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ABSTRACT

We study the classification of germs of differential equations in the complex plane giving

a complete set of analytic invariants determining the analytic type of the underlying foliation.

In particular we answer in affirmative a conjecture of S. Voronin, and generalize some previous

results about dicritical singularities in a straightforward manner. Such problem has its origins in

a conjecture proposed by R. Thom in the mid-1970s.
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1 INTRODUCTION

We study the classification of differential equations of the form Adx + bdy in two variables, by

their underlying foliations. As it is well known, any analytic differential equation in (C2, 0) has a

nonvoid set of integral curves through the origin, called separatrix set, and denoted by Sep(F). In

Câmara 2001 we use the blow-up method in order to identify a complete set of invariants describing

the analytic type of a generic subset of the above differential equations: the generalized curves. By

definition a generalized curve has only a finite number of separatrices and no saddle-nodes along its

minimal resolution (Seidenberg 1968). In fact, we introduce a new kind of resolution of foliations

(called rectifier resolutions) taking care not only of the topological behavior of the singularities

along the “solved” foliation but paying attention to the disposition of the strict transform of Sep(F),

say Sep(F̃). In fact, if Dj is an irreducible component of the exceptional divisor of F̃ and Sep(F̃j )

is the restriction of Sep(F̃) to a neighborhood of Dj , then Sep(F̃j ) will be a subset of fibers of a

fibration transversal to Dj . Thence we determine the analytic type of each Hopf component (see

definition below), say F̃j , of the solved foliation by its set of singular points (up to homographic
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conjugacy class), the first jets of their singularities and the conjugacy class of the holonomy group

in Diff(C, 0). Indeed, we use classical topological methods of path lifting due to Ehersmann and

analytic extension technics for nondegenerate reduced singularities (cf. Mattei and Moussu 1980,

Martinet and Ramis 1983). Finally, the remaining invariants appear as characteristic classes which

arise naturally from this geometric construction.

In order to extend the previous construction for any foliation, we have the following hindrances

to overcome:

First consider the case of a nondicritical foliation with a Hopf component F̃j defined in the Hopf

bundle Hj (see definition below), having just nondegenerate singularities and some saddle-nodes

with strong variety (see definition below) siting over the invariant projective line Dj . Although the

conjugacy class of the projective holonomy determines the analytic type of each singularity (Mattei

and Moussu 1980, Martinet and Ramis 1983), we cannot guarantee that it determines the analytic

type of the Hopf component of the foliation, even if Sep(F̃j ) is contained in a fibration transversal

to Dj . In fact, there is no analytic extension theorem for saddle-nodes as in the nondegenerate

case. As we shall see, in order to overcome this obstacle, we have to “isolate” such saddle-nodes

(after blowing-up) with just one resonant saddle and then, verify that the projective holonomy of

the new Hopf component determine the analytic type of the original saddle-node, by studying its

Stokes phenomenon.

Now, suppose that F̃j has just nondegenerate singularities and at least one saddle-node with

central variety (see definition below) siting on Dj . In this case the conjugacy class of the projective

holonomy does not determine the analytic type of the saddle-node in general (Martinet and Ramis

1982). But exploring the “symmetries” of saddle-nodes with central variety, we can define an

equivalence relation (with analytic moduli space) such that the new class of the projective holonomy

determines the analytic type of F̃j , since Sep(F̃j ) is contained in fibration transversal to Dj .

On the other hand, we recall that until now, the dicritical singularities — i.e., those with

an infinite number of separatrices — are not well understood (cf. Cerveau 1999). In fact, their

extended resolutions (Camacho et al. 1984) are composed by nondicritical and dicritical Hopf

components (see definition below) satisfying:

(1) The nondicritical components are solved, that is, they have just reduced singularities;

(2) The dicritical components are pair-wise nonintersecting, and have no singular or tangential

points in the zero section of its Hopf bundle.

We apply the same reasonings in order to obtain an extended rectifier resolution. First remark

that the zero section of a Hopf bundle corresponding to a dicritical component is transversal to

the foliation. It follows that the only invariants provided by it are the corners and the Chern

class of its Hopf bundle (we verify this by path lifting). In particular, it follows that any two

analytically equivalent dicritical foliations, namely F i , i = 1, 2, with dicritical components F̃ i
j,0

intercepting just the nondicritical Hopf components, say F̃ i
j,k, k = 1 · · · ni , must have the same
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global conjugacy in PGL(2,C) which does not only carry corners of F̃1
j,0 into corners of F̃2

j,0 but

simultaneous conjugate all the projective holonomies of F̃ i
j,k evaluated over the transversal section

Di
j,0 — the zero section of the Hopf bundle determined by the dicritical component F̃ i

j,0 (see figure

2). So, we cannot choose the projective holonomies of the nondicritical Hopf components freely,

in the extended rectifier resolution of a germ of dicritical foliation. In other words, the cellular

objects of the resolution of a dicritical singularity are no longer just the Hopf components, but the

following ones:

(1) The union of a dicritical component together with the nondicritical components intercepting

it, say F̃j,0
⋃nj

k=1 F̃j,k;

(2) The nondicritical Hopf components of the foliation nonintersecting any dicritical foliation.

In fact the analytic types of these objects are determined by the projective holonomies of the

nondicritical Hopf components of the foliation in the extended rectifier resolution and by the tree

of corners and singularities of each cell. It follows that this objects are suitable for the definition

of a good covering for the first cohomology set of the isotropy group of a foliation model as in

Câmara 2001. This work was presented in the International Conference Geometry and Foliations

2003 held at Ryukoku University, Kyoto, Japan.

2 BASIC DEFINITIONS AND NOTATIONS

A germ of singular foliation, say (F : ω = 0), in (C2, 0) of codimension 1 is, roughly, the set of

integral curves of a given germ of 1-form ω ∈ �1(C2, 0) which may be assumed to have just an

isolated singularity at the origin. Let Diff(Ck, 0) (respect. D̂iff(Ck, 0)) be the group of germs

of analytic (respect. formal) diffeomorphisms of (Ck, 0) fixing the origin and DiffI(C
k, 0) ⊂

Diff(Ck, 0) (respect. D̂iffI(C
k, 0) ⊂ D̂iff(Ck, 0)) be the subset of such diffeomorphisms, tangent

to the identity. We say that two germs of foliations in (C2, 0), namely (Fj : ωj = 0), j = 1, 2,

are analytically conjugate if there is � ∈ Diff(C2, 0), such that � sends leaves of F1 into leaves

of F2. We say that h1,h2 ∈ Diff(C, 0) are analytically conjugate if there is φ ∈ Diff(C, 0) such

that Ad(φ−1)(h2) := φ−1 ◦ h2 ◦ φ = h1. We denote by Iso(F) the isotropy group of the germ of

foliation (F : ω = 0) in (C2, 0), defined by

Iso(F) = {φ ∈ Diff(C2, 0) : φ∗ω ∧ ω = 0}

Further, let us denote the Hopf bundle of Chern class −k by H(−k) : (
p(k) : H(−k) → CP(1)

)
,

or just by its total space H(−k). Recall, from the theory of Algebraic Curves, that whenever

π : (X̃, D) −→ (C2, 0) is a map resulting from the iteration of finite number of blow-ups,

with exceptional curve D = π−1(0), whose irreducible components are Dj , j = 1 · · · n, with

Chern classes −kj , then a suitable neighborhood of D in X̃ results from pasting together suitable

neighborhoods of the zero sections of H(−kj ). Thus, for each Hopf bundle component p : Hj →
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Dj of a given resolution, we shall denote by F̃j , the germ of foliation at Dj ⊂ Hj induced by

the restriction of F̃ , and call it the j thHopf component of the resolution. Further, recall that F̃j is

nondicritical if Dj is an invariant set of the foliation, and dicritical otherwise. In the former case,

the holonomy of F̃j with respect to a section � transversal to D � CP(1) is called the projective

holonomy of F̃j , and denoted by Hol�(Fj , Dj ), furthermore one says that it is solved if it has

just reduced singularities (cf. Mattei and Moussu 1980), and rectified if Sep(F̃j ) is contained in

a fibration transversal to Dj in (Hj , Dj ). In both cases one calls the set of singularities of F̃j the

first tangent cone of Fj , and, in the later case, the set of tangencies between F̃j and Dj the second

tangent cone of F̃ .

Let F̃ i , i = 1, 2, be two germs of singular nondicritical foliations at CP(1) ⊂ H, and ϕ ∈
PGL(2,C) be an isomorphism between their sets of singular points {t ij }nj=1, that is ϕ(t1

j ) = t2
j . Fur-

ther let t1
0 ∈ CP(1) be a regular point of F̃1, t2

0 = ϕ(t1
0 ), and denote by hi

γ the holonomy of a path γ ∈
π1(CP(1)\{t ij }nj=1, t

i
0), with respect to sections �i , i = 1, 2 transversal to CP(1). Then recall that

the projective holonomies of these foliations have an analytic conjugation subordinated to ϕ if there

is φ ∈ Diff(C, 0) such that Ad(φ−1)(h2
γ ) = h1

ϕ∗γ , for every γ ∈ π1(CP(1)\{t1
j }nj=1, t

1
0 ). Further

we set Diff(F̃1, F̃2) = {� ∈ Diff(H,CP(1)) : �∗(F̃1) = F̃2, �(Sing(F̃1)) = ϕ(Sing(F̃1)}.
In particular we denote the isotropy group of F̃ by Iso(F̃) = Diff(F̃, F̃).

We say that a resolution of a nondicritical foliation is simple if its exceptional divisor has

only one projective line with three or more singularities (see figure 1), which is called principal

projective line of the exceptional divisor; its holonomy is called the projective holonomy of the

foliation. In particular the Hopf component of a simple nondicritical foliation about the principal

project line is called the principal Hopf component.

Fig. 1 – A simple resolution for a nondicritical foliation.

Now recall that a saddle-node is a singularity with a degenerated nonvanishing linear part

which presents two invariant curves passing through the origin: the strong variety which is analytic

and a formal one, which is called central variety when it converges. Their holonomies are called

strong holonomy in the former case, and weak holonomy in the later. Let F̃ be a nondicritical solved

foliation defined around the zero section of a Hopf bundle H : (p : H → D), with saddle-nodes

along the divisor. Then one says that a saddle-node defined in (H, D) is transversal if its strong

variety is transversal to D. Otherwise one say that the saddle-node is parallel.

Recall from Dulac 1904 that every saddle-node (F : ω = 0) can be analytically reduced to

the form (Fp,A : ωp,A = 0) where

ωp,A(x, y) = xp+1dy − A(x, y)dx
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with A ∈ O2 and A(0, y) = y. That is, there is �p,A ∈ Diff(C2, 0) such that

(�p,A)∗ωp,A ∧ ω = 0,

which will be called an analytic Dulac reduction. On the other hand each singularity of the form

(Fp,A : ωp,A = 0) has a formal normal form (Fp,λ : ωp,λ = 0) where

ωp,λ(x, y) = xp+1dy − y(1 + λxp)dx

In other words, there is N̂(Fp,A) ∈ D̂iffI(C
2, 0) given by N̂(Fp,A)(x, y) = (x, g(x, y)), with

g(x, y) = y +∑
j≥1 aj (y)xj , where all aj converge with the same radius of convergence, and such

that

(N̂(Fp,A))∗ωp,λ ∧ ωp,A = 0,

which will be called a formal Dulac reduction. Furthermore, for each Uj = {(x, y) ∈ C2 : arg(x)−
(2j+1)

2p
π ∈] − π/p, π/p[, 0 < |y| < r, r ∼ 0), with j ∈ Z2p, there is an unique holomorphic

transformation of Uj , namely Nj(Fp,A), such that Nj(Fp,A)−→N̂(Fp,A), i.e. N̂(Fp,A) is the

asymptotic expansion of each Nj(F) (in fact p-summable, cf. Hukuhara et al. 1961, Martinet and

Ramis 1982) satisfying

(Nj (Fp,A))∗ωp,λ ∧ ωp,A = 0

Now let Ũj := �−1
p,A(Uj ) and Nj(F) := Nj(Fp,A) ◦ �p,A : Ũj −→ Uj for j ∈ Z2p. Then

one has that Nj+1,j (F) := Nj+1(F) ◦ Nj(F)−1 can be identified with C for j = 0 mod 2 and

with DiffI(C, 0) for j ≡ 1 mod 2. Hence one has that (up to a linear change of coordinates

(x, y) �→ (αx, βy), with αp = 1, and β ∈ C∗) the map

� : �p,λ −→ C× DiffI(C, 0) × p-times· · · × C× DiffI(C, 0)

(F : ω = 0) �−→ (N1,0(F), N2,1(F), · · · , N2p−1,2p−2(F), N2p,2p−1(F))

is a well defined biholomorphism, where �p,λ is the orbit space under analytic equivalence of the set

of saddle-nodes with formal normal form (Fp,λ : ωp,λ = 0). In particular we have that (F : ω = 0)

has central variety if and only if �(F) = (I, N2,1(F), · · · , I, N2p,2p−1(F)). Note that to determine

the analytic type of a saddle-node, it suffices to determine Nj(F) for all j ∈ Z2p (Martinet and

Ramis 1982). So we say that (Ũj , Nj (F)) is a sectorial chart and that
⋃

j∈Z2p
(Ũj , Nj (F)) is a

sectorial atlas for the saddle-node (F : ω = 0). Now let F1, F2 ∈ �p,λ be two saddle-nodes

with central variety and formal normal form Fp,λ. Let �a = (x = a), �̃
j
a := (�

j

p,A)−1(�a),

Sj := (�
j

p,A)−1((y = 0)), and φ be a conjugation between Hol�̃1
a
(F1, S1) and Hol�̃2

a
(F2, S2).

Then one says that φ is p-periodic in sectorial charts if

(Nj (F2)|�̃2
a
) ◦ φ ◦ (Nj (F1))−1|�a

(y) = exp

(
2πi

p

)
· y

Henceforth, we say that a saddle-node with central variety has a q-symmetric Stokes phenomenon

or has q-order of symmetry if q is the greater integer for which the map Rq(z) = exp( 2πi
q

) · z
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commutes with Nj+1,j for every j ≡ 1 mod 2. Let F̃ and F̃ ′ be two analytically equivalent, up

to order one (for reduced nondegenerate singularities) and formal type (for saddle-nodes), solved

foliations defined in the Hopf bundleH : (p : H −→ D), with {tj }nj=1 and {t ′j }nj=1 being transversal

saddle-nodes, such that t ′j = ϕ(tj ), where ϕ ∈ Diff(D) ≈ PGL(2,C) is their tree isomorphism,

and with F̃ |(D,tj ) and F̃ ′|(D,tj ) having the same order of symmetry, say qj . Then one says that

a holomorphic conjugation between Hol�(F̃, D) and Hol�′(F̃ ′, D) commutes with the stokes

phenomenon of F̃ and F̃ ′ if for each pair of equivalent points (tj , t
′
j ), φ is pj -periodic in sectorial

charts, where pj is a divisor of gcd({qj }nj=1). Let F be a singular foliation in (C2, 0) with dicritical

component, and F̃ its extended resolution, then one says that each nondicritical Hopf component

that does not intercept a dicritical Hopf component is a nondicritical cell. Further, if F has a

dicritical component, then the union of each dicritical Hopf component with the nondicritical ones

intercepting it, is called a dicritical cell, and denoted by C̃j = F̃j,0 ∪n
k=1 F̃j,k where F̃j,0 is the

dicritical component of the cell.

Fig. 2 – A dicritical cell.

Let C̃i = F̃ i
0 ∪n

k=1 F̃ i
k , i = 1, 2, be two germs of dicritical cells, where each F̃ i

k is defined at the

zero section of the Hopf bundle Hk : (pk : Hk −→ Dk). Then one says that
∏n

k=1 HolD0(F̃1
k , Dk)

and
∏n

k=1 HolD0(F̃2
k , Dk) have a Möbius conjugation if there is φ ∈ Diff(D0) � PGL(2,C) such

that Ad(φ)(HolD0(F̃2
k , Dk)) = HolD0(F̃1

k , Dk). Furthermore, let ϕk ∈ Diff(Dk) � PGL(2,C)

be an isomorphism between Sing(F̃1
k ) and Sing(F̃2

k ) for k = 1 · · · n and between the corners of F̃1
0

and F̃2
0 . Then we say that a Möbius conjugation is subordinated to ϕ := (ϕk)

n
k=0 if it is subordinated

to each ϕk as a local conjugation, for k = 1 · · · n, and is such that φ|corners of F̃1
0

= ϕ|corners of F̃1
0
.

Further we set BH := H0 ∪n
k=1 Hk and BD := D0 ∪n

k=1 Dk and define Diff(BH, BD) to be the set

of diffeomorphisms of BH preserving Dk, for k = 0 · · · n. Moreover we set Diff C̃1,C̃2(BH, BD) :=
{� ∈ Diff(BH, BD) : �∗(C̃1) = C̃2, �(Sing(F̃1

k )) = ϕ(Sing(F̃1
k )}. In particular we define the

isotropy group of the dicritical cell C̃ by Iso(C̃) := Diff C̃,C̃(BH, BD). Also we shall say that

a dicritical cell is solved if each of its singularities are reduced. Analogously we shall say that

a dicritical cell is rectified if each of its nondicritical component is solved and rectified, and its

dicritical component has void first and second tangent cones. Note that two dicritical cells may

intersect, but if it happens, it most be at just one nondicritical Hopf component of the foliation. Let

us call the larger simply-connected subsets of the resolution space, containing just nondicritical

Hopf components of the foliation, the nondicritical branches of F̃ . In particular, we shall say that

a nondicritical branch is simple if it has just one projective line with three or more singularities,

An Acad Bras Cienc (2005) 77 (1)



INVARIANTS OF ANALYTIC DIFFERENTIAL EQUATIONS 7

which shall be called the principal projective line of the branch. So we extend the concept of

simple resolution foliation in the following way: we say that a resolution of a dicritical foliation

is simple whenever its has just one dicritical component, and each nondicritical branch is simple

with principal projective line intercepting the dicritical component (see figure 3).

Fig. 3 – A dicritical foliation with simple extended rectifier resolution.

Further, let F̃ be a simple nondicritical branch of a solved and rectified foliation. Then we say

that a dicritical singular foliation, say G̃, is a companion fibration for F̃ , if G̃ satisfies the following

properties:

(1) F̃ and G̃ have the same chain of projective lines (cf. Câmara 2001);

(2) G̃ is simple and its (only) dicritical component is a fibration transversal (cf. Câmara 2001) to

the principal Hopf component of F̃ ;

We say that a singular foliation (F : ω = 0) has an (extended) rectifier resolution, say

(F̃ : ω̃ = 0) if each of its Hopf components, namely F̃j , satisfies one of the following conditions:

(1) F̃j is nondicritical, solved, rectified and does not have parallel saddle-nodes;

(2) F̃j has just two singularities, and in antipodal points of Dj ≈ CP(1): a parallel saddle-node

and a (corner) resonant saddle with index -1 with respect to Dj ;

(3) F̃j is dicritical and has void first and second tangent cones.

Notice that, similarly to the case of Seidenberg’s resolution, we can talk about a minimal

rectifier resolution, although this is not unique in general. Two rectifier resolutions, namely F̃1 and

F̃2, are cell-wise equivalent if they have isomorphic trees of singularities and there is a collection

of biholomorphisms �j taking the leaves of C̃j
1

into the leaves of C̃j
2
. In particular, we denote

by
∑c

ω (respect.
∑c,1,F

ω ) the set of germs of foliations which has a minimal (extended) rectifier

resolution cell-wise equivalent (respect. up to order one for the nondegenerate reduced singularities

and formal type for the saddle-nodes) to a minimal rectifier resolution of (F : ω = 0). Further we

denote as
∑c,1,F

ω,f the subset of
∑c,1,F

ω whose separatrix set has the same analytic type of the curve

f −1(0).
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3 STATEMENT OF THE MAIN RESULTS

The above definitions of rectifier resolution are supported by the following.

Proposition 1. Every germ of analytic foliation in (C2, 0) has an (extended) rectifier resolution.

Let (F : ω = 0) be a germ of foliation in (C2, 0), then pick a foliation Fo cell-wise isomorphic

to F , which shall be called a fixed model for F , and consider the elements �j ∈ Diff(C̃j , C̃o
j ), which

shall be called cell charts for the j th cell of the fixed model. Then it is straightforward that for

each cell C̃j and each fixed model cell C̃o
j , there exists only one cell chart, up to left composition

by an element of Iso(C̃o
j ). So, consider the sheaf of nonabelian groups 
o := Iso(F̃o), then

we say that U := ∪Uj is a good covering for 
o if Uj are neighborhoods of Dj ⊂ Hj or

of BDj ⊂ BHj , respectively for nondicritical or dicritical cells. Therefore, consider the first

cohomology set H 1(U, 
o) associated to the good covering U , and set H 1(D, 
o) as the direct

limit of H 1(U, 
o) for the good coverings for of 
o, associated to D = ∪Dj , the exceptional

divisor of a minimal rectifier resolution of F .

Thus we define the map

∑c
ω

�

−→ H 1(D, 
o)

F �→ (�i,j )

where �i,j := �i ◦�−1
j . Note that � does not depend on the fixed models up to cell-wise conjugacy

class. Then, as a consequence of path-lifting construction, one has that:

Theorem 1. Let F, F ′ be two germs of singular foliations in (C2, 0), and F̃, F̃ ′ one of their

minimal rectifier resolutions respectively. Then F, F ′ are analytically equivalent if and only if they

satisfy:

(1) F, F ′ ∈ ∑c,1,F
ω for some 1-form ω ∈ �1(C2, 0) (holomorphic one-forms). In particular we

denote by ϕ = (ϕj ) : �s −→ �′
s the component-wise isomorphism between the trees of

singularities of their minimal rectifier resolution.

(2) Two equivalent (up to formal type) transversal saddle-nodes ti,j , t
′
i,j = ϕj (ti,j ) have the same

order of symmetry.

(3) For each nondicritical cell F̃j and F̃ ′
j their projective holonomies have an analytic conjugation,

namely φj , subordinated to ϕj , and commuting with the Stokes phenomenon of the transversal

saddle-nodes of F̃j and F̃ ′
j .

(4) For each dicritical cell C̃j = F̃j,0 ∪nj

k=1 F̃j,k and C̃ ′
j = F̃ ′

j,0 ∪nj

k=1 F̃ ′
j,k, we have that∏nj

k=1 HolDj,0(F̃j,k, Dj,k) and
∏nj

k=1 HolDj,0(F̃ ′
j,k, Dj,k) have a Möbius conjugation, namely

φj , subordinated to ϕ, and commuting with the Stokes phenomenon of the transversal saddle-

nodes of F̃j,k and F̃ ′
j,k.
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(5) �(F) = �(F ′), for one (and every) fixed model of
∑c

ω.

Notice that (2) above answers in affirmative way the following conjecture of S. M. Voronin

(cf. Elizarov et al. 1993): Beyond the resolution tree of the minimal resolution and the projective

holonomies there are some further numerical invariants for singular foliations in (C2, 0). In fact,

these new invariants are the order of symmetry of each transversal saddle-node.

Fig. 4 – A fixed model for
∑c,1

d(y2+x4)
.

Recall that in Câmara 2001, for f (x, y) = ∏d
j=1(y

p − λjx
q), with 1 < p < q ∈ N∗,

g.c.d.(p, q) = 1, and λj ∈ C∗, we classify the set
∑c,1

ω,f (the subset of generalized curves of∑c,1,F
ω,f ) by its projective holonomy, generalizing a result of Cerveau and Moussu 1988 concerning

the subset
∑c,1

ω,y2+xn . Here we give a slight generalization of this result, including in particular a

result of Meziani 1996 concerning
∑c,1,F

ω,y2+xn .

Theorem 2. Let f (x, y) = ∏d
j=1(y

p − λjx
q), where 1 < p < q ∈ N∗, g.c.d.(p, q) = 1, and

λj ∈ C∗. Then, for every F ∈ ∑c,1,F
ω we have that F has a simple minimal rectifier resolution,

and �(F) is trivial in H 1(D, 
o). In particular if F̃ and F̃ ′ are minimal rectifier resolutions

of F, F ′ ∈ ∑c,1,F
ω , and F̃0, F̃ ′

0 their principal projective lines, respectively, then F and F ′ are

analytically equivalent if and only if:

(1) If ϕ is the isomorphism between the trees of F̃ and F̃ ′ with t ′ij = ϕ(tij ), then tij and t ′ij have

the same order of symmetry, whenever they are transversal saddle-nodes;

(2) Their projective holonomies have a conjugation subordinated to ϕ and commuting with the

Stokes phenomenon of the transversal saddle-nodes of F̃0 and F̃ ′
0.

We would like to stress the importance of the fixed separatrix type in the above theorem,

remarking that in general
∑c,1,F

ω,f �
∑c,1,F

ω .

Theorem 3. Let F be a germ of dicritical foliation which has a simple minimal rectifier resolu-

tion, say F̃ , whose nondicritical branches have a companion fibration. Then �(F) is trivial in

H 1(D, 
o). In particular if F, F ′ ∈ ∑c,1,F
ω then they are analytically equivalent if and only if they

satisfy:
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(1) If ϕ is the isomorphism between the trees of F̃ and F̃ ′ with t ′ij = ϕ(tij ), then F̃ |(Di ,tij ) and

F̃ ′|(Di ,t
′
ij ) have the same order of symmetry, whenever tij and t ′ij are transversal saddle-nodes;

(2) For any dicritical cells C̃j = F̃j,0 ∪n
k=1 F̃j,k and C̃ ′

j = F̃ ′
j,0 ∪n

k=1 F̃ ′
j,k, we have that∏n

k=1 HolDj,0(F̃j,k, Dj,k) and
∏n

k=1 HolDj,0(F̃ ′
j,k, Dj,k) have a Möbius conjugation, namely

φ, subordinated to ϕ, and commuting with the Stokes phenomenon of the transversal saddle-

nodes of F̃j,k and F̃ ′
j,k.

A particular instance of a foliation in the hypothesis of the above theorem happens when the

minimal (Seidenberg) resolution of a dicritical singularity is simple and has just tangencies and

the kind of singularities we study in theorem 2, in the dicritical component, generalizing some

results of Klughertz 1988. We would like to remark that the stated theorems are proved in Câmara

2003. Furthermore, in a forthcoming work we shall describe more precisely H 1(D, 
o) showing

that, roughly speaking, it can be split in the first cohomology group of the coherent sheaf of vector

fields tangent to the model Fo and the first cohomology group of a (in general finitely generated)

sheaf of abelian groups generated by the centralizers of the projective holonomy groups of F̃o
j . In

particular we will present some examples for which the cohomology is nontrivial.

RESUMO

Estudamos a classificação de equações diferenciais analíticas em (C2, 0) fornecendo uma lista completa de

invariantes analíticos que determinam o tipo analítico da folheação subjacente. Em particular respondemos

afirmativamente a uma conjectura de S. Voronin e generalizamos de forma imediata alguns resultados

preliminares a respeito de singularidades dicríticas. Tal problema tem suas orígens numa conjectura proposta

por R. Thom em meados da década de 1970.

Palavras-chave: Folheações singulares, resolução de singularidades, holonomia, cohomologia não-

abeliana.
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