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ABSTRACT

The systemic administration of a potent muscarinic agonist pilocarpine in rats promotes sequential behavioral and

electrographic changes that can be divided into 3 distinct periods: (a) an acute period that built up progressively

into a limbic status epilepticus and that lasts 24 h, (b) a silent period with a progressive normalization of EEG and

behavior which varies from 4 to 44 days, and (c) a chronic period with spontaneous recurrent seizures (SRSs). The

main features of the SRSs observed during the long-term period resemble those of human complex partial seizures and

recurs 2-3 times per week per animal. Therefore, the pilocarpine model of epilepsy is a valuable tool not only to study

the pathogenesis of temporal lobe epilepsy in human condition, but also to evaluate potential antiepileptogenic drugs.

This review concentrates on data from pilocarpine model of epilepsy.
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EPILEPSY: GENERAL ASPECTS

Epilepsy is the most common serious neurological con-

dition and approximately 50 million people worldwide

have it (Sander 2003). In the US, about 100,000 new

cases of epilepsy are diagnosed (Begley et al. 1998, An-

negers 1997). In the UK, between 1 in 140 and 1 in

200, people (at least 300,000 people) are currently be-

ing treated for epilepsy (Yuen and Sander 2004). Epi-

demiological studies suggest that between 70 and 80%

of people developing epilepsy will go into remission,

while the remaining patients continue to have seizures

and are refractory to treatment with the currently avail-

able therapies (Kwan and Sander 2004, Sander 1993).

In commemoration of the 75th anniversary of
Escola Paulista de Medicina / Universidade Federal de São Paulo.
*These authors contributed equally for this work.
**Member Academia Brasileira de Ciências
Correspondence to: Dr. Esper Abrão Cavalheiro
E-mail: esper.nexp@epm.br

The most common risk factors for epilepsy are cere-

brovascular disease, brain tumors, alcohol, traumatic

head injuries, malformations of cortical development,

genetic inheritance, and infections of the central nervous

system. In resource-poor countries, endemic infections,

such as malaria and neurocysticercosis, seem to be major

risk factors (Duncan et al. 2006).

Epilepsies are characterized by spontaneous recur-

rent seizures, caused by focal or generalized paroxys-

mal changes in neurological functions triggered by ab-

normal electrical activity in the cortex (Dichter 1994).

Because it involves hyperexcitable neurons, a basic as-

sumption links the pathogenesis of epilepsy and the gen-

eration of synchronized neuronal activity with an imbal-

ance between inhibitory [g-aminobutyric acid (GABA)-

mediated] and excitatory (glutamate-mediated) neuro-

transmission, in favor of the latter (Dalby and Mody

2001). Seizures and epilepsy are usually divided into 2
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groups: partial and generalized. Partial or focal seizures

have clinical or EEG evidence of local onset and may

spread to other parts of the brain during a seizure, while

generalized seizures begin simultaneously in both cere-

bral hemispheres (Duncan et al. 2006). Temporal lobe

epilepsy (TLE) is the most common form of partial epi-

lepsy, probably affecting at least 20% of all patients with

epilepsy (Babb 1999). It is the most common form

of drug-refractory epilepsy (Engel 1993). Atrophy of

mesial temporal structures is well-known to be associ-

ated with TLE and hippocampal sclerosis, which is the

most frequent histological abnormality in this form of

epilepsy (Cendes 2005).

THE PILOCARPINE MODEL OF EPILEPSY:
CHARACTERISTICS and DEFINING FEATURES

The systemic administration of a potent muscarinic ag-

onist pilocarpine in rats promotes sequential behavioral

and electrographic changes that can be divided into 3

distinct periods: (a) an acute period that built up pro-

gressively into a limbic status epilepticus and that lasts

24 h, (b) a silent period with a progressive normalization

of EEG and behavior which varies from 4 to 44 days, and

(c) a chronic period with spontaneous recurrent seizures

(SRSs). The main features of the SRSs observed during

the long-term period resemble those of human complex

partial seizures and recurs 2-3 times per week per animal

(Cavalheiro 1995, Arida et al. 1999a, b).

BEHAVIORAL AND CLINICAL FEATURES

The sequential pattern of electrographic changes during

the acute phase, immediately following the injection

of pilocarpine, is characterized by a significant theta

rhythm that replaces the background activity in the

hippocampus and low voltage fast activity in the cor-

tex. This activity progresses to high voltage fast activity

with spikes in the hippocampus. The spiking activity

spreads to the cortex and evolves into electrographic

seizures. Ictal periods recur every 3-5 min and finally

lead to sustain discharges 50-60 min after the injection

of pilocarpine. This pattern of electrographic activity

lasts for several hours and may evolve to a pattern of

periodic discharges on a relatively flat background

(Cavalheiro 1995, Arida et al. 1999a, b, Leite et al. 1990,

Turski et al. 1983a, b, 1984).

Seizure frequency in the chronic period may vary

considerably among epileptic rats, and several seizure

patterns have been observed. Some pilocarpine-injected

rats may present with a low seizure frequency through-

out several weeks or months; others may have daily

seizures; and some may present clusters of seizures in

short periods of time. Such variability in seizure fre-

quency patterns may represent a drawback for behav-

ioral or antiepileptic drug studies. In order to assemble a

homogeneous group, it is necessary to identify – through

baseline monitoring – a group of rats with regular con-

sistent seizure frequency (Cavalheiro 1995, Arida et al.

1999a, b, Leite et al. 1990, Turski et al. 1983a, b, 1984).

It is important to stress that most behavioral or anti-

epileptic drug studies rely upon video monitoring to es-

tablish seizure frequency. Therefore, class 3-5 limbic

seizures are preferentially detected, and less severe

(“asymptomatic”) seizure stages (class 1 and 2) are fre-

quently overlooked. This point is particularly relevant

because many intractable complex partial seizures in

humans rarely generalize, even when antiepileptic drugs

are tapered during video-EEG monitoring – and thus are

the “equivalent” of class 1 and 2 limbic seizures in rats.

High resolution video capturing coupled with EEG is

necessary to detect subtle behavioral seizures correlated

with, for example, focal ictal activity in the hippocam-

pus or amygdale (Cavalheiro 1995, Arida et al. 1999a, b,

Leite et al. 1990, Turski et al. 1983a, b, 1984).

NEUROPATHOLOGY

The induction of status epilepticus by pilocarpine leads

to severe and widespread cell loss in several brain ar-

eas. Dying cells can be assessed via a number of dif-

ferent techniques that characterize a given biochemical

or structural aspect of the degenerating cells. Differ-

ences in the biochemical and morphological profile of

dying cells may indicate whether the cell is suffering

from an apoptotic or a necrotic degenerating process. As

with a number of different pathological conditions, cell

damage in the pilocarpine model has been described as

to its necrotic or apoptotic nature. However, classify-

ing cell damage according to these 2 categories may be

confusing, and therefore will be avoided here. A more

fruitful perspective is to consider that the excitotoxic in-

sult triggered by pilocarpine-induced status epilepticus
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leads both to immediate cell damage that takes place

minutes to a few hours after its onset – and also results

in a protracted process of neurodegeneration that may

take weeks and months to develop (Cavalheiro 1995,

Leite et al. 1990, Turski et al. 1983a, b, 1984).
The initial damage, occurring a few hours after the

onset of status epilepticus, is most intense in the su-

perficial layers of some neocortical areas, hilus of the

hippocampus, endopiriform nucleus, piriform cortex and

claustrum. Eight hours after SE onset, damage has fur-

ther intensified in those areas and, in addition, becomes

significant in entorhinal cortex, amygdaloid nuclei, ven-

tromedial nucleus of the hypothalamus, subiculum and

the bed nucleus of the stria terminalis. Damage in these

distinct brain areas is time-specific (Cavalheiro 1995,

Leite et al. 1990, Turski et al. 1983a, b, 1984).
Damage is not restricted to the initial hours and

days after SE, and tends to progressively involve other

areas in the following months. To this end, damage to

the thalamus is often found in animals sacrificed many

months after the onset of pilocarpine-induced status

epilepticus, but is notably less intense (or even absent)

in some thalamic nuclei at shorter survival times (Leite

et al. 1990, Turski et al. 1983a, b, 1984).
In addition to cell loss, there is also a clear injury re-

sulting 5n both morphological and functional pathology.

Evidence of altered cell morphology in the pilocarpine

model has been provided mostly for the hippocampus.

Altered distribution of dendritic spines in dentate granule

cells and distorted dendritic trees in putative GABAergic

hippocampal interneurons are some of these changes.

Additional morphological changes are more likely to be

reactive rather than a direct consequence of the initial

insult. In this sense, the emergence of axonal sprout-

ing – the most notable being the supragranular mossy

fiber sprouting, granule cell dispersion, increased rate of

neurogenesis, and development of granule cell basal den-

drites that are among the morphological changes likely

to represent a reactive response (Cavalheiro 1995, Leite

et al. 1990, Turski et al. 1983a, b, 1984).

As with any other lesional model, pilocarpine-in-

duced status epilepticus does not uniformly damage dif-

ferent cell groups. Here again, cell type-specific vulner-

ability has been best studied in the hippocampus. There

is greater damage to principal cells, that is pyramidal,

and granule cells in the hippocampal complex, but in-

terneurons located in the other strata can also be dam-

aged. Most notably, hilar mossy cells can be markedly

damaged by pilocarpine-induced status epilepticus, but

with large variation in the extent of damage between dif-

ferent animals. Damage to GABAergic neurons is also

extensive throughout the hippocampus. However, not

all GABAergic neurons in the hippocampal complex are

equally vulnerable, with specific populations in different

strata showing different rates of loss. In a recent study,

the density of GAD65 mRNA-positive neuron profiles in

layer III of the entorhinal cortex was similar in control

and post-status epilepticus rats evaluated between 3 and

7 days after pilocarpine. Similar evaluations have not yet

been provided for other brain areas, with the exception

of a qualitative assessment of the neocortex (Leite et al.

1990, Turski et al. 1983a, b, 1984).

Glial pathology in the pilocarpine model has not

received the same level of attention as neuronal pathol-

ogy. Nevertheless, there have been descriptions regard-

ing the proliferation of astrocytes, as shown by the in-

creased expression of GFAP and other glial markers.

In addition to glial proliferation, it has been shown that,

in the CA1 area of the hippocampal complex of animals

subjected to pilocarpine-induced status epilepticus, glial

cells “adapt” to permit rather large increases in extra-

cellular potassium accumulation. Microglia and other

markers of inflammatory tissue reaction have also shown

to be present in the early phases after pilocarpine-in-

duced status epilepticus (Binder and Steinhäuser 2006,

Garzillo and Mello 2002).

THE PILOCARPINE MODEL OF EPILEPSY:
NEUROCHEMICAL ALTERATIONS

Partial or complex seizures, the main characteristic of
temporal lobe epilepsy (TLE), have been related to
important brain impact as well as to the eventual evo-
lution of this syndrome. Thus, different authors have
demonstrated that long-lasting seizures unchain a com-
plex chemical cascade, triggering neurochemical alter-
ation in neurons and glial cells. These immediate or
long-lasting events can modify the cellular environment
through changes of ionic gradient across the cell mem-
brane, alteration of gene expression such as receptors,
trophic factors, enzymes, proteins from cytoskeleton,
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protein from matrix and the phosphorylation of macro-
molecules. Furthermore, seizures can induce reactive
gliosis generated by cell death and induced by these
long-lasting convulsions. These modifications promote
synaptic remodeling, which can change the excitabil-
ity of neurons from temporal structures, leading to the
appearance of brain damage and a permanent hyper-
excitability.

Unfortunately, the temporal lobe epilepsy is not an
easily understandable brain dysfunction. The neuro-
chemical alteration found in the brain of experimental
animals, as well as in human brain, show high degree
of complexity.

Since the hippocampal formation seems to be an
important structure in temporal lobe epilepsy, several
authors have reported neurochemical alterations in this
structure. The hippocampus of rats submitted to the
epilepsy model induced by pilocarpine shows increased
utilization rate of norepinephrine (NE) and decreased
utilization rate of dopamine during the acute, silent and
chronic period of this model. As reported, the utilization
rate of serotonin was increased only in the acute phase
(Cavalheiro et al. 1994). Concerning to aminoacider-
gic neurotransmission, the acute phase of pilocarpine
model was characterized by an increased glutamate
release in the hippocampus (Cavalheiro et al. 1994,
Costa et al. 2004). Hippocampal synaptosomes from
animals presenting long-lasting SE (12 h) still showed
increased release of glutamate. However, the uptake of
this amino acid is normal in animals presenting 12h of
SE (Costa et al. 2004), suggesting an excitatory phe-
nomenon during the acute phase of pilocarpine model.
Indeed, when glutamate activates N-methyl-D-aspartate
receptors (NMDA) the intracellular Ca++ raises induc-
ing activation of lipases, proteases and nucleases, killing
the cell by necrosis and/or apoptosis.

Among the mechanisms involved in regulation,
the cytosolic calcium is the Ca++ ATPases, whose func-
tion is to restore the normal level of this ion into the
cell. These Ca++ ATPases constitute a class of proteins
that falls into 2 distinct groups, termed SERCAs and
PMCA, depending on whether they are inserted in en-
doplasmatic reticulum or in plasma membrane. SER-
CAs sequester calcium to sarco/endoplasmatic reticu-
lum and SERCA2b is found in several brain structures.

PMCAs promote the extrusion of this ion from neural
cell through plasma membrane. According to Funke et
al. (2003) in the hippocampus of rats, submitted to pilo-
carpine model of epilepsy, the expression of SERCA2b,
as well as the PMCA enzymes, is increased after 1 h of
status epilepticus, showing an attempt to control the tis-
sue excitability during the early stages of the insult. The
PMCA remained increased until the silent period,
returning to control levels during the chronic phase. In
contrast, vulnerable regions to cell death such as CA1,
CA3 and hilus presented decreased expression of
SERCA2b until the silent period, showing a deficit in
the mechanisms related to calcium removal.

The activity of the Na+K+ ATPase is also modified
in the hippocampus of pilocarpine-treated animals. Ac-
cording to Fernandes et al. (1996) this enzyme has its
activity reduced during the acute and silent period and
an increased activity during the chronic phase, showing
that the hippocampus of these animals also show an ionic
imbalance related to its maintained excitability.

The expression of proteins related to NMDA-glu-
tamate receptor is also modified in pilocarpine model of
epilepsy. Mint1 or X11 alpha plays an important role
in vesicle synaptic transport toward the active zone at
presynaptic site, and also participates in the transport
of NR2B subunit of NMDA receptor at the postsynaptic
site. According to Scorza et al. (2003) this protein,
mainly expressed in CA1 regions of control animals,
presented its levels decreased 5 h after SE onset and
increased levels during the silent and chronic groups,
suggesting that this protein is related to plasticity during
epileptogenesis.

The silent phase of pilocarpine model is marked by
an important unbalance between inhibition and excita-
tion (Cavalheiro et al. 1994). The decreased concen-
tration of GABA in the hippocampus, during the silent
period, could suggest an increased release of this amino
acid in attempt to control the tissue excitability. In con-
trast, the increased concentration of glutamate in the
hippocampus could suggest a potential excitatory path-
way of this structure, probably responsive for the appear-
ance of spontaneous seizures.

Thus, according to several authors, the temporal
lobe epilepsy has been related to excessive excitabil-
ity in limbic structures, low function of inhibitory path-
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ways or the association between both events (Meldrum
1991). As a consequence of neurotransmission altera-
tion, the transduction signal through plasma membrane
is also modified, changing neuronal metabolism and
genes expression.

As a compensatory effect, growth factors can be re-
leased and the activation of their receptors induces the
auto-phosphorylation of these receptors and activation
of different kinase proteins, including the phosphory-
lation of proteins on tyrosine residues, which are im-
portant in cell cycle and intracellular signalling mecha-
nisms. These phosphotyrosine proteins (PTyP), of differ-
ent molecular weight, have been found to be increased
in the hippocampus of rats during the early stages of
pilocarpine-induced SE (Funke et al. 1998), showing
that several intracellular events could undergo modifica-
tions during long-lasting seizures, mainly in CA3 region.
The receptor protein tyrosine phosphatase β (RPTPβ),
a chondroitim sulfate proteoglycan, which is related to
plasticity and phosphatase activities, has been associ-
ated with the mossy fiber sprouting in the epileptic phe-
nomena (Perosa et al. 2002). The RPTPβ, which is ex-
pressed only by astrocytes in control tissues, has its syn-
thesis induced in pyramidal neurons from the hippocam-
pus, during the acute and silent phases, of pilocarpine-
induced epilepsy, showing that the SE may modify the
gene expression in the epileptic rats (Naffah-Mazzaco-
ratti et al. 1999a, b).

The increased expression of growth factors is also
related to Mitogen Activated Protein Kinase (MAPK) ac-
tivation. After binding an agonist, trk receptors phospho-
rylate themselves on cytoplasmic domains on tyrosine
residues, which became docking sites for intracellular
signaling proteins. Shc adaptor proteins associate them-
selves with specific site in trk receptors, activating a sig-
naling pathway involving Ras, Raf, MAPK1, MAPK2,
MEK1 and MEK 2. As a consequence, the transcription
factors and the regulation of gene expression is modi-
fied. As reported by Garrido et al. (1998), several limbic
structures showed increased levels as well as increased
phosphorylation of MAPKs (ERK1 and ERK2), which
are important during the induction of the de novo syn-
thesis of several proteins.

Other intracellular signaling pathways may also be
modified during epileptogenesis. Levels of the neuro-

modulin or growth associated phosphoprotein (B-50 or
GAP-43), which is activated by PKC, are modified in
the hippocampus of rats in the pilocarpine epilepsy
model. GAP-43 has been related to processes under-
lying cell proliferation in fetal human brain and is cor-
related specifically with differentiation and outgrowth
of axons. This protein showed its levels increased in
the inner molecular layer of the dentate gyrus (regions
associated with the mossy fiber sprouting), during the
acute, silent and chronic period, in rats submitted to
pilocarpine-induced epilepsy (Naffah-Mazzacoratti et
al. 1999a). According to several authors, the GAP-43
activation may be also induced by glutamate, acting on
NMDA receptor, since the blockade of this receptor by
MK801 prevent the GAP-43 expression as well as the
mossy fiber sprouting.

During long-lasting seizures, the activation of in-
flammatory processes may also occur. Reactive gliosis,
such as astrocytes and microglia, appears as a tardy
form. As reported by Garzillo and Mello (2002), 60
days (chronic phase) after pilocarpine-induced SE pro-
minent astrocytes could still be seen in different brain
areas. The activated microglia has been blamed as the
source of the main inflammatory cytokines. Thus, sev-
eral authors described increased expression of mRNA
for IL-1β, IL-6, iNOS and TNFα after seizures, and
Ravizza el al. (2008) showed that specific inflammatory
pathways are chronically activated during epileptogene-
sis and they persist in chronic epileptic tissue, suggest-
ing that they may contribute to etiopathology of TLE.

Another pathway involved in the inflammatory
processes is linked to prostaglandin (PG) release. These
eicosanoids are produced after the action of phospho-
lipase A2 on phospholipids that releases arachidonic
acid, which could be done by the action of glutamate
on NMDA receptor. Thus, Naffah-Mazzacoratti et
al. (1995) showed increased release of prostaglandin
PGF2α during the acute phase, PGD2 during the acute,
silent and chronic period and PGE2 only during the
chronic phase of the epilepsy model induced by pilo-
carpine. During PG formation, free radicals are pro-
duced, increasing the inflammatory process. Against
free radicals, the tissues present enzymes such as su-
peroxide dismutase (SOD) and glutathione peroxidase,
which are able to remove the superoxide anion (O−

2 ) or
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H2O2, and considered potent oxidant agents. As reported
by Bellissimo et al. (2001), rats presenting SE or spon-
taneous seizures showed a decreased activity of SOD
and increased levels of hydroperoxides (products lipid
peroxidation) in the hippocampus of animals submitted
to pilocarpine model of epilepsy. As the brain is more
vulnerable than others tissues, the decreased activity of
SOD could be related to cell death and brain damage that
was found in the hippocampus of these animals.

Other compounds related to vessel dilatation, with
a consequent rupture of blood brain barrier, edema, pain
and inflammatory processes are the kinins. These poly-
peptides are produced after proteolysis limited action of
kallikreins on high and low molecular weight kinino-
gens. These short-living peptides are rapidly degraded
by kininases (Bhoola et al. 1992), originating active
metabolites such as des-Arg9BK, des-Arg10Kallidin and
inactive products. The receptors are denominated B1
and B2, and both are coupled to G protein. Further-
more, stimulation of kinin B1 and B2 receptors induce
tissue edema and phospholipase A2 activation, produc-
ing prostaglandins (Bhoola et al. 1992). In addition,
kinin B1 and B2 stimulation also activate MAPK (ERK1/
ERK2) in cell culture, resulting in AP-1 translocation and
modifying the immediate early gene expression.

Usually, kinin B1 receptor is not expressed at a sig-
nificant level under physiologic conditions in most tis-
sues, but its expression is induced by injury or upon
exposure in vivo or in vitro to pro-inflammatory media-
tors, such as lipopolysaccharide and cytokines (Marceau
1995). In contrast, kinin B2 receptor is constitutively
and widely expressed in all nervous system, and has
been found in the nucleus of neurons from hippocam-
pus, hypothalamus and cortex (Chen et al. 2000). Never-
theless, the real function of this receptor in neuronal
nucleus is still unknown.

Studying the distribution of kinin B1 and B2 recep-
tors and the expression of mRNA by Real-Time PCR of
these receptors during the development of the epilepsy
model induced by pilocarpine, Argañaraz et al. (2004a)
found increased kinin B1 and B2 mRNA levels during
the acute, silent and chronic periods, and changes in kinin
B1 receptors distribution. In addition, the immunoreac-
tivity against kinin B1 receptors was increased mainly
during the silent period, when clusters of cells could be

visualized suggesting a local inflammation. The kinin
B2 receptor immunoreactivity also showed augmenta-
tion, but mainly during the acute and silent periods, sup-
porting the hypothesis that both kinin receptors are re-
lated to temporal lobe epilepsy.

Trying to understand the role of kinin B1 and B2
receptors in the physiopathology of temporal lobe epi-
lepsy, we developed the epilepsy model induced by
pilocarpine in B1 and B2 knockout mice (B1KO and
B2KO, respectively), and behavior parameters, cell death
and mossy fiber sprouting were analyzed. B1KO mice
showed an increased latency for the first seizure, asso-
ciated to a decreased frequency of spontaneous seizures
(chronic phase) when compared with their wild control
mice. In addition, B1KO mice showed less cell death in
all hippocampal formation associated to a minor grade of
mossy fiber sprouting when compared with wild mice.
Furthermore, B2KO mice presented minor duration of
the silent period and an increased frequency of spon-
taneous seizures (chronic phase) when compared with
wild mice. B2KO and wild mice showed a similar pat-
tern of cell death in the hippocampus, which was very
intense when compared with saline-treated animals. The
mossy fiber sprouting was also increased in B2KO mice
when compared to wild mice and saline-treated animals.
Taken together, these data suggest a deleterious effect
for B1 receptor and a protective effect for B2 receptor
during the development of the temporal lobe epilepsy
(Argañaraz et al. 2004b).

Analyzing all these results, we can observe that an
insult is able to modify several signaling pathways in
central nervous system. Thus, Figure 1 summarizes the
main findings since pilocarpine injection until the occur-
rence of plastics events and cellular death.

Pilocarpine may act on M1 and M2 muscarinic re-
ceptors. Activating the M2 one, the adenylate cyclase is
inhibited, decreasing the release of acetylcholine and the
neuronal excitation. On the other hand, binding to M1,
the pilocarpine activates the phospholipase C and there-
fore produces diacylglycerol (DG) and inositol triphos-
phate (IP3), which results in alteration in Ca++ and K+

current and increases the excitability of the brain (Se-
gal 1988). This increased excitability probably occurs
due to a decreased activity of ATPases in the hippocam-
pus, which could not repolarize the plasma membrane;
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Fig. 1 – Main biochemical pathways and physiological consequences involved in the pilocarpine model. MAPK – mitogen activated protein

kinase; Glu –glutamate; ATPase – ATPase sodium, potassium; SERCA – calcium ATPase from sarco-endoplasmatic reticulum; PMCA – calcium

ATPase from plasma membrane; BK – bradykinin, Des-Arg9BK – des-Arg9 bradykinin; AA – arachidonic acid; PGE2 – prostaglandins E2,

PGD2 – prostaglandin D2, PGF2α – prostaglandin F2α; GAGs – Glycosaminoglycans; CS – chondroitin sulfate; HS – heparan sulfate; RPTPβ

– Receptors Protein Tyrosin Phosphatase β; PG – Proteoglycans, PTyP – phosphotyrosin protein, SE – status epilepticus; GAP-43 – growth

associated phosphoprotein-43, NMDA – N-methyl-D-aspartate; NE – neradrenaline; DA – dopamine, 5HT – serotonin; SOD – superoxide

dismutase, HPx – hydroperoxide.

neither promotes the calcium extrusion (Fernandes et al.
1996, Funke et al. 2003). The high concentration of
Ca++ promotes the high release of glutamate, which in-
duces the status epilepticus (SE). The glutamate, acting
on AMPA/KA receptors, allows the entrance of Na+

and Ca++ into the cell and, as a consequence, the Mg++,
which blockade the NMDA receptor, is removed induc-
ing the activation of this receptor by glutamate and al-
lowing the entrance of more Ca++ into the postsynaptic
cell, which will induce excitotoxicity and cell death.

The tissue excitability and/or SE increase the uti-
lization rate of noradrenaline and serotonin with a con-
comitant decrease in the utilization rate of dopamine
(Cavalheiro et al. 1994). After docking to its own re-
ceptors, these monoamines are degraded by MAO and

COMT and, during these processes, free radicals can
be formed. These free radicals are also freed during
glucose metabolism and mitochondrial transport chain,
which is over activated during SE. In addition, the su-
peroxide dismutase (SOD) presented a decreased activ-
ity during seizures, associated to an increased level of
hydroperoxide in the hippocampus of epileptic animals
(Bellissimo et al. 2001) showing tissue damage and lipid
peroxidation.

Glutamate on NMDA receptors promotes an in-
creased expression of GAP-43, which is linked to mos-
sy fiber sprouting and hippocampal plasticity (Naffah-
Mazzacoratti et al. 1999b).

During the SE, the expression of trophic fac-
tors such as NGF, BDNF and FGF (Mudo et al. 1996)
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increase in the hippocampus, which propitiates MAPK
and PTyP activation (Garrido et al. 1998, Funke et al.
1998) and induces modification in genes expression.
MAPK also may have protector action or can be related
to apoptosis process.

The trophic factor receptors are also associated to
proteoglycans (PGs) from extracellular matrix. These
proteoglycans (PG) sometimes may function as co-re-
ceptors for neurotrophins (Ruoslahti and Yamaguchi
1991). In this context, the increased synthesis of chon-
droitim sulfate and RPTPβ (Naffah-Mazzacoratti et al.
1999b), which is found in the hippocampus of epilep-
tic animals, can be related to neurite outgrowth and/or
mossy fiber sprouting. In addition, the RPTPβ also
presents phosphatase activity, removing the phosphate
group from tyrosine residues in PTyP modified during
SE (Funke et al. 1998).

The SE or the excess of glutamate in tissue can acti-
vate routes that culminate in kinins release, and these
polypeptides may act on kinin B1 and B2 receptors,
which are over expressed in the hippocampus of epi-
leptic animals (Argañaraz et al. 2004a, b). The kinin
B2 receptor has a protector role during epileptogene-
sis, while B1 is deleterious (Argañaraz et al. 2004a, b).
Bradykinin (BK), as well as monoamines, also induces
prostaglandins (PG) release (Bazan et al. 1986). As re-
ported by Naffah-Mazzacoratti et al. (1995) the levels of
PGE2, PGD2 and PGF2α is increased in the hippocam-
pus of epileptic rats. During the PG synthesis also occur
free radical production, which could be visualized by
SOD and HPx analyses (Bellissimo et al. 2001). BK
also stimulates the MAPK pathway and binds to neu-
rotrophins receptors, perhaps mediating the phosphory-
lation of proteins on tyrosine residue (PTyP), changing
the gene expression and contributing to plasticity found
in the epileptic phenomena.

HORMONAL CHANGES RELATED TO EPILEPSY

Studies have pointed to a great influence of several hor-
mones in the epileptic phenomena (Scharfman and Mac-
Lusky 2006, Diamantopoulos and Cunrine 1986, Her-
zog et al. 1986, Woolley and McEwen 1992, Bazil et
al. 2000, Morrell 1991). Gonadal steroids have been
shown to exert both excitatory and inhibitory influences
on hippocampal excitability and plasticity (Joels 1997,

Herzog 1999). Although both biochemical and phys-
iological evidences exist supporting gonadal hormone
modulation of excitability in the hippocampus, the in-
consistency of results obtained in past studies makes dif-
ficult to draw clear conclusions on how the hormones
affects the hippocampal function. Besides that, with the
increasing use of hormone and hormone antagonists for
contraceptives and the controversies about the use of re-
placement therapies, it is essential to understand how
steroid hormones may alter hippocampal function. Ac-
cordingly to the experimental studies, limbic dysfunction
might alter hypothalamic tropic hormones release induc-
ing ovulatory failure by affecting the release of pituitary
gonadotropins (Herzog et al. 1989, Amado et al. 1993)
based on the fact that limbic cortex and the hypothala-
mus are extensively interconnected (Stuenkel 1991). In
addition, female rats submitted to different experimen-
tal models of limbic seizures also presented reproduc-
tive and endocrine dysfunction (Amado and Cavalheiro
1998, Amado et al. 1993).

It is interesting to observe previous studies show-
ing that sexual hormones protect the brain of female ani-
mals against noxious conditions during the reproductive
life (Genazzani et al. 1999, Abbasi 1999), but the mech-
anisms underlying the neuroprotection offered by sexual
hormones are not completely known. Some possibilities
involve the action of ovarian hormones in brain edema,
reduction of free radicals and increase in BDNF mRNA
expression.

Amado and Cavalheiro (1998), studying the estab-
lishment of this experimental model in female rats, ob-
served that the oestrus cycle was dramatically altered
during the acute period of pilocarpine-induced status
epilepticus. This change was also observed in the other
2 periods of the experimental model, and was accom-
panied by a decrease in progesterone, LH and FSH
levels and by an increase in the estradiol level (Amado
and Cavalheiro 1998). When these chronically induced
epileptic female rats were mated, it was possible to ob-
serve a decrease in the frequency of spontaneous seiz-
ures during pregnancy and lactation (Amado and Cava-
lheiro 1998). As previously described by Valente et
al. (2002), the castration in female rats decreased the
latency for pilocarpine-induced SE, increased the SE-
related mortality and decreased the latent period to
spontaneous seizures.
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Concerning seizure frequency, Valente (S.G.
Valente, unpublished data) showed that only castration
do not modify the pattern of seizures in the chronic phase
of the model. The animals submitted to 17β-estradiol
replacement therapy did not show differences in seizure
frequency (7 ± 3.2 seizures/week) either. In contrapo-
sition, the treatment with medroxiprogesterone reduced
the seizure frequency (5 ± 2.8 seizures/week), as well as
the treatment with 17β-estradiol + medroxiprogesterone
with a more expressive reduction (3.9 ± 2.1 seizures/
week) (Valente 2005).

The mossy fiber sprouting measured by neo-Timm
scale (Tauck and Nadler 1985) during the chronic pe-
riod reached grade 3 for castrated epileptic rats, while
the non-castrated epileptic rats showed grade 2. So,
as it was seen by Valente et al. (2002), the castrated
epileptic female rats present a more intense grade of
mossy fiber sprouting in comparison to intact epilep-
tic animals (Fig. 2A). However, animals submitted to
17β-estradiol replacement presented an intermediary
grade between that seem in castrated epileptic female
and intact epileptic female. In contraposition, in the
groups receiving 17β-estradiol + medroxiprogesterone,
the sprouting seems to be stabilized in the same level
observed in intact epileptic female, showing that the de-
velopment of sprouting did not progressed. The same
fact could be visualized in female treated with medro-
xiprogesterone replacement (Valente 2005). These re-
sults indicate that castration interferes with the epilepto-
genesis in the pilocarpine model of epilepsy, suggesting
that female sexual hormones could have protective ef-
fects against pilocarpine-induced SE.

The effect of synaptic sprouting in the hippocampal
function in the epilepsy depends, in part, of the balance
between the new innervations of granule cells and in-
hibitory interneurones (Okasaki et al. 1995). However,
there are controversies regarding the hippocampal dam-
age, which concerns if it is a cause or consequence of
seizures. This point is interesting because, in this study
and in that previous study of Valente et al. (2002), we
demonstrated that the castrated epileptic animals pre-
sented a more intense grade of sprouting compared to
that showed in non-castrated epileptic animals, and the
frequency seizures in both groups did not show any dif-
ferences. Mathern et al. (1995, 1996) did not find a cor-
relation between the mossy fiber sprouting and seizure

frequency, and only correlated the density of sprouting
(in animals and human) with neuronal loss in the hilus
of dentate gyrus. These data were confirmed by Pitkä-
nen et al. (2000), showing that the sprouting density was
not associated with epilepsy severity. Besides that, the
sprouting could be prevented by cicloheximide, but the
animals developing epilepsy [revisar] (Longo and Mello
1997, 1998).

In addition to mossy fiber sprouting, the cell loss
in the hippocampus was observed in the chronic phase
of this model. A visible cellular loss could be quan-
tified in CA1 and CA3, and morphological changes in
the hippocampus with a cellular disarrangement and dis-
persion in the hilus of the dentate gyrus could be visu-
alized. Although hippocampal cell loss was present in
the animals submitted to hormonal replacement, it was
less pronounced (Valente 2005). So, we could verify that
the hormonal replacement therapy in castrated animals
is important in the epileptogenic process, but its effi-
ciency is dependent of the type of reposition that the
animal is submitted.

Another point related to hormones and epilepsy
concerns to melatonin, a hormone synthesized by the
pineal gland with major influence on several circadian
physiological activities. It is maximally produced be-
tween midnight and dawn (Reiter 1986), with low lev-
els during the light period. Furthermore, melatonin has
been described to act as an anticonvulsant against chem-
ically (Lapin et al. 1998, Yamamoto and Tang 1996) and
electrically (Mevissen and Ebert 1998) induced seizures.
In humans, melatonin has been considered to act as an
anticonvulsant following the observation of its ability in
reducing the spiking activity and seizures frequency in
patients with intractable epilepsy (Anton-Tay 1974). In
patients with temporal lobe epilepsy (Bazil et al. 2000),
low levels of salivary melatonin were found during the in-
terictal period when compared to controls. On the other
hand, high levels of salivary melatonin were observed
during the postictal period (Bazil et al. 2000).

In vitro experiments have shown that melatonin
was able to protect neurons from excitotoxicity mediated
by kainate-sensitive glutamate receptors and from ox-
idative stress-induced DNA damage and apoptosis (Wu
et al. 1999) and, in vivo, this hormone has been con-
sidered neuroprotective against kainite-induced excito-
toxicity (Uz et al. 1996). Taken together, these data
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Fig. 2 – A) Photomicrographs of neo-Timm stained mossy fibers in the dorsal hippocampus. A – Castrated animal that received pilocarpine and

presented SE; B – Non-castrated animal that received pilocarpine and presented SE; C – Castrated animal that received saline; D – Animal that

received saline. The arrows indicate the dark band of aberrant mossy fibers in the supragranular layer. Scale bar 300μm. B) Photomicrographs

of the coronal section of the hippocampal subfields DG, CA1 and CA3 stained by TUNEL method. A, B, C – Animal that received pilocarpine

and presented SE; D, E, F – Pinealectomized rats that received pilocarpine, presented SE and received saline; G, H, I – Pinealectomized rats that

received pilocarpine, presented SE and received melatonin treatment. The arrows indicate the DNA damage. Scale bar 160μm.

are consistent with the hypothesis that melatonin has an
inhibitory function on central nervous system activity
(Molina-Carballo et al. 1994).

In this context, Chung and Han (2003) suggested
that melatonin is a hormone potentially useful in the
treatment of acute brain pathologies associated with
oxidative stress-induced neuronal damage such as
epilepsy, stroke and traumatic brain injury. However,
this idea is not widely accepted since several authors

did not find evidences that melatonin deficiency could
lead to increased brain vulnerability (Manev et al. 1996).

One of the main characteristics of rats submitted
to the pilocarpine model of epilepsy (Cavalheiro et al.
1991) is that the vast majority of spontaneous seizures
observed during the chronic period of the model oc-
curred during the day (Cavalheiro et al. 1991, Arida et al.
1999a, b). In this line, Lima et al. (2005) clearly indicate
that pinealectomy interferes with the natural course of
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the epileptogenesis in the pilocarpine-model of epilepsy
in rats by reducing the latency for the first spontaneous
seizure (latent period) and increasing the number of
spontaneous seizures during the chronic period. More-
over, the reintroduction of melatonin during the status
epilepticus (acute) period was able to reduce the num-
ber of TUNEL-positive cells in several limbic areas
(Fig. 2B). In another study, the pre- or post-treatment
with melatonin and N-acetylserotonin showed that these
hormones have an important neuroprotector effect in the
epileptogenesis and in the control of seizures during the
chronic period of the pilocarpine model of epilepsy
(Lima et al. 2006).

These data are in accordance to other data in the
literature which indicate the possibility that, in future
therapeutic, attempts might be conducted not only to-
ward the use of pharmacological doses of melatonin, but
also to the pharmacological regulation of endogenous
melatonin levels in patients with epilepsy.

SUDDEN UNEXPECTED DEATH IN EPILEPSY

GENERAL ASPECTS

Epilepsy is associated with a 2- to 3-fold increase in
mortality compared to the general population, and sud-
den unexpected death in epilepsy (SUDEP) is the most
important direct epilepsy-related cause of death (Dun-
can et al. 2006). SUDEP is defined as a non-traumatic
and non-drowning death in patients with epilepsy that is
sudden, unexpected, witnessed or unwitnessed, and with
or without evidence of a seizure. Also in SUDEP, post
mortem examination does not reveal a toxicological or
anatomical cause of death (excluding documented status
epilepticus) (Nashef 1997). Comparisons of incidence
estimates for SUDEP are difficult. Since different defi-
nitions of SUDEP have been used, not all patients have a
post-mortem examination, and case ascertainment meth-
ods and source populations have varied (Tomson et al.
2005). The incidence of SUDEP has been estimated to
be 3.5/1000 person-years in a lamotrigine clinical trial
(Leestma et al. 1997), 0.5-1.4/1000 person-years in peo-
ple with treated epilepsy (Tennis et al. 1995), 5.9/1000
person-years in outpatients with epilepsy at a tertiary re-
ferral centre (Nashef et al. 1995), and 0.35/1000 person-
years in a population-based study (Ficker et al. 1998).
The National General Practice Study of Epilepsy (NG-

PSE), a community-based study in the United Kingdom,
saw the first case of SUDEP after 11,000 person-years of
follow-up (Lhatoo and Sander 2001), and the results of
the Medical Research Council Antiepileptic Drug With-
drawal Study showed that SUDEP is a rare event among
patients with epilepsy in remission (1991). Information
concerning risk factors for SUDEP is conflicting, but
potential risk factors include: early adulthood, early on-
set of epilepsy (Nilsson et al. 1999), long duration of
epilepsy (Walczak et al. 2001), uncontrolled seizures
(mainly in those with TLE) (Walczak et al. 2001, Sper-
ling et al. 1999), high seizure frequency (Walczak et al.
2001, Langan et al. 2005), certain seizure types (Walc-
zak et al. 2001, Kloster and Engelskjon 1999), higher
numbers of AED (Nilsson et al. 1999, 2001, Walczak et
al. 2001) and winter temperatures (Scorza et al. 2007).
Additionally, potential pathomechanisms for SUDEP
are unknown, but it is very probable that cardiac ar-
rhythmias during and between seizures, electrolyte dis-
turbances, arrhythmogenic drugs or transmission of epi-
leptic activity to the heart via the autonomic nervous
system potentially play a role for SUDEP (Stollberger
and Finsterer 2004).

CARDIAC ABNORMALITIES AND SUDEP

By definition, the cause of death in SUDEP is currently
unknown. A number of post-mortem, ictal and interictal
cardiac abnormalities do, however, suggest the possibil-
ity of seizure-induced cardiogenic SUDEP (Stollberger
and Finsterer 2004, Ryvlin et al. 2006).

Postmortem examinations in people dying of
SUDEP have found hearts that are dilated and heav-
ier than expected (Leestma et al. 1997, Stollberger and
Finsterer 2004, Falconer and Rajs 1976, Leestma et al.
1989), and pulmonary edema in approximately 50-86%
of cases (Leestma et al. 1997, 1989, Kloster and Engel-
skjon 1999, Stollberger and Finsterer 2004, Thom et al.
2003). Furthermore, others have described pathologi-
cal changes in the hearts of those dying with SUDEP,
including fibrosis of the walls of small coronary arter-
ies, atrophy of cardiomyocytes, myofibrillar degenera-
tion, edema of the conductive tissue and morphological
abnormalities of the cardiac conduction system (Kloster
and Engelskjon 1999, Stollberger and Finsterer 2004,
Falconer and Rajs 1976, Natelson et al. 1998, Opeskin
et al. 2000). These abnormalities may be the conse-
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quence of repeated hypoxemia and/or may be associated
with the increase of catecholamines during an ictal sym-
pathetic storm (Stollberger and Finsterer 2004, Falconer
and Rajs 1976, Natelson et al. 1998).

Several studies have assessed the frequency and
character of ictal cardiac rhythm during seizures (Stoll-
berger and Finsterer 2004, Keilson et al. 1987, Opherk
et al. 2002), and the most compelling evidence derives
from the presence of ictal arrhythmias (Ryvlin et al.
2006). When ictal cardiorespiratory variables were re-
corded in people with epilepsy, an increase in heart rate
in 91% of 41 seizures and a transient bradycardia in 5
seizures (4 patients) were found (Nashef et al. 1996).
Another study evaluated the eletrocardiographic (ECG)
changes during 51 seizures in 43 patients with refrac-
tory epilepsy (Nei et al. 2000). This showed that 70% of
patients had either ECG abnormalities (16%), tachycar-
dias (30%), or both (23%) during the ictal and/or post-
ictal period. These changes may all be relevant to the
pathophysiology of SUDEP.

Results of interictal cardiac investigations have
also been described. In one study, resting ECGs in 75
patients with epilepsy were compared with normal
ECGs recorded in age-matched patients without cardiac
or neurological disorders; ventricular rate, PR interval,
QRS duration, and QT interval (corrected for heart rate)
were compared (Drake et al. 1993). Those with epilepsy
had higher heart rates and longer QT durations than the
age-matched controls. Heart rate and QT duration were,
however, not outside the normal range. Others inves-
tigated whether patients with drug refractory epilepsy
have cardiovascular abnormalities that might be related
to sudden death (Tigaran et al. 2003). Twenty-three sub-
jects underwent comprehensive cardiovascular evalua-
tions (ECG, Holter-monitoring, echocardiography, er-
gometric exercise test and myocardial scintigraphy; if
abnormalities were found, coronary angiography was
also performed) before and during video-EEG monitor-
ing. ST-segment depression was found in 40%, and this
was associated with a higher maximum heart rate during
seizures, suggesting that cardiac ischemia may occur in
these patients. Although interictal changes in heart rate
variability have been described in patients with epilepsy,
their contribution to SUDEP remains to be determined.

Quite interesting, several suggestions have been
made concerning the mechanisms behind SUDEP, most

involving speculation about the possible role of auto-
nomic effects disturbances. It has been believed that
cardiovascular diseases are often associated with over-
activity of the sympathetic nervous system (Schlaich et
al. 2004), and that increases in physical activity produce
beneficial effects on the cardiovascular system in both
normal and diseased individuals via alteration of neural
control of the circulation (Billman 2002, Cornelissen and
Fagard 2005). These effects include reductions in blood
pressure and sympathetic outflow in humans (Pescatello
et al. 2004), as well as in animal models of exercise
training (De Angelis et al. 2004, Krieger et al. 2001).
Since morbidity and mortality in cardiovascular disease
are often associated with elevation of sympathetic ner-
vous system activity (Zoccali et al. 2002), the beneficial
effects of physical activity are probably related, in part,
to the reduction of sympathetic activity. A recent study
by our group evaluated the heart rate, in vivo (ECG) and
isolated ex vivo preparation (Langendorf preparation) of
rats with epilepsy (Colugnati et al. 2005) (Fig. 3). The
results showed differences in the mean heart rate in vivo
but, surprisingly, no differences in heart rate could be
observed in the isolated ex vivo situation, suggesting
a central nervous system modulation of the heart that
could explain SUDEP (Colugnati et al. 2005).

Taking these findings together, it is clear that pre-
mature mortality is increased in patients with epilepsy,
particularly in those with more severe seizures (Tomson
et al. 2005), and it is generally acknowledged that the
incidence of cardiac abnormalities between seizures is
the very probable cause of SUDEP (Tomson et al. 2005,
Stollberger and Finsterer 2004). In conclusion, as re-
ported by others (Bell and Sander 2006), the clarifica-
tion of risk factors and the establishment of the mecha-
nisms of SUDEP are important for establishing preven-
tative measures for SUDEP and for striving for the best
control of seizures. However, it is conceivable that en-
couraging patients with epilepsy worldwide to receive
non-pharmacological treatments will lead to substantial
public-health benefits.

EPILEPSY and PHYSICAL EXERCISE

EPILEPSY AND EXERCISE: HUMANS STUDIES

Before we present the data on the role of physical ex-
ercise in animal models of epilepsy, brief information
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Fig. 3 – Results obtained by Colugnati et al. (2005). Heart rate in vivo (A); Heart rate of isolated ex vivo preparation (B); Ventricular pressure of

isolated ex vivo situation (C) from control and rats with epilepsy. Note that heart rate in vivo is significantly higher in rats with epilepsy. *p<0.05.

regarding data in humans will be given. Despite this
emphasis in today’s society on exercise and fitness,
people with epilepsy are often excluded from participa-
tion in physical activity. This reluctance of both patients
and physicians is due in part to fear of injuries and in
part to fear that exercise will cause seizures (Bjorholt et
al. 1990).

Medical decisions are frequently based on more
emotional, anecdotal or personal observations than upon
scientific facts. The attitude towards restriction and pro-
tection of the epileptic patient has, however, changed
dramatically in the last decades, and general recommen-
dations have been recently reviewed. In order to give
epileptic patients satisfactory advice about sports, it is
essential to understand the factor in sport that could af-
fect the epileptic disorder.

The existing clinical data on the impact of exercise
on patient outcomes have limitations. There is a lack of
prospective studies, studies using appropriate controls,
studies examining behavioral aspects, and studies using
a comprehensive approach in an outpatient setting. The

studies that have been designed to analyze the relation-
ship between epilepsy and exercise have compared phys-
ical and social activities among patients with epilepsy
based on questionnaires and/or clinical studies (Roth et
al. 1994, Steinhoff et al. 1996). They have also as-
sessed physical fitness by using standardized tests of
physical endurance (Steinhoff et al. 1996, Jalava and
Sillanpaa 1997) and physical training programs (Nakken
et al. 1990). For instance, a study reported that a phys-
ical training program did not change the average fre-
quency of seizures (Nakken et al. 1990). Another study
evaluating physical exercise in woman with intractable
epilepsy demonstrated that aerobic physical training de-
creased the number of seizures during the exercise pe-
riod (Eriksen et al. 1994).

EPILEPSY AND EXERCISE PHYSIOLOGY

Most experiments on brain electrical activity have shown
that abnormal discharges disappear in most patients dur-
ing physical activity, but return at rest (Gotze et al.
1967, Kuijer 1980). It has been also observed that fewer
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seizures occur during both mental and physical activ-
ity compared with periods of rest (Cordova 1993). The
increased vigilance and attention involved in exercise
could explain the reduction in the number of seizures
(Kuijer 1980).

Although exercise has been shown to reduce epi-
leptic activity on the EEG and the number of seizures,
there are numerous factors that could cause seizures dur-
ing sports and exercise, and any links at this point are
largely speculative. It appears that these factors oc-
cur as the result of a disturbed balance of physiological
parameters such as fatigue, stress, (Temkin and Davis
1984, McLaurin 1973, Cordova 1993), hypoxia (Bou-
charlat et al. 1973, MacLaurin 1973), hyperhydration
(Bennett and Wagner 1983, Noakes et al. 1984), hy-
poglycaemia (French 1983), hyperthermia (Millington
1985, van Willigen 1988) and hyperventilation. Be-
cause hyperventilation in the laboratory may provoke
epileptiform discharges on EEG and even seizures, es-
pecially absence, some have erroneously believed that
increased ventilation during exercise may cause seizures
(Esquivel et al. 1991). However, increased ventilation
during physical training is a compensatory homeostatic
mechanism; the respiratory alkalosis of induced hyper-
ventilation does not occur (Wasserman et al. 1973). In
these lines, seizures during exercise may be related to
acute metabolic and respiratory changes. How efficient
the respiratory control systems are in untrained subjects
is not known, but untrained persons lose homeostatic
balance more easily than trained persons.

EPILEPSY AND EXERCISE: ANIMALS STUDIES

Experimental studies have also demonstrated a posit-
ive effect of physical exercise in animals with epilepsy
(Arida et al. 1998, 1999a, b, 2003a, b, 2004, 2007).
A study, using the pilocarpine model of epilepsy, eval-
uated the effect of an aerobic physical program on seiz-
ure frequency (Arida et al. 1999a, b). A reduced fre-
quency of seizures in trained animals with epilepsy was
observed. The main concern to physical exercise by
people with epilepsy has been exercise-induced seiz-
ures. Seizures occur during physical exercise, but appar-
ently infrequently (Korczyn 1979). In this study, only
2 animals presented 3 seizures each during 3600 h of
exercise and 2 animals presented 1 seizure, 1 min post-
exercise.

Further investigations were performed to better
clarify the factors that may interfere on this process. A
study evaluated by using local cerebral metabolic rates
for glucose (LCMRglu) whether physical training
modifies the functional activity in rats with epilepsy
(Arida et al. 2003a, b). LCMRglu was measured by
the quantitative [14C]2-deoxyglucose (2DG) method. In
view of the fact that all the animals present seizures at
rest and not during exercise (Arida et al. 1999a, b), rats
with epilepsy were studied during the interictal phase of
the pilocarpine model of epilepsy. The hypothesis that
animals with epilepsy submitted to a physical training
would exhibit a marked metabolic alteration in the inter-
ictal phase was, however, not confirmed. It was observed
an increase in interictal LCMRglu in inferior colliculus
and auditory cortex in the trained rats with epilepsy when
compared to rats with epilepsy. Although no substantial
LCMRglu changes were observed after physical train-
ing, exercise did reverse the low metabolic rates in sev-
eral structures of animals with epilepsy. Vissing et al.
(1996) reported higher local cerebral glucose utilization
in the auditory and visual cortex during exercise, sug-
gesting that these changes are not related directly to the
exercise per se, but to higher mental alertness in exercise
than in resting rats. Since physical activity does need
a certain level of alertness, the increased attention and
vigilance observed during physical activity could reduce
the number of seizures (Kuijer 1980). Although these
changes were observed at rest, the increased metabolic
rate in these structures could explain a lower seizure
number in trained rats with epilepsy in the present and
previous work (Arida et al. 1999a, b).

A subsequent study was performed to study the ef-
fect of aerobic exercise on in vitro hippocampal electro-
physiological parameters observed in rats submitted to
the pilocarpine model of epilepsy (Arida et al. 2004).
Electrophysiological changes were monitored by extra-
cellular field potentials recorded from CA1 area. Trained
rats with epilepsy exhibited a reduction in population
spikes when compared with nontrained rats. These re-
sults indicate that physical training reduces CA1 hyper-
responsiveness and can modify synaptic plasticity in rats
submitted to the pilocarpine model of limbic epilepsy.

The susceptibility to evoked seizures in the pilo-
carpine model of epilepsy after a physical training pro-
gram was tested. The latency of pilocarpine-induced
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symptoms and the time when they reached their max-
imal intensity were much longer in trained animals with
epilepsy. Thus, seizures were of lower intensity and fre-
quency, and the SE was considerably shorter than in the
non-trained rats (Setkowicz and Mazur 2006).

The analysis of structural changes in hippocam-
pal formation of trained rats with epilepsy by means of
an immunohistochemical approach was also performed.
Markers of the GABAergic system, such as calcium-
binding proteins, parvalbumin and calbindin have been
extensively used in different models of epilepsy to vi-
sualize morphological changes occurring in the brain
(Sloviter 1989, Freund et al. 1991). They can be effec-
tive and sensitive markers of hippocampal cells (Célio
1990) and, in particular, of a population of inhibitory
interneuron (Freund and Buzsáki 1996). Both volun-
tary and forced exercise lead to prominent changes in the
staining of parvalbumin in the dentate gyrus from control
rats and rats with epilepsy. Particularly, the acute phys-
ical exercise promoted marked PV-immunoreactivity in
number, as well as in fibers staining (hilus) in animals
with epilepsy (Setkowicz and Mazur 2006).

On the basis of the available data presented, it seems
that physical activity in general cannot be considered
a seizure-inducing factor. Furthermore, experimental
studies in animal models of epilepsy have confirmed the
positive effects of exercise in human’s studies. However,
the mechanisms by which physical training is able to in-
duce such changes are not completely understood and
deserve further investigation.

RESUMO

A administração sistêmica do potente agonista muscarínico

pilocarpina em ratos promove alterações comportamentais e

eletrográficas que podem ser divididas em três períodos distin-

tos: (a) período agudo o animal evolui progressivamente para

o status epilepticus, que perdura por até 24h; (b) período si-

lencioso, caracterizado pela normalização progressiva do com-

portamento e do EEG e pode ter uma duração de 4 a 44 dias;

(c) período crônico, aparecimento de crises epilépticas espon-

tâneas e recorrentes (SRSs). As características das SRSs obser-

vadas nos animas durante o período crônico são semelhantes às

crises parciais complexas dos seres humanos e recorrem de 2-3

vezes por semana/animal. Além disso, o modelo de epilepsia

induzido pela pilocarpina é válido não somente para se estudar

a patogênese da epilepsia do lobo temporal em humanos como

também para se testar a viabilidade de drogas antiepilépticas.

Esse artigo de revisão aborda diversos aspectos do modelo de

epilepsia induzido pela pilocarpina.

Palavras-chave: hipocampo, pilocarpina, epilepsia do lobo

temporal, rato.
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