
“main” — 2010/11/4 — 16:10 — page 933 — #1

Anais da Academia Brasileira de Ciências (2010) 82(4): 933-939
(Annals of the Brazilian Academy of Sciences)
ISSN 0001-3765
www.scielo.br/aabc

The central role of RNA in the genetic programming of complex organisms

JOHN S. MATTICK

Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia

Manuscript received on September 17, 2010; accepted for publication on October 15, 2010

ABSTRACT

Notwithstanding lineage-specific variations, the number and type of protein-coding genes remain relatively static

across the animal kingdom. By contrast there has been a massive expansion in the extent of genomic non-protein-

coding sequences with increasing developmental complexity. These non-coding sequences are, in fact, transcribed

in a regulated manner to produce large numbers of large and small non-protein-coding RNAs that control gene ex-

pression at many levels including chromatin architecture, post-transcriptional processing and translation. Moreover,

many RNAs are edited, especially in the nervous system, which may be the basis of epigenome-environment interac-

tions and the function of the brain.
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INTRODUCTION

It appears that the genetic programming of complex or-
ganisms has been misunderstood for the past 50 years,
because of the assumption – largely true for the unicel-
lular prokaryotes, but apparently not for multicellular
eukaryotes – that most genetic information is transacted
by proteins. This assumption is based upon the central
dogma which holds that ‘DNA makes RNA makes pro-
tein’, implying that RNA functions primarily as an inter-
mediate between a gene and its encoded protein, which
in turn are responsible for the core functions of the cell,
including regulatory functions. Reciprocally it has been
assumed that the vast tracts of non-protein-coding se-
quences that are present in animal and plant genomes
are largely non-functional. However, this assumption
may be incorrect (Mattick 1994), and the emerging ev-
idence suggests that these non-coding sequences actu-
ally specify a vast and hitherto hidden layer of regula-
tory information that is transacted by RNAs, in conjunc-
tion with generic protein complexes that interact with
them (Mattick 2001, 2003, 2004, 2007, Mattick and
Gagen 2001).
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INFORMATION SCALING IN COMPLEX ORGANISMS

The human genome specifies an anatomically complex
and cognitively advanced organism comprised of ∼1014

cells, with exquisitely precise architecture of its differ-
ent muscles, bones, many organs and the brain, which it-
self contains ∼1010 neurons each with an estimated 1014

synaptic connections in the neocortex alone (Andersen
et al. 2003). Surprisingly the human genome contains
only ∼20,000 conventional protein-coding genes (Good-
stadt and Ponting 2006, Clamp et al. 2007), which are
similar in number and largely share orthologous func-
tions with those in nematodes that have only ∼1,000 so-
matic cells. Indeed, not withstanding clade-specific vari-
ations and innovations (such as RNA editing proteins, see
below), the core proteome and extent of protein-coding
sequences has not changed greatly since the origin of the
metazoa, despite enormous increases in their develop-
mental and cognitive complexity (Taft et al. 2007).

On the other hand, the extent of non-protein-coding

DNA in the genome increases with increasing complex-

ity, reaching 98.8% in humans (Taft et al. 2007), suggest-

ing that much of the information required to program our

development resides in these sequences, and is presum-
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ably regulatory in nature. Indeed theoretical considera-

tions suggest that regulatory information scales quadrat-

ically with organizational complexity in all functionally

integrated systems (Mattick and Gagen 2005), which is

supported by empirical data showing that the number

of regulatory genes increases as a square function of the

number of total genes in bacteria (Croft et al. 2003), con-

trary to the expectations of combinatoric control. Thus

regulatory architecture increasingly dominates genomic

information content as organismal complexity increases.

GLOBAL TRANSCRIPTION OF THE GENOME

Moreover, irrespective of the extent of non-protein-

coding sequences, it is now evident that the majority

of all genomes is transcribed, mainly into non-protein-

coding RNAs (ncRNAs), of which there are tens if

not hundreds of thousands in mammals (Carninci et al.

2005, Katayama et al. 2005), arranged in complex in-

terlacing and overlapping patterns (for reviews see Frith

et al. 2005, Mattick and Makunin 2006, Kapranov et

al. 2007). These ncRNAs generally fall into two size

classes: (i) small RNAs that are less than 200 nt, in-

cluding infrastructural RNAs like tRNAs, rRNAs and

small nuclear / spliceosomal RNAs (snRNAs), as well

as various types of regulatory RNAs, including micro-

RNAs (miRNAs), small interfering RNAs (siRNAs),

piwi-interacting RNAs (piRNAs) and small nucleolar

RNAs (snoRNAs) (Mattick and Makunin 2005); and

(ii) long noncoding RNAs (lncRNAs) that can range

from a few hundred bases up to well over 100 kilobases

in length (Furuno et al. 2006, Pang et al. 2007, Mercer

et al. 2009).

REGULATED EXPRESSION OF NONCODING RNA

These lncRNAs show tissue-specific and physiolo-

gically-responsive expression (Ravasi et al. 2006), as

well as dynamic expression profiles in differentiating

embryonal stem cells (Dinger et al. 2008b), neuronal

cells (Mercer et al. 2010), T-cells (Pang et al. 2009),

muscle cells (Sunwoo et al. 2009), and other devel-

opmental contexts in animals and plants (Amaral and

Mattick 2008, Ben Amor et al. 2009, Dinger et al.

2009). They also show many other signatures of func-

tionality, with increasing numbers of validated exam-

ples, as well as altered expression in cancer and other

diseases (for reviews see (Mattick 2009b, Mercer et al.

2009, Taft et al. 2010a).

Approximately half of all lncRNAs show highly

specific expression patterns in different regions of the

brain, and many are trafficked to specific sub-cellu-

lar locations (Mercer et al. 2008). Moreover particular

ncRNAs are associated with known and novel sub-nuc-

lear domains (Sone et al. 2007, Sunwoo et al. 2009),

suggesting a key role for lncRNAs in cell biology that

has yet to be explored. While ncRNAs exhibit a wide

range of conservation (Pang et al. 2006), this is to be

expected given that their sequences are subject to dif-

ferent structure-function constraints (i.e., may be more

plastic) than proteins, and that regulatory innovation

underpins much if not most of phenotypic variation

(Pheasant and Mattick 2007). There is also an under-

explored subterranean strata of differentially expressed

repeat-derived RNAs (Lunyak et al. 2007, Faulkner et

al. 2009), which may also play an important role in

developmental regulation (Faulkner and Carninci 2009,

Mattick et al. 2010).

RNA REGULATION OF EPIGENETIC PROCESSES

A major function of ncRNAs appears to be the regu-

lation of the epigenetic processes that underpin differ-

entiation and development (Amaral and Mattick 2008),

by guiding relatively generic chromatin-modifying com-

plexes to their sites of action (Mattick et al. 2009).

Many chromatin-modifying proteins contain RNA bind-

ing domains, as indeed do major classes of transcription

factors (Shi and Berg 1995, Mattick 2003, 2007, Bern-

stein and Allis 2005). An increasing number of lncR-

NAs have been shown to be associated with chromatin-

modifying complexes and different forms of modified

histones (Rinn et al. 2007, Dinger et al. 2008b, Nagano

et al. 2008, Pandey et al. 2008, Terranova et al. 2008,

Zhao et al. 2008, Khalil et al. 2009, Swiezewski et

al. 2009). Indeed, ncRNA-directed regulatory circuits

underpin most, if not all, complex epigenetic phenom-

ena in eukaryotes, including RNA interference-related

processes such as transcriptional and post-transcriptional

gene silencing, position effect variegation, hybrid dysge-

nesis, chromosome dosage compensation, parental im-
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printing and allelic exclusion, paramutation (see below),

and possibly transvection and transinduction (see Mat-

tick and Gagen 2001, Mattick 2009b). In addition ex-

ons are preferentially associated with nucleosomes in

somatic and sperm cells in vertebrates (Nahkuri et al.

2009), indicating that epigenetic regulation acts not just

the level of the gene, but at the level of individual exons,

which potentially explains the basis of the long-standing

mystery of how alternative splicing is regulated, a predic-

tion that has recently gained experimental support (Luco

et al. 2010).

MULTIPLE CLASSES OF SMALL RNA

Small RNAs of the miRNA, piRNA and siRNA families

play important roles in a wide range of developmental

and physiological processes in animals and plants (Bar-

tel 2004, Jones-Rhoades et al. 2006, Stefani and Slack

2008, Ghildiyal and Zamore 2009), and many are dys-

regulated in diseases such as cancer (Esquela-Kerscher

and Slack 2006, Medina and Slack 2008). Recently,

we have discovered a number of new classes of small

RNAs, including tiny RNAs associated with transcrip-

tion initiation sites (tiRNAs) (Taft et al. 2009c) that

appear to be related to nucleosome positioning (Taft et

al. 2009a), similarly-sized RNAs associated with splice

junctions (spliRNAs) (Taft et al. 2010b), and a range of

small RNAs derived from snoRNAs (sdRNAs) (Taft et

al. 2009b), some of which appear to function as miR-

NAs (Ender et al. 2008), indicating an interplay between

the snoRNA- and miRNA-mediated regulatory systems

(Politz et al. 2009, Taft et al. 2009b).

RNA COMMUNICATION AND PLASTICITY

Finally, it appears that RNA is trafficked between cells

(Dinger et al. 2008a). It also appears to be the sub-

strate for the transmission of environmental information

into endogenous epigenetic networks, via RNA editing

(Mattick 2010). RNA editing occurs via two classes of

enzymes, the ADARs (one of which, ADAR3, is brain-

specific) that catalyze adenosine deamination to inosine

(Bass 2002, Valente and Nishikura 2005) and the APO-

BECs (two of which, APOBEC1 and APOBEC3 are

specific to mammals, with the latter having expanded

under positive selection in the primate lineage) that act

variously on RNA or DNA to catalyze cytosine or 5-

methylcytosine deamination to uracil or thymine (Mor-

gan et al. 2004, Sawyer et al. 2004, Zhang and Webb

2004, Mikl et al. 2005, Navaratnam and Sarwar 2006).

RNA editing occurs in most if not all tissues, appears

to play an important role in development (Bhutani et al.

2010, Sato et al. 2010), and is particularly active in

the brain (Bass 2002, Valente and Nishikura 2005). In-

triguingly, there is ∼30 times more RNA editing ob-

served in human than in mouse, the vast majority of

which occurs in Alu primate-specific elements (Atha-

nasiadis et al. 2004, Blow et al. 2004, Kim et al. 2004,

Levanon et al. 2004). The amount of editing has also

increased during primate evolution associated with new

human-specific Alu insertions in genes of neuronal func-

tion (Paz-Yaacov et al. 2010). Alu sequences also ap-

pear to have been subject to positive selection (Lander et

al. 2001), possibly associated with the evolution of ad-

vanced brain function, which also involves processes that

are similar to those in the immune system (Mattick and

Mehler 2008, Mattick 2010). Finally it appears that RNA

is the mediator of transgenerational epigenetic inheri-

tance, referred to as ‘paramutation’ (Chandler 2007), a

process that is also influenced by editing (Nadeau 2009).

CONCLUSION

The emerging evidence suggests that, rather than oases

of protein-coding sequences in a desert of junk, the

genomes of humans and other complex organisms

should be viewed as islands of protein-coding sequences

in a sea of regulation (Mattick 2004, Ovcharenko et al.

2005), most of which is transacted by RNA (Amaral et

al. 2008, Mattick 2010). Moreover it appears that RNA,

rather than simply being an ephemeral intermediate be-

tween gene and protein, actually comprises the compu-

tational engine of the cell (Mattick 1994, Mattick and

Gagen 2001) and the substrate for epigenome-environ-

ment interactions (Mattick 2010). It is a remarkably

versatile molecule (Leontis and Westhof 2003, Lescoute

and Westhof 2006, Cruz and Westhof 2009), with ca-

pacity to form sophisticated structures, possess catalytic

functions and engage in sequence-specific interactions,

which may be allosterically controlled and interact with

various sorts of effector proteins, thereby coupling ana-
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log and digital functions (Mattick 2007, St Laurent and

Wahlestedt 2007). What was dismissed as junk because

it was not understood may hold the key to understand-

ing human evolution, development and cognition, as well

as our individual differences and susceptibilities to com-

plex diseases (Mattick 2009a).
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RESUMO

Apesar das variações linhagem-específicas, o número e tipo

de genes codificadores de proteínas permanecem relativamente

estáticos no reino animal. Em contraste, houve uma expansão

maciça da quantidade de sequências genômicas não-codifica-

doras de proteínas com o aumento da complexidade do desen-

volvimento. Essas sequências não codificadoras são, de fato,

transcritas de maneira regulada para produzirem numerosos

RNAs grandes e pequenos não-codificadores de proteínas que

controlam a expressão de genes em vários níveis, incluindo a

arquitetura da cromatina, o processamento pós-transcricional e

a tradução. Além disso, muitos RNAs são editados, especial-

mente no sistema nervoso, o que pode ser a base de interações

epigenoma-ambiente e a função do cérebro.

Palavras-chave: desenvolvimento, RNA não-codificador, epi-

genoma, regulação gênica, edição de RNA, cérebro.
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