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ABSTRACT

Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal

species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein

interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind

and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix

components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target

proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates

play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream

pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton inter-

actions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic

uptake pathways is also discussed.

Key words: glycosaminoglycans and protein interactions, growth factors, focal adhesion, extracellular matrix, cell

cycle, cell proliferation.

STRUCTURAL FEATURES OF HEPARAN SULFATE
PROTEOGLYCANS

The most distinguishing features between heparin and

heparan sulfate (HS) are their cellular localization, their

occurrence in the animal kingdom, and thus their biolog-

ical functions. Heparin and heparan sulfate are attached

to different core proteins and found in different cellular

compartments. Heparin is found exclusively inside stor-

age vesicles of mast cells of some animal species (Nader

et al. 1999a, 1980, Straus et al. 1982) whereas heparan
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sulfates are ubiquitous to the cell surface of both ver-

tebrate and invertebrate species (Cassaro and Dietrich

1977, Dietrich et al. 1980, 1977, Nader et al. 1984).

Heparin and heparan sulfates are polydisperse lin-

ear polymers that share structural similarities. They are

composed of alternate units of α-D-glucosamine (GlcN)

and uronic acid, either β-D-glucuronic acid (GlcA) or

α-L-iduronic acid (IdoA), joined together by (1→ 4)

glycosidic linkages. In heparan sulfate the GlcN can

be either N-sulfated or N-acetylated, whereas in hep-

arin the N-acetyl groups correspond to less then 5%.

Furthermore, heparin shows higher degree of sulfation

(2.3–2.8 sulfates/disaccharide) when compared to hep-

aran sulfates (0.6–1.5 sulfates/disaccharide).
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The sequences of the different types of disaccha-

rides in heparan sulfate and heparin were established

using chemical, enzymatic and NMR analyses of the

intact polymers and their fragments. Figure 1A summa-

rizes the sites of action of the chemical and enzymatic

protocols.

Chemical procedures, such as nitrous acid degrada-

tion of the polymer at different pHs, can furnish impor-

tant data on the structure of these compounds. At low

pH and room temperature, the N-sulfated GlcNs in the

heparan sulfate are susceptible to degradation yielding

fragments with ranges of molecular weights that depend

on the distributions of the N-sulfated GlcN residues in

the chain and bearing an anydromannose at the reduc-

ing terminal end of the fragment. Thus, the obtained

fragments will contain clusters of N-acetylated GlcN,

since N-acetylated amino sugars are not affected (Conrad

2001). On the other hand, hydrazinolysis coupled with

nitrous acid treatment at pH 4.0 affects the N-acetylated

portion of the polymer.

Bacterial glycosaminoglycan lyases and the animal

endo-hydrolases described so far have also been used

to ascertain the disaccharide sequences in heparan sul-

fate chains. Mollusk endo-β-glucuronidase and α-D-N-

acetylglucosaminidase degrade heparan sulfates chains

yielding oligosaccharides enriched in O-sulfates and

IdoA residues. Furthermore, heparan sulfate can be de-

graded by a class of mammalian endo-hydrolases known

as heparanases, which are endo-β-glucuronidases that

cleave β-D-glucuronyl (1→4) D-GlcN N-sulfated lo-

cated after a disaccharide composed of α-L-iduronyl

(1→4) D-GlcN N-acetylated. Figure 1A summarizes

the sites of action of the chemical and enzymatic proce-

dures.

Characteristic 1H and 13C chemical shifts have been

identified for the individual residues, and the relative

abundance of these moieties can be quantitatively de-

termined by integrating the proton signals. By a combi-

nation of two-dimensional NMR techniques such as cor-

related spectroscopy (COSY), nuclear overhauser effect

(NOESY) and total correlation spectroscopy (TOCSY)

for 1H, and heteronuclear single-quantum coherence

(HSQC) for 13C, some of the sequences can be deter-

mined (Chavante et al. 2000, Chuang et al. 2001, Di-

etrich et al. 1999, Ferreira et al. 1993, Guerrini et al.

2001, 2002, Nader et al. 1999b, 1990).

The combined used of these approaches made it

possible to establish the sequence of characteristic do-

mains in the structure of heparan sulfates from different

origins (Fig. 1B). Thus heparan sulfates from both ver-

tebrate and invertebrate tissues contain common struc-

tural features such as N-acetylated and N-sulfated GlcN,

domains consisting only of GlcA-containing disaccha-

rides with no 6-O-sulfate substitutions (susceptible to

heparitinase I, endo-β-glucuronidases, and nitrous acid

pH 4.0) and a more sulfated region consisting of IdoA-

containing disaccharides (susceptible to heparitinase II

and nitrous acid pH 1.5). At the non-reducing end all

polymers contain GlcN N-sulfate or GlcN N,6-disulfate

followed by a disaccharide composed of IdoA 2-O-sul-

fated linked to GlcN 2,6-disulfated (susceptible to hep-

arinase). A peculiar tetrasaccharide is positioned bet-

ween the two regions and was identified in all heparan

sulfates. The N-acetylated GlcA domain is close to the

protein core and contains the reducing terminal of the

chain (Dietrich et al. 1983, 1998, Ferreira et al. 1993,

Nader et al. 1987, 1999b, Tersariol et al. 1994).

Heparan sulfates are absent in protista, plantae

and fungi, and their appearance in the animal kingdom

coincides with the emergence of eumetazoa, which are

animals that display true tissues, being ubiquitously

found in all tissues and species analyzed (Cassaro and

Dietrich 1977, Dietrich et al. 1980, 1977, Gomes and

Dietrich 1982, Nader et al. 1984, Toledo and Dietrich

1977). Non-sulfated version of heparan sulfate, named

heparosan, is found in the capsules of some pathogenic

bacteria, thus acting as molecular camouflages protecting

the microbe and enhancing infection (DeAngelis 2002).

Heparan sulfates are attached to different core pro-

teins and found at the cellular surface and extracellular

matrices, such as basal membrane. The chains at the cell

surface can be attached to transmembrane proteins as

in syndecans or through a glycosylphosphatidylinositol-

anchored core protein, as in glypicans (Bernfield et al.

1999, Fransson 2003, Fransson et al. 2004, Tantravahi

et al. 1986, Tkachenko et al. 2005). Table I shows dif-

ferent proteins that can bear heparan sulfate chains and

their cellular localization.
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     Glucosamine;         Glucuronic acid;        Iduronic acid;       Sulfate; NAc, N-acetyl; S, serine, n, number of building blocks.  

Fig. 1 – Heparan Sulfate Proteoglycan Structural Characteristics. (A) Hypothetical heparin/heparan sulfate chain and site of action of different

enzymatic and chemical depolymerization procedures. (B) Proposed structure for heparan sulfate from different origins. S-domain represents

iduronic acid containing disaccharides and NA/NS-domain represents glucuronic acid containing disaccharides bearing glucosamine N-sulfate or

N-acetylglucosamine.

HEPARAN SULFATES AND PROTEIN INTERACTIONS

Several works in the literature clearly show that there

is a specificity directing the interactions of heparan sul-

fates and target proteins, regarding both the fine structure

of the polysaccharide chain and precise protein motifs.

Thus, they can interact with a diverse range of proteins

leading to biological activities (Fig. 2). The heparan

sulfate chains due to their vast structural diversity are

able to bind and interact with a wide variety of proteins,

such as growth factors, chemokines, morphogens, extra-

cellular matrix components, and enzymes, among others.

Table II lists some of the heparan sulfate binding proteins

that modulate different biological processes through

this interaction.

Fig. 2 – Biological activities modulated by the interaction of pro-

teins with heparan sulfate.

These proteins contain relatively large numbers of

the basic amino acids (lysine, arginine and in some cases

histidine). These basic residues can be found in linear
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TABLE I
Heparan sulfate proteoglycans.

Cell surface References

Syndecan family (transmembrane)

Syndecan 1 (Sanderson and Yang 2008)

Syndecan 2 (Oh and Couchman 2004)

Syndecan 3 (Bellin et al. 2002)

Syndecan 4 (Oh and Couchman 2004)

Glypican family

(bound to the membrane by a

glycosylphosphatidylinositol anchor) (Filmus et al. 2008)

Glypican 1 (Fransson et al. 2004)

Glypican 2 (Filmus 2002)

Glypican 3 (Stigliano et al. 2009)

Glypican 4 (Huber et al. 1998)

Glypican 5 (Veugelers et al. 1997)

Glypican 6 (Veugelers et al. 1999)

CD44 (transmembrane) (Henke et al. 1996)

Betaglycan (Miyazono 1997)

Extracellular matrix References

Perlecan (Farach-Carson and Carson 2007)

Agrin (Bezakova and Ruegg 2003)

Type XVIII collagen (Iozzo 2005)

Testican family

Testican 1 (Alliel et al. 1993)

Testican 2 (Schnepp et al. 2005)

Testican 3 (Nakada et al. 2003)

arrangements or in spatial folded clusters. Cardin and

Weintraub proposed two consensus motifs, XBBXBX

or XBBBXXBX, where B represents basic amino acids

and X, hydropathic (neutral or hydrophobic) residue

(Cardin and Weintraub 1989). Nevertheless, binding can

also involve basic amino acids that are distant in linear

sequence of the protein and that are brought together

in the protein folded state (Capila and Linhardt 2002,

Hileman et al. 1998, Krilleke et al. 2007, Mulloy and

Linhardt 2001, Vives et al. 2004).

Considering the heparan sulfates, the specificity

seems to be related to the distribution and conformation

of β-D-GlcA and α-L-IdoA residues, relative amounts of

N-acetyl or N-sulfate groups in the GlcN moiety, as well

as the relative amounts and the position of O-sulfation

of the uronic acid and GlcN units. Specific sequences of

disaccharides can favor the interaction of the molecule

with certain proteins and not to others. Up to now, be-

sides specific sugar sequences bearing IdoA and enriched

in sulfate groups (S-domain), it has been postulated that

the conformational flexibility of the α-L-IdoA residue

plays a pivotal role in protein interactions. IdoA residues

can assume both 1C4 chair and the 2S0 skew boat con-

formation, thus allowing appropriate electrostatic inter-

actions with basic amino acids on the protein (Casu et al.

1986, Ferro et al. 1990, Gallagher 2006, Habuchi et al.

2004, Mulloy 2005, Mulloy and Forster 2000, Noti and

Seeberger 2005, Ragazzi et al. 1993). It has been shown

that a heparin-derived tetrasaccharide that interacts with

annexin V shows IdoA on the 2S0 conformation, while

the non-interacting tetrasaccharide the 1C4 conformation

(Capila et al. 2001, 1999, Ishitsuka et al. 1998). More

recently, it has been suggested the N-acetylated region

(NA-domain), which is rich in β-D-GlcA residues, also

displays structural plasticity and hence could mediate

protein interactions (Mobli et al. 2008).
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TABLE II
Heparan sulfate binding proteins*.

Cell surface References

L-selectin and P-selectin (Ma and Geng 2000)

N-CAM (Neural Cell Adhesion Molecule) (Cole et al. 1986)

PECAM-1 (Platelet Endothelial Cell Adhesion Molecule) (Watt et al. 1993)

FGF receptor (Powell et al. 2004)

HIP (Heparin/Heparan Sulfate Interaction Protein) (Rohde et al. 1998)

MAC-1 (Monocyte Adhesion Molecule) (Coombe et al. 1994)

Extracellular matrix References

Collagens (Sasisekharan et al. 2002)

Fibronectin (Capila and Linhardt 2002)

HB-GAM (Heparin Binding Growth Associated Molecule) (Taylor and Gallo 2006)

Laminin (Utani et al. 2001)

Tenascin (Saito et al. 2007)

Thrombospondin I and II (Nunes et al. 2008)

Vitronectin (Wilkins-Port and McKeown-Longo 1996)

Growth factors References

HB-EGF family (Heparin Binding – Epidermal Growth Factors) (Aviezer and Yayon 1994)

FGF family (Fibroblast Growth Factors) (Gambarini et al. 1993)

VEGF (Vascular Endothelial Growth Factor) (Iozzo and San Antonio 2001)

HDGF (Hepatoma Derived Growth Factor) (Dietz et al. 2002)

PlGF (Placenta Growth Factor) (Athanassiades and Lala 1998)

PDGF (Platelet-Derived Growth Factor) (Sasisekharan et al. 2002)

TGF-β (Transforming Growth Factor-β) (Sasisekharan et al. 2002)

HGF (Hepatocyte Growth Factor) (Derksen et al. 2002)

Cytokines/Chemokines/Morphogens References

BMP (bone morphogenetic protein) (Hacker et al. 2005)

IL-1, -2, -3, -4, -5, -7, -8, -10, -12 (Interleukin) (Koopmann et al. 1999)

IP-10 (Interferon -γ inducible protein 10) (Handel et al. 2005)

CCL-2 (CC-chemokine ligand) (Johnson et al. 2005)

GM-CSF (Granylocyte Macrophage Colony Stimulating Factor) (Raman et al. 2005)

MCP-1, MCP-4 (Monocyte Chemoatractant Protein) (Johnson et al. 2005)

RANTES (Regulated on Activation Normal T

cell Expressed and Secreted) (Johnson et al. 2005)

TNF-α (Tumor Necrosis Factor) (Handel et al. 2005)

MIP-1 (Macrophage Inflammatory Protein) (Vlodavsky et al. 2002)

PF-4 (Platelet factor 4) (Sulpice et al. 2002)

Hh (Sonic Hedgehog) (Hacker et al. 2005)

Wnt (Wingless wg) (Hacker et al. 2005)

Others References

DNA and RNA polymerases (Furukawa and Bhavanandan 1983)

Superoxide dismutase (Nozik-Grayck et al. 2005)

Angiogenin (Soncin et al. 1997)

Cathepsins B and G (Almeida et al. 2001)

Neutrophil elastase (Campbell and Owen 2007)

Annexin V (Mulloy and Linhardt 2001)

Prion (Ben-Zaken et al. 2003)

β-amyloid protein (Patey et al. 2008)

Na+/Ca2+ exchanger protein (Shinjo et al. 2002)

Myosin ATPase (Tersariol et al. 1992)
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Using heparin derived oligosaccharides and chem-

ically modified molecules, the role of N-sulfated and N-

acetylated domains, as well as the position of the O-

sulfates, and the conformation of the uronic acid residue

were investigated regarding the binding specificity to dif-

ferent proteins.

It is well established that fibroblast growth factors

and their receptors are dependent on binding to hep-

aran sulfate, and this interaction is an absolute require-

ment for full signaling. However most of the studies re-

garding the minimum structural features of the polysac-

charide needed for the binding were concluded using

chemico-enzymatically heparin derivatives as heparan

sulfate analogs. Even though these heparin derivatives

can be produced in high amounts, and thus can be used

to elucidate some of the binding characteristics, they do

not substitute the high diversity and thus the specificity

that is found in the heparan sulfate polymers (Belford et

al. 1992, Harmer 2006, Ishihara et al. 1993, Moham-

madi et al. 2005a, Presta et al. 2005, Yates et al. 2004).

However, heparan sulfates show large sequences of

GlcA linked to N-acetylated GlcN which are not present

in heparins. Also, heparan sulfates show lower degree

of sulfation, even in the IdoA residue, requisites that are

described as important for the protein binding. So, this

raises questions on how the binding could be affected by

these domains in the heparan sulfate chains, which are

the postulated polysaccharide for most of these biologi-

cal interactions.

The structural requirements involved in the bind-

ing vary for each protein. Some important sequences

for specific heparin/heparan sulfate-protein interactions,

which are dependent mostly on the presence of IdoA,

as well as the sulfation of the IdoA and the N-sulfation

of the GlcN moiety, have been established (Jastrebova

et al. 2006, Patel et al. 2008, Sampaio et al. 2006,

Sasisekharan et al. 2002, Yates et al. 2004, Zhang et

al. 2007). Furthermore, the protein interaction depends

on the size of the chain, and the minimum fragment

varies from a tetrasaccharide described for annexin V

up to a dodecasaccharide for the FGF-2 receptor.

The sulfation pattern is another important requisite

for the binding of heparin/heparan sulfate to proteins.

For example, the growth factor PDGF-A is dependent

mostly on the amounts of 2-O-sulfate in the IdoA res-

idues (Feyzi et al. 1997). On the other hand, for the

chemokine CCL-2, both 2-O-sulfate in the IdoA and N-

sulfation of the GlcN are required (Crown et al. 2006).

The interaction of heparan sulfate with FGF-4 recep-

tor depends more on the number of 6-O-sulfate groups

than on their precise location (Loo et al. 2001), and for

FGF-receptor 2 the minimum structure for binding is

an octasaccharide containing 2-O- and 6-O-sulfates and

for signaling a dodecasaccharide (Walker et al. 1994).

In a recent paper, using embryonic fibroblasts derived

from knock-out mice for heparan sulfate 6-O-sulfotrans-

ferases 1- and 2, it was shown an important role of 6-O-

sulfation patterns in FGF signaling (Sugaya et al. 2008).

The binding of neuregulin-1 to erbB receptor depends

mainly on the N-sulfate groups of heparan sulfate, fol-

lowed by 2-O- and 6-O-sulfate groups (Pankonin et al.

2005). Interaction of endostatin to endothelial heparan

sulfate shows differential requirements for specific sul-

fate groups where 6-O-sulfates play a dominant role in

selectivity (Blackhall et al. 2003). Recently, it has been

shown that 6-O-sulfation of heparan sulfate differential-

ly regulates various fibroblast growth factor-dependent

signalings in culture (Sugaya et al. 2008).

Specific structural features of heparan sulfate in-

volved in protein interactions were illustrated by exper-

iments using FGF-1 and heparan sulfates from various

sources that exhibit different disaccharides assembling.

The FGF-1 mitogenic activity varies among the differ-

ent heparan sulfates. The oligosaccharide derived from

a heparan sulfate containing only the GlcA domain with

no 6-O-sulfation (NA/NS-domain) displays no activity,

whereas the counterpart enriched in IdoA and 6-O-sul-

fation (S-domain) shows around 10 times the activity

of the intact polymer (Fig. 1B). Furthermore, heparan

sulfate purified from 3T3 fibroblasts has an effect about

100 times higher. These results indicate that endoge-

nous heparan sulfate is the best elicitor for the FGF-1

mitogenic activity, and that the S-domain represents the

FGF-1 binding site, indicating a highly specific interac-

tion (Gambarini et al. 1993).

Thus, it appears that the specificity of the interac-

tions heparan sulfate-protein depends on the overall orga-

nization of the glycosaminoglycan chain rather than on
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Fig. 3 – Heparan sufate proteoglycans features in cell signaling. HSPG can trigger cell response through signal transduction pathways as a

receptor or co-receptor in a cytoskeleton independent (A) or dependent manner (B).

the fine structure of the individual sequences to achieve

its functional role (Gambarini et al. 1993, Kreuger et al.

2006, Sampaio et al. 2006, Suarez et al. 2007).

HEPARAN SULFATE PROTEOGLYCANS
AND CELL SIGNALING PATHWAYS

Heparan sulfate chains are located facing the extracel-

lular compartment, and thus their biological roles can

be related to assemble the extracellular matrices (Baeg

et al. 2001, Iozzo 2005, Peretti et al. 2008), to modulate

the activity of enzymes and/or their inhibitors (Almeida

et al. 2001, Hausser et al. 2004, Nascimento et al. 2005,

Raman et al. 2005, Sasaki et al. 1999, Whitelock et

al. 1996, Yu and Woessner 2000, Yu et al. 2000), to

provide an extracellular gradient of growth factors and

chemokines (Ashikari-Hada et al. 2005, Grunert et al.

2008, Hacker et al. 2005, Kirkpatrick and Selleck 2007,

Ng et al. 2006, Nugent and Iozzo 2000, Ruhrberg et

al. 2002), and to prevent degradation of growth fac-

tors (Saksela et al. 1988), among others. Nevertheless,

heparan sulfate proteoglycans can trigger cell response

through signal transduction pathways, as well as by trans-

location to intracellular compartments, due to interac-

tions of the polysaccharide chains and/or the core pro-

tein with specific ligands.

Heparan sulfates play a role in cellular signaling

either as receptor or co-receptor for different ligands

(Fig. 3). The activation of downstream pathways is re-

lated to phosphorylation of different cytosolic proteins

either directly (Fig. 3A) or involving cytoskeleton inter-

actions (Fig. 3B) leading to gene regulation.

In early 1990’s Yayon and co-workers, using CHO

cells defected in glycosaminoglycan biosynthesis, sug-

gested heparan sulfates as low affinity receptors required

for binding of FGF-2 to the high affinity site (Yayon et

al. 1991). Such an obligatory interaction of low and

high affinity FGF receptors suggested a novel mecha-

nism for the regulation of growth factor-receptor inter-

actions. Indeed, this effect of heparan sulfate is respon-

sible for FGF receptor dimerization and activation, lead-

ing to cellular responses (Rapraeger et al. 1991, Spivak-

Kroizman et al. 1994).
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As described above, HSPGs can function as low-

affinity receptors required for the activation of growth

factor high-affinity receptor, which has tyrosine kinase

activity. A substantial body of literature supports the

concept of the ternary complex involving HSPG, growth

factor and its high-affinity receptor (Fig. 3A-2).

Heparan sulfates as co-receptors for fibroblast

growth factors with tyrosine kinase activity have been

extensively studied and corroborated in other systems

(Czubayko et al. 1997, Duchesne et al. 2006, Moham-

madi et al. 2005a, b, Mongiat et al. 2000, Padera et

al. 1999, Pellegrini et al. 2000, Powers et al. 2000,

Rapraeger et al. 1994, Wiedlocha and Sorensen 2004,

Wu et al. 1991). This general model has been also ex-

tended to many other growth factors, such as vascular

endothelial growth factor (Ashikari-Hada et al. 2005,

Gitay-Goren et al. 1992, Iozzo and San Antonio 2001,

Stringer 2006), hepatocyte growth factor (Kemp et al.

2006, Rubin et al. 2001, Schwall et al. 1996), platelet-

derived growth factor (Abramsson et al. 2007, Rolny

et al. 2002), placenta growth factor (Athanassiades and

Lala 1998), and heparin binding-epidermal growth

factor (Aviezer and Yayon 1994).

Heparan sulfate proteoglycans can also interfere

with serine/threonine kinase receptors, such as trans-

forming growth factor-β and bone morphogenetic pro-

tein (Chen et al. 2006, Cohen 2003, Grunert et al. 2008,

Rider 2006, Sasaki et al. 2008), tyrosine phosphatase

receptors (Aricescu et al. 2002, Fox and Zinn 2005,

Johnson et al. 2006), 7-helix transmembrane receptors

coupled to G-protein (Lau et al. 2004, Lortat-Jacob et

al. 2002, Parish 2006) and other multiple-helices trans-

membrane receptors (Hacker et al. 2005, Sasaki et al.

2008).

Different protein cores of the heparan sulfate pro-

teoglycans have been described regarding growth fac-

tor and chemokine signaling transduction. Among them,

the syndecan family is the most extensively studied

(Alexopoulou et al. 2007, Bartlett et al. 2007, Beau-

vais and Rapraeger 2004, Fears and Woods 2006, Lopes

et al. 2006a, Porcionatto et al. 1999, Su et al. 2007,

Tkachenko et al. 2005). Nevertheless, other cell sur-

face proteoglycans, such as glypicans (Cano-Gauci et al.

1999, Capurro et al. 2008, Filmus et al. 2008, Gumienny

et al. 2007, Kayed et al. 2006, Song et al. 2005, Trais-

ter et al. 2008) and betaglycans (Harrison et al. 2005,

Lewis et al. 2000), have been also implicated with cel-

lular transduction mechanisms.

Another possibility is that the proteoglycan itself

could act as a transducer for cell signaling elicited by a

growth factor. Using as a working model, with L6 my-

oblast cells lacking endogenous functional high-affinity

FGF receptors, it was proposed the direct involvement

of syndecan with the internalization of FGF-2 and cel-

lular response. This cell signaling is distinct from the

better known transmembrane tyrosine kinase receptors

(Quarto and Amalric 1994).

Mechanisms leading to gene regulation can also in-

volve interaction of the extracellular cell matrix (ECM)

components with cytoskeleton via transmembrane sur-

face receptors, such as integrins and/or heparan sulfate

proteoglycans (Fig. 3B). Integrins consist of hetero-

dimers of single helix transmembrane proteins that,

like syndecans, do not display enzymatic activity and

so their actions as transducers depend on the activation

of a number of cytoplasmic kinases. The best evidence

for a specific role of integrins in cell adhesion and cell

migration comes from studies of focal adhesion forma-

tion. Fibronectin, vitronectin, collagen, laminin, among

others, including matrix proteoglycans, such as perlecan,

collagen XVIII and agrin, are potential ECM ligands

of integrins. On the other hand, the intracellular do-

main interacts with many cytoplasmic proteins includ-

ing talin, vinculin, paxillin and α-actinin. These set of

molecules can activate kinases like FAK (focal adhesion

kinase) and Src, which in turn leads to a cascade of pro-

tein phosphorylation that regulates genes expression in-

volved in cell spreading, recognition, adhesion, growth

control, apoptosis, etc. (Bernfield et al. 1999, Lopes et

al. 2006a). The integrins thus link across the plasma

membrane two networks: the extracellular and the intra-

cellular actin filamentous system.

The connection of ECM and cytoskeleton can also

be mediated by syndecans either directly or as co-re-

ceptor of integrins. The cytoplasmic region of synde-

cans contains two domains that are conserved in each

of the four syndecans, and flank a central variable re-

gion that is distinct for each family member. The in-
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variant region close to the transmembrane domain con-

tains serine and tyrosine which are potential substrates

for phosphorylation, as well as specific motifs that can

bind to kinases as Src and Fyn. The variable region is

distinct for each of the 4 family members. The function

of this variable domain is largely unknown except for

syndecan- 4, where it has been shown to bind PIP2 (4,5-

bisphosphate phosphatidylinositol) and activate PKC-a,

leading to oligomerization of the proteoglycan in focal

adhesions. Several studies have shown that the oligo-

meric status of the cytoplasmic domain is related to the

activation of the downstream signaling pathway. The

other conserved domain, at the C-terminal of the pro-

tein, interacts with specific proteins containing PDZ do-

mains, such as CASK and syntenin which are thought

to link membrane components to the underlying actin-

containing cytoskeleton. Interestingly, the variable and

first conserved domains of syndecan-4 can also bind

other proteins related to the cytoskeleton, such as syn-

desmos and α-actinin (Oh and Couchman 2004, Woods

and Couchman 2001).
A direct role of syndecan-4 in focal adhesion regu-

lation was observed using fibroblasts derived from syn-

decan-4 or fibronectin null mice. It was shown that the

proteoglycan was capable to regulate FAK phosphory-

lation in a Rho dependent mechanism with no activation

of PKC (Wilcox-Adelman et al. 2002). In a recent paper,

a novel RGD-independent cell adhesion mechanism is

proposed, in which syndecan-4 activates PKC-α and its

subsequent interaction with the β1-integrin chain and,

thus, initiating the FAK signaling cascade and actin-

stress fiber organization (Telci et al. 2008). Recent re-

sults identify syndecan-4 as a novel receptor for the N-

terminus of TSP-1 (thrombospondin) interfering with

cell adhesion through activation of FAK (Nunes et al.

2008).
Figure 4 illustrates an experiment using confocal

immunofluorescence microscopy, showing the co-local-

ization of syndecan-4 and VEGF-receptor as well as that

of syndecan-4 and FAK.
Synergistic control of cell adhesion involving in-

tegrins and syndecans were recently reviewed (Alexo-

poulou et al. 2007, Morgan et al. 2007).
It should also be referred that α5β1 integrin is a part

time proteoglycan, and the GAG chains play an essential

role in the control of motility of cells on fibronectin and,

thus, in the cascade of signaling events (Franco et al.

2001, Veiga et al. 1997).
Furthermore, depending on the biological process

investigated as cell migration, adhesion, growth, differ-

entiation and apoptosis, it has been found that the ex-

tracellular matrix heparan sulfate proteoglycans, such as

perlecan (Baker et al. 2008, Farach-Carson et al. 2008,

Farach-Carson and Carson 2007, Giros et al. 2007, Jiang

and Couchman 2003, Knox and Whitelock 2006, Lind-

ner et al. 2007, Smirnov et al. 2005), agrin (Fox and

Zinn 2005, Glass et al. 1996, Jury et al. 2007, Ngo et

al. 2007, Tourovskaia et al. 2008, Williams et al. 2008),

collagen XVIII (Fjeldstad and Kolset 2005) and testican

(Schnepp et al. 2005) can also modulate the activity of

growth factors, cytokines, morphogens and enzymes.
The different cell ligands and receptors trigger

downstream pathways that share cytosolic components,

leading ultimately to the activation of a complex bio-

molecular network. This large network of molecular in-

teractions and signaling pathways involve phosphoryla-

tion of key substrates including enzymes, microtubules,

histones, and transcription factors that play pivotal roles

in determining the cellular response.
The signaling systems evoked by the interaction

of heparan sulfate proteoglycans with extracellular lig-

ands and/or receptors include pathways such as Ras/Raf/

MAPK (Leicht et al. 2007), PIP3/Akt (Carnero et al.

2008), PLC/PKC (Escriba et al. 2007), cAMP/PKA

(Murray 2008, Wojtal et al. 2008), among others. They

are of great interest and play a key role in normal cell

behavior and in diseases such as cancer, arthritis and

rheumatism.
PMA (phorbol 12-myristate 13-acetate) is recog-

nized as a strong and specific activator of PKC mim-

icking diacylglycerol. PMA specifically stimulates the

synthesis of syndecan-4 in endothelial cells in a mech-

anism mediated by PKC activation. The most remark-

able aspect of these results, however, was the correlation

between the up-regulation of heparan sulfate proteogly-

cans expression and the blockade of G1-S phase transi-

tion triggered by PMA (Moreira et al. 2004, Porcionatto

et al. 1998, 1994).

Recently, it has been shown that over-expression

of the EJ-ras oncogene in endothelial cells modifies the
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Fig. 4 – Confocal immunofluorescence microscopy showing syndecan-4 cellular localization and protein interactions. (A) Rat retina tissue

was triple stained using a monoclonal anti-syndecan-4 (red), anti-VEGF receptor 1 (green) and DAPI for nucleus (blue). Merge represents the

co-localization of syndecan-4 and VEGFR1. (B) Cultured rabbit aorta endothelial cells were triple stained using anti-syndecan-4 (red), anti-Focal

Adhesion Kinase (green) and DAPI for nucleus (blue). Confocal imaging shows co-localization of syndecan-4 and FAK. Both figures depict

syndecan-4 as a co-receptor.

cell cycle, up-regulates the expression of syndecan-4,

and down-regulates several enzymes involved in heparan

sulfate biosynthesis, leading to a decrease in the N- and

O-sulfation of the chains (Lopes et al. 2006b). These

results are in accordance to the structural characteristics

of heparan sulfate from neoplastic tissues (Jeronimo et

al. 1994, Oba-Shinjo et al. 2006).

The understanding of how cells control prolifera-

tion and differentiation, survival and death, migration

and adhesion, requires the analyses of the crosstalk of

the various pathways involved in these processes.

Although growth factor receptors are generally

thought to carry out their role in signal transduction at

the cell surface, many of these transmembrane proteins

translocate to the nucleus after ligand stimulation.

In the 80’s it was reported a nuclear pool of free

heparan sulfate chains using radioactive sulfate label-

ing of a hepatoma cell line (Fedarko and Conrad 1986,

Ishihara et al. 1986). Independently, the presence of

FGF-2 in the nucleus was also documented using en-

dothelial (Bouche et al. 1987) as well as CHO cells

(Caizergues-Ferrer et al. 1984) in G0-G1 transition. On

the other hand, the connection in the internalization of

both heparan sulfate and FGF-2 was proposed using L6

myoblasts (Quarto and Amalric 1994).

Interestingly, the up-regulation in the expression of

heparan sulfate proteoglycan induced by growth factors

and PMA in endothelial cells occurs during the G0-G1

transition and has also been described associated with

PKC pathway (Porcionatto et al. 1998, 1994). These re-

sults have been confirmed using corneal stromal fibrob-

lasts (Hsia et al. 2003).

Lipid rafts seem to play an important role for FGF-2

and heparan sulfate proteoglycan internalization. FGF-2
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induces syndecan-4 clustering of the proteoglycan, lead-

ing to the internalization by macropinocytosis of both

molecules. It requires lipid rafts integrity, occurs in

a nonclathrin-, non-dynamin-dependent manner and in-

volves Rac1, which is activated by syndecan-4 cluster-

ing (Tkachenko et al. 2004).

The importance of glypican endocytosis as a posi-

tive or negative modulator is pointed out in the regulation

of Hedgehog (Hh) signaling and in Wingless gradient

formation (Beckett et al. 2008, Gagliardi et al. 2008).

Heparan sulfate proteoglycans have also been de-

scribed in the internalization of ligands other than

growth factors (Poon and Gariepy 2007). Syndecans

and perlecan have been shown to mediate the clathrin-

independent endocytosis of lipoproteins (Fuki et al.

2000, 1997). Also, a physiological role for glypican-1

in the cellular homoeostasis of polyamines was demon-

strated in vesicle caveolae-mediated endocytosis (Belt-

ing 2003, Cheng et al. 2002).

Endocytic pathway for many cationic ligands me-

diated by cell surface proteoglycans involving raft-de-

pendent macropinocytosis have been studied and pro-

posed as a delivery of therapeutic genes and drugs to in-

tracellular compartments (Fan et al. 2007, Nascimento

et al. 2007).
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RESUMO

Proteoglicanos de heparam sulfato são encontrados tanto super-

fície celular quanto na matriz extracelular em todas as espécies

animais. Esta revisão tem enfoque nas características estru-

turais dos proteoglicanos de heparam sulfato e nas interações

destes proteoglicanos com proteínas que levam à sinalização

celular. As cadeias de heparam sulfato, devido a sua variedade

estrutural, são capazes de se ligar e interagir com ampla gama

de proteínas, como fatores de crescimento, quimiocinas, mor-

fógenos, componentes da matriz extracelular, enzimas, entre

outros. Existe uma especificidade estrutural que direciona as

interações dos heparam sulfatos e proteínas alvo. Esta especi-

ficidade está relacionada com a estrutura da cadeia do polis-

sacarídeo e os motivos conservados da cadeia polipeptídica

das proteínas envolvidas nesta interação. Os heparam sulfatos

possuem papel na sinalização celular como receptores ou co-

receptores para diferentes ligantes. Esta ligação dispara vias

de sinalização celular levam à fosforilação de diversas pro-

teínas citosólicas ou com ou sem interações diretas com o

citoesqueleto, culminando na regulação gênica. O papel dos

proteoglicanos de heparam sulfato na sinalização celular e vias

de captação endocítica também são discutidas nesta revisão.

Palavras-chave: glicosaminoglicanos e interações com pro-

teínas, fatores de crescimento, adesão focal, matriz extracelu-

lar, ciclo celular, proliferação celular.
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