . (11)

Since L1 is elliptic and M is compact then L1, and so L1, is strongly elliptic. The same is true for

the operator L2. Let λ1 ≤ λ2 ≤ · · · ↗ ∞ be the eigenvalues of L1 and δ1 < δ2 < · · · ↗ ∞ be the

eigenvalues of L2. Using orthonormal bases of eigenfunctions for theses operators one deduces

the following Lemma:

Lemma 1. For any test function f we have

I (f ) ≥ (λ1 + δ1)

∫
M×[ε,1]

f 2dξ ∧ dµ .

There exists a test function f such that I (f ) < 0 if and only if λ1 + δ1 < 0.

The operator L2 is well known. In fact it has been used in (Simmons 1968) to prove his

celebrated theorem. The following lemma contains all the information we need about this operator:
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Lemma 2. The operator L2 has eigenvalues

δk =
(

n − 3

2

)2

+
(

kπ

log ε

)2

, (12)

where 1 ≤ k < ∞.

We will also need the following lemma whose proof uses Lemmas (3.7) and (4.1) in (Alencar

et al. 1993).

Lemma 3. Let Mn−1 be a compact, orientable, immersed hypersurface of Sn(1) with S2 ≡ 0 e S3

never zero. Suppose n ≥ 4. The first eigenvalue of the operator L1 in M satisfy: λ1 ≤ −(n − 2).

Finally, we observe that the lemma below completes the proof of Theorem 1.

Lemma 4. Let Mn−1 be a compact, orientable, immersed hypersurface of Sn(1) with S2 ≡ 0, S3

never zero and n ≥ 4. If n ≤ 7 then there exists ε > 0 such that the truncated cone CMε is not

stable.

Proof of the Lemma: From Lemmas 2 and 3 we have

λ1 + δ1 ≤ −(n − 2) +
(

n − 3

2

)2

+
(

π

log ε

)2

.

It is trivial to verify that the sum of the first two terms of the right hand side of this inequality is

a quadratic polynomial, with positive second order term, whose roots are approximately 2.2 and

7.8 . Hence it is strictly negative for values of n ∈ {4, 5, 6, 7}, in fact, it is less than or equal to

−1. Hence,

λ1 + δ1 ≤ −1 +
(

π

log ε

)2

.

Choosing ε sufficiently small we can guarantee that the right hand side is negative. Now, by Lemma

1, we see that CMε is not stable. This proves Lemma 4 and completes the proof of the Theorem 1.

4 EXISTENCE OF STABLE CONES

In this section we sketch the proof o Theorem 2.

The following example has been considered by various people in different contexts (see e.g.

(Chern 1968) and (Alencar et al. 2002). Consider Rp+2 = Rr+1 ⊕ Rs+1, r + s = p. Write down

the vectors of Rp+2 as ξ1 + ξ2, ξ1 ∈ Rr+1, ξ2 ∈ Rs+1. When ξ1 describes Sr(1) ⊂ Rr+1 and ξ2

describes Ss(1) ⊂ Rs+1, by taking positive numbers a1 and a2 with a2
1 + a2

2 = 1, we have that

x = a1ξ1 + a2ξ2

describes a submanifold M of dimension p = r + s of the sphere Sp+1(1) ⊂ Rp+2. The manifold

M is diffeomorphic to Sr(1)× Ss(1) and so is compact and orientable. It can be shown that a1 and

a2 can be chosen so that S2 = 0 and S3 �= 0. We will show that, in this case, the truncated cone

C(M)ε is stable as a hypersurface of Rr+s+1 when r + s + 1 ≥ 8.
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It can be shown that the L1 operator on M is given by

L1f =
[
(r − 1)

a2

a1
− s

a1

a2

]
�rf +

[
r
a2

a1
− (s − 1)

a1

a2

]
�sf ,

where �r and �s denote the Laplacian operators in the Euclidean spheres Sr(a1) and Ss(a2),

respectively. Since the first nonzero eigenvalue of the Laplace operator on a sphere Sk(b) is known

to be k/b2, the first nonzero eigenvalue of L1 will be

λ̃1 = min

{[
(r − 1)

a2

a1
− s

a1

a2

]
r

a2
1

,

[
r
a2

a1
− (s − 1)

a1

a2

]
s

a2
2

}
.

It will then follow that the first eigenvalue of the operator

L1 = 1

S1
L1 + 3

S3

S1

will be given by

λ1 = 3
S3

S1
= −(p − 1) ,

where the last equality comes from a long but straightforward computation.

Therefore, using Lemma 2, the above value for λ1, and the fact that, in our case, n = p + 1,

we obtain

λ1 + δ1 = −(n − 2) +
(

n − 3

2

)2

+
(

π

log ε

)2

.

For n ≥ 8, the sum of the first two terms becomes > 1/4. Thus, for any choice of ε, λ1 + δ1 > 0.

Together with Lemma 1, this completes the proof of Theorem 2.
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RESUMO

Dada uma hipersuperfície M de uma esfera unitária do espaço euclidiano, definimos o cone sobre M como

o conjunto das semi-retas que saem da origem e passam por M . Admitindo que a curvatura escalar de um

dado cone é nula, estabelecemos condições para que os seus domínios limitados sejam estáveis ou instáveis.

Palavras-chave: estabilidade, r-curvatura, cone, curvatura escalar.
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