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ABSTRACT

We prove that any countable family of Lagrangian subspaces of a symplectic Hilbert space admits

a common complementary Lagrangian. The proof of this puzzling result, which is not totally

elementary also in the finite dimensional case, is obtained as an application of the spectral theorem

for unbounded self-adjoint operators.
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1 INTRODUCTION

A real symplectic Hilbert space is a real Hilbert space (V, 〈·, ·〉) endowed with a symplectic form;

by a symplectic form we mean a bounded anti-symmetric bilinear form ω : V × V → R that is

represented by a (anti-self-adjoint) linear isomorphism H of V , i.e., ω = 〈H ·, ·〉. If H = P J is the

polar decomposition of H then P is a positive isomorphism of V and J is an orthogonal complex

structure on V ; the inner product 〈P·, ·〉 on V is therefore equivalent to 〈·, ·〉 and ω is represented

by J with respect to 〈P·, ·〉. We may therefore replace 〈·, ·〉 with 〈P·, ·〉 and assume since the

beginning that ω is represented by an orthogonal complex structure J on V . A subspace S of V

is called isotropic if ω vanishes on S or, equivalently, if J (S) is contained in S⊥. A Lagrangian

subspace of V is a maximal isotropic subspace of V . We have that L ⊂ V is Lagrangian if and

only if J (L) = L⊥. If L ⊂ V is Lagrangian then a Lagrangian L ′ ⊂ V such that V = L ⊕ L ′

is called a complementary Lagrangian to L . Obviously every Lagrangian L has a complementary
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Lagrangian, namely, its orthogonal complement L⊥. Given a pair L1, L2 of Lagrangians, there are

known sufficient conditions for the existence of a common complementary Lagrangian to L1 and

L2 (see, for instance, Furutani 2004). In this paper we prove the following:

THEOREM. If (V, 〈·, ·〉, ω) is a real symplectic Hilbert space then any countable family of La-

grangian subspaces of V has a common complementary Lagrangian.

Associated to each pair of complementary Lagrangians (L0, L1) one has a chart ϕL0,L1 on

the Lagrangian Grassmannian � whose domain is the set of Lagrangians complementary to L1.

Clearly, the charts of the form ϕL0,L1 constitute an atlas for �, as (L0, L1) runs in the set of all

pairs of complementary Lagrangians. Our Theorem implies that, for fixed L0, the charts ϕL0,L1

also constitute an atlas for �, as L1 runs in the set of Lagrangians complementary to L0. This

observation is essential, for instance, to the study of the singularities of the exponential map of

infinite dimensional Riemannian manifolds (see Biliotti et al. 2004, Grossman 1965) and, more

generally, to the study of spectral properties associated to (not necessarily Fredholm) pairs of curves

of Lagrangians in symplectic Hilbert spaces.

The existence of a common complementary Lagrangian is proven first in the case of two

Lagrangians L and L1 such that L ∩ L1 = {0} (Corollary 4). In this case L is the graph of a

densely defined self-adjoint operator on L⊥
1 (Lemma 1), and the result is obtained as an application

of the spectral theorem (Lemma 2 and Lemma 3). The existence of a common complementary

Lagrangian is then proven in the general case by a reduction argument (Proposition 5), and the final

result is an application of Baire’s category theorem.

The referee of this article suggested an alternative approach to the problem based on a com-

plexification argument. The complex argumentation is standard in the recent literature (see, for

instance, Booss-Bavnbek and Zhu 2005, Zhu 2001, Zhu and Long 1999). We discuss this approach

in Section 3.

2 PROOF OF THE RESULT

In what follows, (V, 〈·, ·〉, ω) will denote a real symplectic Hilbert space such that ω is represented

by an orthogonal complex structure J on V . We will denote by �(V ) the set of all Lagrangian

subspaces of V . It follows from Zorn’s Lemma that V indeed has Lagrangian subspaces, i.e.,

�(V ) 	= ∅. Given L0, L1 ∈ �(V ) then (L0 + L1)
⊥ = J (L0 ∩ L1); in particular, L0 ∩ L1 = {0} if

and only if L0+L1 is dense in V . For L ∈ �(V ), we denote byO(L) the subset of �(V ) consisting

of Lagrangians complementary to L . Given a real Hilbert spaceH, we denote byHC the orthogonal

direct sumH⊕H endowed with the orthogonal complex structure J defined by J (x, y) = (−y, x).

If A : D ⊂ H→ H is a densely defined linear operator onH then J
(
gr(A)⊥) = gr(A∗). It follows

that gr(A) is Lagrangian inHC if and only if A is self-adjoint; in this case, gr(A) is complementary

to {0} ⊕H if and only if A is bounded.

LEMMA 1. Given L ∈ �(HC) with L ∩ ({0} ⊕H) = {0} then L is the graph of a densely defined
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self-adjoint operator A : D ⊂ H→ H.

PROOF. The sum L + ({0} ⊕H)
is dense in HC; thus, denoting by π1 : HC → H the projection

onto the first summand, we have that D = π1(L) = π1
(
L + ({0} ⊕H))

is dense inH. Hence L is

the graph of a densely defined operator A : D → H, which is self-adjoint by the remarks above.�

Given Lagrangians L0, L1 ∈ �(V ) with V = L0 ⊕ L1 then we have an isomorphism ρL1,L0 :
L1 → L0 defined by ρL1,L0 = PL0 ◦ J |L1 , where PL0 denotes the orthogonal projection onto L0.

The map:

V = L0 ⊕ L1 � x + y �−→ (
x, −ρL1,L0(y)

) ∈ L0 ⊕ L0 = LC0 (1)

is a symplectomorphism, i.e., it is an isomorphism that preserves the symplectic forms. Thus, we get

a one-to-one correspondence ϕL0,L1 between Lagrangian subspaces L of V with L ∩ L1 = {0} and

densely defined self-adjoint operators A : D ⊂ L0 → L0; more explicitly, we set A = ϕL0,L1(L)

if the map (1) carries L to the graph of −A.

LEMMA 2. Let L0, L1, L , L ′ ∈ �(V ) be Lagrangians such that L0 and L ′ are complementary to

L1 and L ∩ L1 = {0}. Set ϕL0,L1(L) = A : D ⊂ L0 → L0 and ϕL0,L1(L ′) = A′ : L0 → L0. Then

L ′ is complementary to L if and only if (A − A′) : D → L0 is an isomorphism.

PROOF. The map (1) carries L and L ′ respectively to gr(−A) and gr(−A′). We thus have to show

that LC0 = gr(−A) ⊕ gr(−A′) if and only if A − A′ is an isomorphism. This follows by observing

that (x, y) = (u, −Au) + (u′, −A′u′) is equivalent to
(
u + u′, (A′ − A)u

) = (x, y + A′x), for all

x, y, u′ ∈ L0, u ∈ D. �

LEMMA 3. If A : D ⊂ H→ H is a densely defined self-adjoint operator then for every ε > 0 there

exists a bounded self-adjoint operator A′ : H→ Hwith ‖A′‖ ≤ ε and such that (A− A′) : D → H
is an isomorphism.

PROOF. By the Spectral Theorem for unbounded self-adjoint operators, we may assume that

H = L2(X, µ) and A = M f , where (X, µ) is a measure space, f : X → R is a measurable

function and M f denotes the multiplication operator by f defined on D = {
φ ∈ L2(X, µ) : f φ ∈

L2(X, µ)
}
. In this situation, the operator A′ can be defined as A′ = Mg, where g = ε · χε and χε

is the characteristic function of the set f −1
([− ε

2 ,
ε
2 ]

)
; clearly ‖A′‖ ≤ ‖g‖∞ = ε. The conclusion

follows by observing that A − A′ = M f −g, and | f − g| ≥ ε
2 on X . �

COROLLARY 4. Given L1, L ∈ �(V ) with L1∩L = {0} then there exists a common complementary

Lagrangian L ′ ∈ �(V ) to L1 and L.

PROOF. Set L0 = L⊥
1 and A = ϕL0,L1(L). Lemma 3 gives us a bounded self-adjoint operator

A′ : L0 → L0 with A−A′ an isomorphism. Set L ′ = ϕ−1
L0,L1

(A′); L ′ is a Lagrangian complementary

to L1, because A′ is bounded. It is also complementary to L , by Lemma 2. �
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If V = V1 ⊕ V2 is an orthogonal direct sum decomposition into J -invariant subspaces V1 and

V2, then V1 and V2 are symplectic Hilbert subspaces of V . Given subspaces L1 ⊂ V1 and L2 ⊂ V2

then L1 ⊕ L2 is Lagrangian in V if and only if Li is Lagrangian in Vi , for i = 1, 2. A Lagrangian

subspace L ∈ �(V ) is of the form L = L1 ⊕ L2 with Li ∈ �(Vi ), i = 1, 2, if and only if L is

invariant by the orthogonal projection PV1 onto V1. In this case, Li = PVi (L) = L ∩ Vi , i = 1, 2.

If S is a closed isotropic subspace of V then a decomposition V = V1 ⊕ V2 of the type above can

be obtained by setting V1 = S ⊕ J (S) and V2 = V ⊥
1 . Then, if L ∈ �(V ) contains S, it follows

that PV1(L) = S; namely, S ⊂ L implies L ⊂ J (S)⊥ and J (S)⊥ is invariant by PV1 . Hence

L = S ⊕ PV2(L).

PROPOSITION 5. Given L , L ′ ∈ �(V ) then O(L) ∩O(L ′) 	= ∅.

PROOF. Set S = L ∩ L ′, V1 = S ⊕ J (S), and V2 = V ⊥
1 . Then L = S ⊕ PV2(L), L ′ = S ⊕ PV2(L ′),

and PV2(L) ∩ PV2(L ′) = (L ∩ V2) ∩ (L ′ ∩ V2) = {0}. By Corollary 4, there exists a Lagrangian

R ∈ �(V2) complementary to both PV2(L) and PV2(L ′) in V2. Hence J (S) ⊕ R ∈ �(V ) is in

O(L) ∩O(L ′). �

The map L �→ PL is a bijection from �(V ) onto the space of bounded self-adjoint maps

P : V → V with P2 = P and P J + J P = J . Such bijection induces a topology on �(V )

which makes it homeomorphic to a complete metric space. Moreover, for any L0, L1 ∈ �(V )

with V = L0 ⊕ L1, the set O(L1) is open in �(V ) and the map O(L1) � L �→ ϕL0,L1(L) is a

homeomorphism onto the space of bounded self-adjoint operators on L0.

LEMMA 6. For any L0 ∈ �(V ), the set O(L0) is dense in �(V ).

PROOF. Given L ∈ �(V ), Proposition 5 gives us L1 ∈ O(L0)∩O(L). By Lemma 3, the bounded

self-adjoint operator A = ϕL0,L1(L) on L0 is the limit of a sequence of bounded self-adjoint

isomorphisms An : L0 → L0. Hence the sequence ϕ−1
L0,L1

(An) is in O(L0) and it tends to L . �

PROOF OF THEOREM. Let (Ln)n≥1 be a sequence in �(V ). Each O(Ln) is open and dense in

�(V ), hence
⋂∞

n=1O(Ln) is dense in �(V ), by Baire’s category theorem. �

3 AN ALTERNATIVE PROOF OF THE RESULT VIA COMPLEXIFICATION

Let (V, 〈·, ·〉, ω) denote a real symplectic Hilbert space such that ω is represented by an orthogonal

complex structure J on V . Let VC denote the complexification of V , which is a complex Hilbert

space endowed with the unique sesquilinear product 〈·, ·〉
C̄

that extends 〈·, ·〉. We denote by

JC : VC → VC the unique complex-linear extension of J , so that ωC̄ = 〈JC·, ·〉
C̄

is the unique

sesquilinear extension of ω to VC. We have a direct sum decomposition VC = Zh ⊕ Za, where

Zh = Ker(JC− i) and Za = Ker(JC+ i). The spaces Zh and Za are ωC̄-orthogonal; moreover, the

restriction of iωC̄ to Zh (resp., to Za) is equal to −〈·, ·〉
C̄

(resp., equal to 〈·, ·〉
C̄

). By a Lagrangian

subspace L of VC we mean a complex subspace L of VC which is equal to its ωC̄-orthogonal

complement; equivalently, L is Lagrangian if JC(L) is equal to the 〈·, ·〉
C̄

-orthogonal complement
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of L (we observe that every Lagrangian subspace of VC is maximal ωC̄-isotropic, but the converse

does not hold in the infinite-dimensional case). The Lagrangian subspaces of VC are precisely the

graphs of the complex-linear isometries U : Zh → Za. Given complex-linear isometries U1, U2

from Zh to Za then their graphs are complementary subspaces of VC if and only if U1 − U2 is an

isomorphism. We have isomorphisms ih : V → Zh, ia : V → Za defined by ih(x) = x − i J x ,

ia(x) = x + i J x . The isomorphism ih carries the complex structure J of V to the complex structure

of Zh (inherited from VC), while the isomorphism ia carries −J to the complex structure of Za.

We observe that (V, 〈·, ·〉) is the underlying real Hilbert space of a complex Hilbert space whose

complex structure is J : V → V and whose Hermitian product 〈·, ·〉∗ is given by 〈·, ·〉 − iω(·, ·).
The isomorphism ih carries 2〈·, ·〉∗ to 〈·, ·〉

C̄
and the isomorphism ia carries the complex conjugate

of 2〈·, ·〉∗ to 〈·, ·〉
C̄

. Given a Lagrangian subspace L0 of V then L0 is a real form of (V, J ) (i.e.,

V = L0 ⊕ J (L0)) on which the Hermitian product 〈·, ·〉∗ is real. Thus, the conjugation c : V → V

corresponding to the real form L0 (i.e., c(x + J y) = x − J y, x, y ∈ L0) carries J to −J and 〈·, ·〉∗
to the complex conjugate of 〈·, ·〉∗. Hence each complex-linear isometry U : Zh → Za can be

identified with the unitary operator T = c◦ i−1
a ◦U ◦ ih on V and the set of all Lagrangian subspaces

of VC can be identified with the set of all unitary operators on V . The Lagrangian L0 that defines

the conjugation c corresponds to the identity operator of V . By what has been observed above, the

Lagrangians corresponding to unitary operators T1 : V → V , T2 : V → V are complementary

to each other if and only if T1 − T2 is an isomorphism of V . Notice that the complexification

LC of a Lagrangian subspace L of V is a Lagrangian subspace of VC; moreover, the Lagrangian

subspaces of VC of the form LC correspond to the unitary operators T : V → V whose self-adjoint

components 1
2 (T + T ∗), 1

2i (T − T ∗) preserve the real form L0.

We can now give an alternative proof of Lemma 6, which implies our main result.

ALTERNATIVE PROOF OF LEMMA 6. It suffices to show that given T : V → V a unitary operator

whose self-adjoint components preserve the real form L0 and given ε > 0 then there exists another

unitary operator T ′ : V → V whose self-adjoint components preserve L0, with ‖T − T ′‖ < ε and

such that T ′−Id is an isomorphism. By the “ real version”of the Spectral Theorem stated below, we

may assume that V = L2(X, µ), with (X, µ) a measure space and that T is a multiplication operator

M f , with f : X → S1 a measurable function taking values in the unit circle S1. Arguing as in the

proof of Lemma 3, we may obtain a measurable function g : X → S1 such that ‖ f − g‖∞ < ε

and such that 1 is not in the closure of the range of g. We then set T ′ = Mg. �

The following “ real version” of the Spectral Theorem can be obtained easily from the standard

proof of the complex Spectral Theorem for bounded normal operators.

SPECTRAL THEOREM. Let H be a complex Hilbert space and H0 a real form of H (i.e., H =
H0 ⊕ iH0) on which the Hilbert space Hermitian product of H is real. Let T : H → H be a

bounded normal operator whose self-adjoint components

1

2
(T + T ∗),

1

2i
(T − T ∗)
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preserve the real form H0. Then there exists a measure space (X, µ), an isometry φ from H to

L2(X, µ) that carries H0 to the set of real-valued functions on X and such that φ ◦ T ◦ φ−1 is a

multiplication operator M f , with f : X → C a bounded measurable function.
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RESUMO

Nós demonstramos que qualquer coleção enumerável de subespaços Lagrangeanos de um espaço de Hilbert

simplético admite um subespaço Lagrangeano complementar. A prova desse intrigante resultado, que

também no caso de dimensão finita não é totalmente elementar, é obtida como uma aplicação do teorema

espectral para operadores auto-adjuntos ilimitados.

Palavras-chave: Espaços de Hilbert simpléticos, subespaços Lagrangeanos, Grassmanniano de Lagrangea-

nos, operadores auto-adjuntos ilimitados, teorema espectral.
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