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ABSTRACT

Both clays and calcium silicate hydrates (the main hydration products of Portland cements) exhibit a
microstructure made up of lamellar particles. The microscopic mechanism responsible for the macro-
scopic creep of such materials is often described as the relative sliding of the sheets. This paper proposes
a micromechanical approach to estimate the macroscopic creep behavior rising from this microscopic
mechanism. The asymptotic evolution of creep at both short- and long-term is especially investigated.
More precisely, a non-vanishing initial elastic strain is retrieved. At long-term, a threshold on porosity
appears. At lower porosities, the creep evolution admits an asymptotic strain. At higher porosities, it
admits an asymptotic strain rate.
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INTRODUCTION

Concrete is a complex multi-scale composite involving multi-physics processes. As it is the only evolving

component of concrete, the cement paste has a major influence on the mechanical properties of concrete.

As the aggregates do not exhibit significant creep, the first step is to investigate the creep of the cement

paste. Moreover, nanoindentation tests have shown that, in the cement paste, only C-S-H (calcium silicate

hydrates) exhibit non-negligible creep (Acker 2001).

The growth of C-S-H on the surface of a C3S (tricalcium sulfate) grain wetted by a drop of lime

saturated solution has been observed by AFM (Garrault et al. 2005). C-S-H seem to grow by the aggregation

of small flattened particles whose largest face is parallel to the surface of the grain. The size of these

particles has been measured: 60 ∗ 30 nm by 5 nm thick. The model of Courault and Nonat (Courault 2001,

Nonat et al. 2001) describes these particles as the superposition of a few sheets (see Fig. 1).
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Fig. 1 – Schematic representation of a C-S-H particle ((Barbarulo 2002), from the Courault and Nonat model (Courault 2001,

Nonat et al. 2001)).

The starting point of the micromechanical model is a hypothesis on the mechanism, occuring at the

nano-scale, responsible for the macroscopic creep. We assume that this mechanism is a relative sliding of

the sheets in the solid particles of C-S-H. This hypothesis, even if still in debate, has been suggested by

several authors (Lohtia 1970, Ruetz 1968, Wittmann 1982, Benboudjema 2002, Gmira 2003, Nonat 2004,

Jennings et al. 2005, Tamtsia and Beaudoin 2000).

This paper is, thus, devoted to the micromechanical modelling of creep of porous polycrystals made

up of lamellar grains. This model seems reasonable as a first approach to investigate creep of a C-S-H

gel. It may also be applicable to clays. In the micromechanical model of the elasticity of a cement paste

proposed and validated with respect to stiffness experimental data in (Sanahuja et al. 2007), the behavior

of the solid particles of C-S-H is regarded as isotropic elastic, characterized by the Young’s modulus Es =

71.6 GPa and the Poisson’s ratio νs = 0.27. The model developed here enriches this elastic behavior

incorporating the viscoelastic relative sliding of the sheets, considered as the main mechanism responsible

for macroscopic creep. Its derivation is based on the homogenization techniques developed in (Dormieux

et al. 2006), and on approaches commonly used to deal with viscoelastic behaviors in micromechanics.

The model is developed considering spherical shapes to represent the solid particles in order to keep

closed form expressions. The orientation distribution of the grains is isotropic. In Section 2, the viscoelastic

behavior of the elementary particle is modelled, considering both the microstructural description of the

particle (Fig. 1) and the hypothesis of relative sliding of the sheets. Then, the correspondence principle is

introduced and the behavior of the elementary particle is written in the Carson domain. The technical part

of the homogenization process is presented in Appendix A. In short, particles (with an uniform distribution

of orientation) are homogenized with pores in the framework of elasticity. Due to the random nature of

the morphology, a self-consistent scheme is used. To keep expressions in a closed form, spherical shapes

are used for both the solid phase and the pore space. Useful truncated series expansions are derived in

Appendix A.2.2. Section 3 focuses on the results of the model. First, a systematic investigation of the

creep behavior at both short- (Section 3.1) and long-term (Section 3.2) is performed, taking advantage of

the aforementioned truncated series expansions. Second, numerical simulations of the creep function over

the whole time range are performed. Section 4 paves the way towards a creep model of cement paste. In

particular, the case of oblate particles (flattened spheroids), whose axis of revolution is perpendicular to

the sheets, is a straightforward generalization of the model presented in this paper.
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NOMENCLATURE

a first-order tensor

A second-order tensor

A fourth-order tensor

T1 ⊗ T2 tensorial product of the tensors T1 and T2

T1 ∙ T2 contraction of the tensors T1 and T2

T1 : T2 double contraction of the tensors T1 and T2

T −1 inverse of the tensor T

1 second-order unit tensor

I fourth-order unit tensor

I : S = S, where S is a symmetrical tensor

J projector extracting the spherical part of a second-order tensor (J = 1/31 ⊗ 1)

J : S = 1/3(trS)1, where S is a symmetrical tensor

K projector extracting the deviatoric part of a second-order tensor (K = I− J)

K : S = Sdev, where S is a symmetrical tensor

tr A trace of A

Adev deviator of A, Adev = A − 1/3(tr A)1

(e1, e2, e3) reference base

r, θ, φ spherical coordinates

(er , eθ , eφ) spherical base

H(x) Heaviside function, H(x) = 1 if x > 0 and H(x) = 0 if x < 0

t time

p complex variable in the Laplace domain

f ?(p) Laplace-Carson transform of the function f , f ?(p) =
∫ ∞
−∞ pe−pt f (t)dt

j being a particular phase of the REV:

f j volume fraction of phase j

〈a〉 j average of the field a over the domain occupied by phase j

C j stiffness tensor of phase j

S j compliance tensor of phase j , S j = C−1
j

if phase j is isotropic, C j = 3k jJ+ 2g jK:

k j bulk modulus of phase j

g j shear modulus of phase j
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E j Young’s modulus of phase j

ν j Poisson’s ratio of phase j

with the classical relations: k j =
E j

3(1 − 2ν j )
, g j =

E j

2(1 + ν j )
, E j =

9k j g j

3k j + g j
and ν j =

3k j − 2g j

6k j + 2g j

ε, E microscopic and macroscopic strain tensors

σ , 6 microscopic and macroscopic stress tensors

ϕ porosity

rs aspect-ratio of a spheroid (< 1 for oblates, = 1 for a sphere, > 1 for prolates)

usual cement’s chemistry abbreviations:

C CaO

S SiO2

H H2O

MICROMECHANICAL MODELLING

BEHAVIOR OF THE PARTICLES

The isotropic elastic behavior of the solid particles (characterized by the bulk and shear moduli ks and gs)

is modified to incorporate the relative sliding mechanism of the sheets. The latter only affects the shear

strains onto (e1, e3) and (e2, e3), where e3 is perpendicular to the sheets. The elastic behavior, thus, has

to be replaced by a viscoelastic one that keeps the initial elastic strain (when t → 0+) during a creep

experiment. The simplest rheological model fulfilling this condition is the Maxwell model (Fig. 2). The

viscosity of the dashpot is denoted by ηs . The behavior of the solid particles, as a strain-stress relationship,

is, thus, modified as follows:

ε̇13 =
σ13

2ηs
+

σ̇13

2gs
and ε̇23 =

σ23

2ηs
+

σ̇23

2gs
(1)

As far as the shear strain onto (e1, e2) and the extension strains in the e1, e2 and e3 directions are concerned,

the behavior remains elastic.

gs ηs

Fig. 2 – Maxwell model.

The variable relative orientation of the particles couples these strain modes in quite a complicated way.

The macroscopic viscoelastic behavior rises from these couplings. Homogenization of random media and

the Laplace-Carson transform allow to estimate these couplings, considering a random distribution of the

particles and an isotropic distribution of their orientation.
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The Laplace-Carson transform is indeed classically used in order to transform, from a formal point

of view, a non-aging linear viscoelastic problem into a linear elastic one. The effective behavior in the

Carson domain can be estimated resorting to classical homogenization techniques in the framework of

linear elasticity. The last step consists in inverting the Laplace-Carson transform to get the effective vis-

coelastic behavior, equivalently characterized by the creep or relaxation function. This is often the most

mathematically involved step, as the inverses of only a few simple functions are analytically known. Nu-

merical inversion is required in the case of more complicated functions. The Laplace and Laplace-Carson

transforms are respectively defined as:

L f (p) =
∫ ∞

−∞
f (t)e−pt dt and f ?(p) = pL f (p) = p

∫ ∞

−∞
f (t)e−pt dt x (2)

The viscoelastic behavior of the particle whose sheets are perpendicular to er (orientation described by θ

and φ), thus, becomes in the Carson domain:

ε?(p) = Ss
?(θ, φ, p) : σ ?(p) where Ss

?(θ, φ, p) = Se
s + Sv

s
?
(θ, φ, p) (3)

with the isotropic elastic part:

Se
s =

1

3ks
J+

1

2gs
K (4)

and the viscous part that depends on the particle orientation, using Voigt notation:

Sv
s
?
(θ, φ, p) =

1

2ηs p













0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0













(eθ ,eφ,er )

(5)

HOMOGENIZATION

In the Carson domain, the compliance of the particles is found to have exactly the pattern of the compliance

dealt with in Appendix A.2, provided that k, g and cs are respectively substituted by k?(p) = ks , g?(p) =

gs and cs
?(p) = ηs p. Pores are found inbetween the particules. The porosity is denoted by ϕ. The results

derived in Appendix A.2 can, then, be reused to get the effective moduli kSC S?
(p) and gSC S?

(p) of the

porous polycrystal in the Carson domain (as described by (33)). The last step is to perform an inverse

Laplace-Carson transform to obtain the spherical and deviatoric effective creep functions.

EFFECTIVE CREEP FUNCTIONS

Let us first consider a creep experiment under a spherical macroscopic stress of the form 6(t) = 60H(t)1,

which corresponds to 6?(p) = 601 in the Carson domain. The macroscopic strain in the Carson domain

is, then, E?(p) = Esph?
(p)1, with:

Esph?
(p) =

60

3kSC S?
(p)

=
60

3ks fk(ϕ, νs, ηs p/gs)
(6)
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The following normalized variables can be defined:

Esph
n =

Esph

60/ks
, Esph

n
?
=

Esph?

60/ks
, pn =

ηs p

gs
and tn =

t

ηs/gs
(7)

Taking advantage of the time-frequency scaling of the Laplace transform, which yields g(t) = f (αt) ⇒

g?(p) = f ?(p/α) as far as the Laplace-Carson transform is concerned, the normalized creep strain tn 7→

Esph
n (tn) is the inverse Laplace-Carson transform of:

pn 7→ Esph
n

?
(pn) =

1

3 fk(ϕ, νs, pn)
(8)

Finally, the spherical creep strain reads:

Esph(t) =
60

ks
Esph

n

(
t

ηs/gs

)
(9)

In a similar way, let us now consider a creep experiment under a deviatoric macroscopic stress of the

form 6(t) = 60H(t)T dev, which corresponds to 6?(p) = 60T dev in the Carson domain. The deviatoric

creep strain, then, reads Edev(t) = Edev(t)T dev, with:

Edev(t) =
60

ks
Edev

n

(
t

ηs/gs

)
(10)

where tn 7→ Edev
n (tn) is the inverse Laplace-Carson transform of:

pn 7→ Edev
n

?
(pn) =

1

2 fg(ϕ, νs, pn)
(11)

Only numerical computations of fk(ϕ, νs, pn) and fg(ϕ, νs, pn) are available (calculated from (34)

and (35)). The Laplace-Carson transform, therefore, cannot be analytically inverted. However, taking

advantage of the truncated series expansions derived in Appendix A.2.2, the creep response at both short-

(tn → 0) and long-term (tn → ∞) can be investigated.

RESULTS

CREEP AT SHORT-TERM

We first consider the case tn → 0, obtained when pn → ∞. We recall the truncated series expansion (50),

which is valid for 0 < ϕ < 1/2:

fk(ϕ, νs, pn) = K∞
0 (ϕ, νs) +K∞

−1(ϕ, νs)p−1
n +K∞

−2(ϕ, νs)p−2
n +O

(
p−3

n

)
(12)

The normalized spherical creep strain, thus, reads asymptotically:

Esph
n (ϕ, νs, tn) ≈

1

3K∞
0 (ϕ, νs)

−
K∞

−1(ϕ, νs)

3K∞
0 (ϕ, νs)2

tn when tn → 0 (13)

where K∞
0 (ϕ, νs) and K∞

−1(ϕ, νs) are respectively given by (55) and (56). And the normalized deviatoric

creep strain reads asymptotically:

Edev
n (ϕ, νs, tn) ≈

1

2G∞
0 (ϕ, νs)

−
G∞

−1(ϕ, νs)

2G∞
0 (ϕ, νs)2

tn when tn → 0 (14)
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where G∞
0 (ϕ, νs) and G∞

−1(ϕ, νs) are respectively given by (52) and (53). An initial elastic strain is, thus,

observed on the whole range of porosities, from 0 to 1/2. The instantaneous stiffness corresponds exactly

to the stiffness obtained by the self-consistent scheme with an elastic solid phase whose moduli are ks and

gs . This was the purpose of the present model, developed as an extension of the elastic model. Figure 3

depicts the elastic part and the initial slope of the spherical and deviatoric creep strains. Note that the elastic

strain and the initial slope are both higher in the case of deviatoric creep than in the case of spherical creep.

li
m

t n
→
0
E
s
p
h
,d
e
v

n
(t
n
)

ϕ
l i
m

t n
→
0

∂
E
s
p
h
,d
e
v

n ∂
t n

ϕ

Fig. 3 – Elastic strain and initial slope of the creep strain evolution (νs = 0.27).

CREEP AT LONG-TERM

Let us now consider the case tn → ∞, obtained from pn → 0. When 0 < ϕ < 1/4, we recall the truncated

series expansion (36):

fk(ϕ, ν, pn) = K0
0(ϕ, ν) +K0

1(ϕ, ν)pn +K0
2(ϕ, ν)p2

n +O
(

p3
n

)
(15)

The normalized asymptotic spherical creep strain, thus, reads:

Esph
n (ϕ, νs, tn) ≈

1

3K0
0(ϕ, νs)

when tn → ∞ (16)

where K0
0(ϕ, νs) is given by (41). And the normalized asymptotic deviatoric creep strain reads:

Edev
n (ϕ, νs, tn) ≈

1

2G0
0(ϕ, νs)

when tn → ∞ (17)

where G0
0(ϕ, νs) is given by (38). The creep strain reaches an asymptotic level, which depends on the

porosity (see Fig. 4).

When 1/4 < ϕ < 1/2, we recall the truncated series expansionn (44):

fk(ϕ, νs, pn) = K0
1(ϕ, νs)pn +K0

2(ϕ, νs)p2
n +O

(
p3

n

)
(18)

The normalized spherical and deviatoric creep strain, then, read:

Esph
n (ϕ, νs, tn) ≈

tn
3K0

1(ϕ, νs)
, when tn → ∞ (19)

Edev
n (ϕ, νs, tn) ≈

tn
2G0

1(ϕ, νs)
, when tn → ∞ (20)
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Fig. 4 – Asymptotic creep strain at long-term (νs = 0.27).

where K0
1(ϕ, νs) and G0

1(ϕ, νs) are respectively given by (48) and (46). Within this range of porosities

(1/4 – 1/2), the asymptotic creep strain grows at a constant rate. This rate is represented as a function of

porosity on Figure 5.

l i
m

t n
→
∞

E
s
p
h
,d
e
v

n
(t
n
)

t n

ϕ

Fig. 5 – Rate of the asymptotic creep strain at long-term (νs = 0.27).

These results on creep at long-term, sketched on Figure 6, can be commented out:

• at long-term (tn → ∞), the dashpot can be considered as free (non-zero strain at vanishing stress);

• when porosity is higher than 1/4, the polycrystals are of sufficient low density so that the sheets can

slide freely, without being restrained by neighboring particles (that may have a different orientation):

the macroscopic strain grows indefinitely;

• when porosity is lower than 1/4, the polycrystals are "too" compact: the neighboring particles re-

strict the relative sliding of the sheets, activating their elastic compliance; the asymptotic macroscopic

behavior is, therefore, elastic.
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t/ηsgs

Esph,dev(t)/Σ0ks

0

0 < ϕ < 1/4

1/4 < ϕ < 1/2

Fig. 6 – Shape of the creep strain evolution at long-term.

NUMERICAL SIMULATION OF THE CREEP STRAIN OVER THE WHOLE TIME RANGE

The complete evolution of the creep strain with respect to time can only be obtained by the numerical

inversion of the Laplace-Carson transform. The Gaver-Stehfest algorithm (Abate and Whitt 2006, Gaver

1966, Stehfest 1970) is used. Basically, the inverse function is approximated by a finite linear combination

of values of the function in the Carson space, based on the sequence of Gaver approximants (Gaver 1966).

The spherical and deviatoric creep strains are plotted with respect to time on Figure 7, for five different

porosities.

The asymptotic evolutions depicted in Section 3.1 at tn → 0, and in Section 3.2 at tn → ∞ are

retrieved. Moreover, the deviatoric creep strain is always higher than the spherical one.

CONCLUSION AND PROSPECTS

The micromechanical model of cement paste developed and validated with respect to elastic measure-

ments in (Sanahuja et al. 2007) distinguished two types of C-S-H. In this model, high density (HD) C-S-H

is viewed as a porous polycrystal made up of particles of the same shape as the elementary brick repre-

sented on Figure 1, whereas low density (LD) C-S-H is made up of more flattened particles (which can be

viewed as a juxtaposition of several elementary bricks). This porosity and the aspect-ratio are, thus, two

morphological parameters of the microstructure. Table 1 gathers the typical values of these morphological

parameters for the two model materials (porosity of LD C-S-H is provided as the range reached at the end

of hydration when 0.2 < w/c < 0.6).

TABLE I

Typical aspect ratio and porosity of HD and LD C-
S-H used in the model of (Sanahuja et al. 2007).

rs ϕ

HD C-S-H 0.12 0.30
LD C-S-H 0.033 0.35–0.50

This model being successfully validated with respect to elastic measurements, the morphology can

be tentatively reused as an input to investigate other mechanical behaviors including creep, which is the

subject of the present paper. However, the developments presented here need to be reworked to consider
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Fig. 7 – Spherical and deviatoric macroscopic creep strain as function of time (νs = 0.27).

flattened solid particles (oblate shape) instead of spheres.

Thus, the next step would be to revisit the model described in (Sanahuja et al. 2007) to deal with

creep. C-S-H creep would be dealt with the use of the model developed in the present paper, modified to

take into account the flattened shape of the C-S-H solid particles. This may help to investigate one main

question about the creep strain evolution of concrete at long-term, namely whether it reaches a stable value

or grows at a constant rate.

EFFECTIVE STIFFNESS OF POROUS POLYCRYSTALS MADE UP OF LAMELLAR PARTICLES

We consider a porous polycrystal. The solid grains are made up of stacked planar sheets. The porosity

is denoted by ϕ. This section is devoted to the estimation of the effective stiffness of such material. The

micromechanical modelling of the behavior of polycrystals made up of lamellar particles, in the framework

of homogenization of random media, was initiated in (Dormieux et al. 2006). At the polycrystal scale, the

effective behavior of the grains is modelled by a transversely isotropic stiffness tensor.
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THE MOST GENERAL CASE: UNSPECIFIED TRANSVERSELY ISOTROPIC STIFFNESS TENSOR

In this first part, the stiffness of the solid grains is a transversely isotropic stiffness tensor with unspecified

components. In an orthonormal base whose third vector is perpendicular to the sheets, the stiffness tensor

of each grain is supposed to have the same components. Using Voigt notation, and the vector er being

perpendicular to the sheets, this transversely isotropic tensor reads:

Cs(θ, φ) =













c1111 c1122 c1133 0 0 0

c1122 c1111 c1133 0 0 0

c1133 c1133 c3333 0 0 0

0 0 0 2c2323 0 0

0 0 0 0 2c2323 0

0 0 0 0 0 c1111 − c1122













(eθ ,eφ,er )

(21)

where (er , eθ , eφ) is the spherical base. The stiffness of a grain, thus, only depends on its orientation,

described by the two Euler angles (θ, φ), and on the five components c1111, c1122, c1133, c3333 and c2323.

The morphology being random and polycrystalline, it seems natural to resort to a self-consistent

scheme to model the elasticity of such a porous material. For simplicity, the grains are represented by

spherical shapes (Fig. 8). Note that the derivation is feasible with spheroids whose axis of revolution is

perpendicular to the sheets, but the expressions involved are much lengthier. The orientation distribution of

the particles is supposed to be isotropic. Thus, the effective stiffness is also isotropic. The self-consistent

estimate of the latter is denoted by CSC S = 3kSC SJ + 2gSC SK, where kSC S and gSC S are the estimates of

the effective bulk and shear moduli.

eφ
eθ

er CSCSCSCS

ξ → E∞ ∙ z, |z| → ∞
er

Fig. 8 – Schematic representation of the self-consistent scheme proposed.

The derivation of the homogenization scheme requires, for uniform strain boundary conditions ( E) on

the REV, estimates of the average strain in the pore space and in the solid domain, and of the average stress

in the solid domain.

The average strain in the pore space is estimated by the uniform strain that rises in a spherical pore

embedded into an infinite reference medium, whose stiffness is the sought homogenized one, and with an

uniform strain E∞ at infinity (the latter will be linked to the strain E applied at the boundary of the REV

using the average law (27)):

〈ε〉p = (I− SSC S
sph )−1 : E∞ (22)

SSC S
sph being the Eshelby tensor (Eshelby 1957) of a sphere in a reference medium whose stiffness is CSC S .
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This reference medium being isotropic, the expression of this Eshelby tensor is simple:

SSC S
sph = αSC SJ+ β SC SK with αSC S =

3kSC S

3kSC S + 4gSC S
and β SC S =

6

5

kSC S + 2gSC S

3kSC S + 4gSC S
(23)

The average strain in the set of grains whose vector perpendicular to the sheets is er (parametrized

by θ, φ) is estimated by the uniform strain that rises in a sphere made up of the same material than these

grains, embedded into the infinite effective medium, and with the uniform strain E∞ at infinity (Eshelby

1957):

〈ε〉er
g (θ, φ) =

[
I+ PSC S

sph : (Cs(θ, φ) − CSC S)
]−1

: E∞ (24)

PSC S
sph being the Hill tensor of a sphere in a medium whose stiffness is CSC S; it is related to the corresponding

Eshelby tensor (23) by SSC S
sph = PSC S

sph : CSC S .

The average strain over the whole solid domain is, then, obtained as an angular average, er following

an isotropic orientation distribution:

〈ε〉s =
∫ 2π

φ=0

∫ π

θ=0
〈ε〉er

g (θ, φ)
sin θ

4π
dθ dφ

=
∫ 2π

φ=0

∫ π

θ=0

[
I+ PSC S

sph : (Cs(θ, φ) − CSC S)
]−1 sin θ

4π
dθ dφ : E∞ (25)

The average stress over the whole solid domain is estimated in the same way, from (24):

〈σ 〉s =
∫ 2π

φ=0

∫ π

θ=0
Cs(θ, φ) :

[
I+ PSC S

sph : (Cs(θ, φ) − CSC S)
]−1 sin θ

4π
dθ dφ : E∞ (26)

The uniform strain E at the boundary of the REV is, then, related to the reference strain E∞ using

(22), (25) and the average rule:

E = 〈ε〉 = ϕ 〈ε〉p + (1 − ϕ) 〈ε〉s (27)

The macroscopic stress is 6 = (1 − ϕ) 〈σ 〉s . The effective stiffness tensor is, then, defined as the tensor

relating the macroscopic strain and stress: 6 = CSC S : E. Taking into account (22), (25) and (26), the

latter reads:

CSC S = (1 − ϕ)

[∫ 2π

φ=0

∫ π

θ=0
Cs(θ, φ) :

[
I+ PSC S

sph : (Cs(θ, φ) − CSC S)
]−1 sin θ

4π
dθ dφ

]
: (28)

[
ϕ(I− SSC S

sph )−1 + (1 − ϕ)

∫ 2π

φ=0

∫ π

θ=0

[
I+ PSC S

sph : (Cs(θ, φ) − CSC S)
]−1 sin θ

4π
dθ dφ

]−1

This tensorial equation reduces to two scalar equations since all the tensors involved and resulting from

the integrations are isotropic. The self-consistent estimates kSC S and gSC S of the effective bulk and shear

moduli are the positive solutions of these two nonlinear equations.

ISOTROPIC COMPLIANCE ADDED TO A COMPLIANCE MODELLING THE SLIDING OF THE SHEETS

The compliance of the grains is now supposed to be the sum of:

• an isotropic compliance (bulk and shear moduli denoted by k and g);
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• a compliance (characterized by the modulus cs) that only allows the simple shear activated by relative

sliding of the sheets: ε13 = σ13/2/cs and ε23 = σ23/2/cs (e3 being perpendicular to the sheets).

The total compliance of the grain whose vector perpendicular to the sheets is er , thus, reads:

Ss(θ, φ) = Siso + Sslide(θ, φ) (29)

with:

Siso =
1

3k
J+

1

2g
K (30)

and, using Voigt notation:

Sslide(θ, φ) =
1

2cs













0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0













(eθ ,eφ,er )

(31)

Effective moduli

The stiffness of the grains being transversely isotropic, we take advantage of the results established in the

Section A.1, introducing the five components:

c1111 = k +
4g

3
, c1122 = k −

2g

3
, c1133 = k −

2g

3
, c3333 = k +

4g

3
and c2323 =

gcs

g + cs
(32)

The effective moduli, normalized by k, appear as functions of the porosity ϕ, the Poisson’s ratio ν =

(3k − 2g)/(6k + 2g) and the ratio χ = cs/g:

kSC S = k fk(ϕ, ν, χ) and gSC S = k fg(ϕ, ν, χ) (33)

For ϕ ≥ 1/2, fk(ϕ, ν, χ) and fg(ϕ, ν, χ) vanish. The equations to be solved to get fk and fg are sought

for ϕ < 1/2. The tensorial equation (28) yields, on one hand, the expression of fk as a function of fg:

fk =
4(1 − ϕ) fg

4 fg + 3ϕ
(34)

hiding the dependency of fk and fg with respect to (ϕ, ν, χ), and, on the other hand, a fourth order

polynomial equation in fg:

256(1 + ν)2(χ + 1) f 4
g + 192(1 + ν)[((1 − 11ϕ)ν + 4(1 + ϕ))χ + (3 − 7ϕ)ν + 3 + 2ϕ] f 3

g

+ 36[((21ϕ2 + 122ϕ − 91)ν2 + 4(3ϕ2 − 77ϕ + 28)ν − 9ϕ2 + 110ϕ − 13)χ

+(1 + ν)((13ϕ2 − 74ϕ + 17)ν − 5ϕ2 + 28ϕ + 5)] f 2
g

+ 54(1 − 2ν)[((−27ϕ2 − 82ϕ + 49)ν + 3ϕ2 + 74ϕ − 29)χ + (4ϕ − 1)(3 − ϕ)(ν + 1)] fg

+ 243χ(ϕ + 2)(2ϕ − 1)(1 − 2ν)2 = 0 (35)

Only a numerical resolution can provide fk(ϕ, ν, χ) and fg(ϕ, ν, χ) (see Fig. 9). However, some truncated

series expansions of fk(ϕ, ν, χ) and fg(ϕ, ν, χ) can be derived when χ → 0 or ∞. These ones are used

in Sections 3.1 and 3.2.
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f
k
=
k
S
C
S
/
k

ϕ

χ = 104

χ = 102

χ = 1
χ = 10−2

χ = 10−4

f
g
=
g
S
C
S
/
k

ϕ

Fig. 9 – Normalized effective moduli fk(ϕ, ν, χ) and fg(ϕ, ν, χ) (ν = 0.27).

Truncated series expansions

When χ → 0 and 0 < ϕ < 1/4, the truncated series expansions of fk and fg read:

fk(ϕ, ν, χ) = K0
0(ϕ, ν) +K0

1(ϕ, ν)χ +K0
2(ϕ, ν)χ 2 +O

(
χ3

)
(36)

fg(ϕ, ν, χ) = G0
0(ϕ, ν) + G0

1(ϕ, ν)χ + G0
2(ϕ, ν)χ 2 +O

(
χ3

)
(37)

with:

G0
0(ϕ, ν) =

3

16

(13ϕ − 3)ν − 5ϕ − 3

1 + ν

+
3

16

√
(169ϕ2 + 50ϕ − 23)ν2 − 2(13ϕ + 1)(5ϕ − 1)ν + 25ϕ2 − 34ϕ + 25

1 + ν

(38)

G0
1(ϕ, ν) =

9(1 − ϕ)2(1 − 2ν)

ν + 1

×
2[(13ϕ + 1)ν − 5ϕ + 1]G0

0(ϕ, ν) + 3(8ϕ − 1)ν + 6(1 − 2ϕ)

4[(−39ϕ2 − 7ϕ + 4)ν + 15ϕ2 − 7ϕ + 4]G0
0(ϕ, ν) + 3(1 − 4ϕ)((11ϕ + 3)ν − 7ϕ + 3)

(39)

G0
2(ϕ, ν) =

2(ν + 1)a1G0
1(ϕ, ν)2 + (1 − ϕ)(1 − 2ν)a2G0

1(ϕ, ν)

(1 − 2ν)[4[(−39ϕ2 − 7ϕ + 4)ν + 15ϕ2 − 7ϕ + 4]G0
0(ϕ, ν) + 3(1 − 4ϕ)((11ϕ + 3)ν − 7ϕ + 3)]

(40)

with
a1 = 48ϕ(1 − 2ν)G0

0(ϕ, ν) + (−13ϕ2 − 118ϕ + 31)ν + 5ϕ2 + 68ϕ − 29

a2 = 4[7(5ϕ − 7)ν − 19ϕ + 23]G0
0(ϕ, ν) + 3[(29ϕ − 43)ν + 17 − 13ϕ]

and with:

K0
0(ϕ, ν) =

4(1 − ϕ)G0
0(ϕ, ν)

3ϕ + 4G0
0(ϕ, ν)

(41)

K0
1(ϕ, ν) =

12ϕ(1 − ϕ)G0
1(ϕ, ν)

[3ϕ + 4G0
0(ϕ, ν)]2

(42)
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K0
2(ϕ, ν) = 12ϕ(1 − ϕ)

[4G0
0(ϕ, ν) + 3ϕ]G0

2(ϕ, ν) − 4G0
1(ϕ, ν)2

[3ϕ + 4G0
0(ϕ, ν)]3

(43)

Note that the effective moduli tend towards 0 when ϕ → 1/4−.

When χ → 0 and 1/4 < ϕ < 1/2, the truncated series expansions of fk and fg read:

fk(ϕ, ν, χ) = K0
1(ϕ, ν)χ +K0

2(ϕ, ν)χ 2 +O
(
χ3

)
(44)

fg(ϕ, ν, χ) = G0
1(ϕ, ν)χ + G0

2(ϕ, ν)χ 2 +O
(
χ3

)
(45)

with:

G0
1(ϕ, ν) =

9(ϕ + 2)(1 − 2ϕ)(1 − 2ν)

2(4ϕ − 1)(3 − ϕ)(1 + ν)
(46)

G0
2(ϕ, ν) =

9(1 − 2ν)(1 − 2ϕ)(ϕ + 2)

2(ν + 1)2(3 − ϕ)3(4ϕ − 1)3

× [(−30ϕ4 − 304ϕ3 + 539ϕ2 − 286ϕ + 45)ν − 18ϕ4 + 380ϕ3 − 757ϕ2 + 476ϕ − 117]
(47)

and with:

K0
1(ϕ, ν) =

4(1 − ϕ)G0
1(ϕ, ν)

3ϕ
(48)

K0
2(ϕ, ν) =

4(1 − ϕ)[3ϕG0
2(ϕ, ν) − 4G0

1(ϕ, ν)2]

9ϕ2
(49)

The effective moduli are of the same order as χ , which is compatible with the fact that they tend towards

0 when ϕ → 1/4−.

When χ → ∞ and 0 < ϕ < 1/2, the truncated series expansions of fk and fg read:

fk(ϕ, ν, χ) = K∞
0 (ϕ, ν) +K∞

−1(ϕ, ν)χ−1 +K∞
−2(ϕ, ν)χ−2 +O

(
χ−3

)
(50)

fg(ϕ, ν, χ) = G∞
0 (ϕ, ν) + G∞

−1(ϕ, ν)χ−1 + G∞
−2(ϕ, ν)χ−2 +O

(
χ−3

)
(51)

with:

G∞
0 (ϕ, ν) =

3

16

(21ϕ − 11)ν − 9ϕ + 1

1 + ν

+
3

16

√
(441ϕ2 − 270ϕ + 25)ν2 − 14(3ϕ − 1)(9ϕ − 5)ν + 81ϕ2 − 114ϕ + 49

1 + ν

(52)

G∞
−1(ϕ, ν) =

9

5

1 − 2ν

1 + ν

×
2[(−35ϕ2 + 25ϕ − 4)ν + 15ϕ2 − 15ϕ + 4]G∞

0 (ϕ, ν) + 3(1 − 2ϕ)[(10ϕ − 3)ν − 5ϕ + 3]

4[7(1 − 3ϕ)ν + 9ϕ − 5]G∞
0 (ϕ, ν) + 3[(13 − 27ϕ)ν + 15ϕ − 11]

(53)

G∞
−2(ϕ, ν) =

G∞
−1(ϕ, ν)

5(1 − 2ν)(1 − ϕ)

[a1G∞
0 (ϕ, ν) + a2]G∞

−1(ϕ, ν) + a3G∞
0 (ϕ, ν) + a4

4[7(1 − 3ϕ)ν + 9ϕ − 5]G∞
0 (ϕ, ν) + 3[(13 − 27ϕ)ν + 15ϕ − 11]

(54)
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with

a1 = 160(ν + 1)(1 − 2ν)(1 − ϕ)

a2 = 2(21ϕ2 + 410ϕ − 235)ν2 + 8(3ϕ2 − 41ϕ + 10)ν + 2(−9ϕ2 − 34ϕ + 59)

a3 = 4(1 − 2ν)[(−227ϕ2 + 241ϕ − 56)ν + 103ϕ2 − 131ϕ + 40]

a4 = 3(1 − 2ν)[(−256ϕ2 + 295ϕ − 81)ν + 140ϕ2 − 191ϕ + 63]

and with:

K∞
0 (ϕ, ν) =

4(1 − ϕ)G∞
0 (ϕ, ν)

4G∞
0 (ϕ, ν) + 3ϕ

(55)

K∞
−1(ϕ, ν) =

12ϕ(1 − ϕ)G∞
−1(ϕ, ν)

[4G∞
0 (ϕ, ν) + 3ϕ]2

(56)

K∞
−2(ϕ, ν) = 12ϕ(1 − ϕ)

[4G∞
0 (ϕ, ν) + 3ϕ]G∞

−2(ϕ, ν) − 4G∞
−1(ϕ, ν)2

[4G∞
0 (ϕ, ν) + 3ϕ]3

(57)

Note that limχ→∞ gSC S = kG∞
0 (ϕ, ν) is the effective shear modulus obtained by the usual self-consistent

scheme (isotropic solid phase). Indeed, when χ → ∞, the compliance Sg(θ, φ), added to the isotropic

compliance Siso, vanishes. This remark is also valid for the bulk modulus.

RESUMO

Argilas e hidratos de cálcio (principal produto de cimentos) ambos exibem microestrutura composta por partículas

em forma de lamelas. O principal mecanismo responsável pelo fenômeno de fluência macroscópico é frequentemente

descrito pelo deslizamento entre as lamelas. O artigo propõe uma abordagem micromecânica para estimar a fluência

macroscópica que surge a partir do mecanismo microscópico. A evolução assintótica da fluência para tempos curtos

e longos é especialmente investigada. Mais precisamente uma tensão inicial não nula é derivada. Para tempos longos

um limiar de porosidade surge da modelagem. Na faixa de porosidades mais baixas a evolução da fluência admite

deformação assintótica. Para porosidades altas o problema admite taxa de deformação assintótica.

Palavras-chave: homogeneização, fluência, pasta de cimento, C-S-H gel.
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