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ABSTRACT

This paper uses tools in group theory and symbolic computing to classify the representations of finite

groups with order lower than, or equal to 9 that can be derived from the study of local reversible-equivariant

vector fields in R4. The results are obtained by solving matricial equations. In particular, we exhibit the

involutions used in a local study of reversible-equivariant vector fields. Based on such approach we present,

for each element in this class, a simplified Belitskii normal form.
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1 INTRODUCTION

The presence of involutory symmetries and involutory reversing symmetries is very common in physical

systems, for example, in classical mechanics, quantum mechanics and thermodynamic (see Lamb and

Roberts 1996). The theory of ordinary differential equations with symmetry dates back from 1915 with

the work of Birkhoff. Birkhoff realized a special property of his model: the existence of a involutive map

R such that the system was symmetric with respect to the set of fixed points of R. Since then, the work

on differential equations with symmetries stay restricted to hamiltonian equations. Only in 1976, Devaney

developed a theory for reversible dynamical systems.

In this paper, involutory symmetries and involutory reversing symmetries are considered within a

unified approach. We study some possible linearizations for symmetries and reversing symmetries, around

a fixed point, and employ this to simplify normal forms for a class of vector fields.

In particular, using tools from group theory and symbolic computing, we exhibit the involutions used

in a local study of reversible-equivariant vector fields. Based on such approach we present, for each element

in this class, a simplified Belitskii normal form. This new normal form simplifies the study of qualitative

dynamics, unfoldings, and bifurcations, as we have to deal with a smaller number of parameters.
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An important point to mention is that any map possessing an involutory reversing symmetry is the

composition of two involutions, as was found by Birkhoff in 1915. It is worth pointing out that properties of

reversing symmetry groups are a powerful tool to study local bifurcation theory in presence of symmetries,

see for instance Knus et al. (1998).

The authors are grateful to the referees for many helpful comments and suggestions.

2 STATEMENT OF MAIN RESULTS

Let X0(R4) denote the set of all germs of C∞ vector fields in R4 with an isolated singularity at origin.

Define

A(α, β) =








0 −α 0 0

α 0 0 0

0 0 0 −β

0 0 β 0







, (1)

with α, β ∈ R, αβ 6= 0, α 6= β, and

X
(α,β)

0 (R4) =
{

X ∈ X0(R
4); DX (0) = A(α, β)

}
.

The condition αβ 6= 0 is to keep the problem nondegenerate, while the condition α 6= β is necessary

to avoid the appearence of 1-parameter families of symmetries (when working with reversible-equivariant

vector field).

Given a group G generated by involutive diffeomorphisms φ : R4, 0 → R4, 0 (involutive means

φ2 = I d) and a group homomorphism ρ : G → {−1, 1}, we say that X ∈ X0(R4) is G-reversible-

equivariant if, for each φ ∈ G,

Dφ(x)X (x) = ρ(φ)X (φ(x)).

If K ⊆ G is such that ρ(K ) = 1 we say that X is K -equivariant. If K ⊂ G is such that ρ(K ) = −1,

we say that X is K -reversible. It is clear that if X is φ1-reversible and φ2-reversible, then X is also

φ1φ2-equivariant. It is usual to denote G+ = {φ ∈ G; ρ(φ) = 1} and G− = {φ ∈ G; ρ(φ) = −1}. Note

that G+ is a subgroup of G, but G− is not.

If X ∈ X0(R4) is ϕ-reversible (resp. φ-equivariant) and γ (t) is a solution of

ẋ = X (x) (2)

with γ (0) = x0, then ϕγ (−t) (resp. φγ (t)) is also a solution for (2). In particular, if X is a φ-reversible

(or φ-equivariant) vector field, then the phase portrait of X is symmetric with respect to the subspace

Fix(φ), in the sense that φ maps the phase portrait of X to itself, reversing the direction of time in the

reversible case.

A survey on reversible-equivariant vector fields is described in Antoneli et al. (2009), Lamb and

Roberts (1996), Devaney (1976) and references therein.

In this paper, we shall restrict our study to G-reversible-equivariant vector fields where G is fi-

nite, generated by two involutions {ϕ,ψ} and the group homomorphism ρ : G → {−1, 1} is given by
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ρ(ϕ) = ρ(ψ) = −1. In this case, by a basic group theory argument, one can prove that there is

n ≥ 2 such that G ∼= Dn .

Our aim is to provide an analogous form of the theorem below to the G-reversible-equivariant case:

THEOREM 1. Let X ∈ X0(R2n) be a ϕ-reversible vector field, where ϕ : R2n, 0 → R2n, 0 is a C∞

involution with dim Fix(ϕ) = n as a submanifold, and let R0 : R2n → R2n be any linear involution with

dim Fix(R0) = n. Then there exists a C∞ change of coordinates h : R2n, 0 → R2n, 0 (depending on R0)

such that h∗ X is R0-reversible.

The proof of Theorem 1 is straightforward: ϕ is locally conjugated to Dϕ(0) by the change of coordi-

nates I d + dϕ(0)ϕ; now, Dϕ(0) and R0 are linearly conjugated (by P , say), as they are linear involutions

with dim Fix(Dϕ(0)) = dim Fix(R0). Now take h = P ◦ (I d + dϕ(0)ϕ).

Theorem 1 is very useful when one works locally with reversible vector fields. See for example in

Buzzi et al. (2009) and Teixeira (1997). It allows to always fix the involution as the following:

R0
(
x1, . . . , x2n

)
=

(
x1,−x2, . . . , x2n−1,−x2n

)
. (3)

DEFINITION 2. Given a finitely generated group G = 〈g1, . . . , gl〉 with the generations fixed, a repre-

sentation σ : G → Mn×n(R) and a vector field X ∈ X0(Rn), we say that the representation σ is (X,G)-

compatible if σ(g j )X (x) = −X (σ (g j )), for all j = 1, . . . , l.

We prove the following:

THEOREM A: Given X ∈ X(α,β)0 (R4), we present all the (X,Dn)-compatible 4-dimensional representa-

tions of X, for n = 2, 3, 4.

As an application of Theorem A, we obtain the following result.

THEOREM B: The Belitskii normal form for D4-reversible-equivariant vector fields in X(α,β)0 (R4) is

exhibited, for α, β odd integers with (α, β) = 1.

For further details on normal form theory, see Belitskii (2002) and Bruno (1989).

This paper is organized as follows. In Section 3 we set the problem and reduce it to a system of

matricial equations. In Section 4 we prove Theorem A and in Section 5, we prove Theorem B.

3 SETTING THE PROBLEM

Consider X ∈ X(α,β)0 (R4) for αβ 6= 0. Denote A = DX (0). Let ϕ,ψ : R4, 0 → R4 be involutions

with dim Fix(ϕ) = dim Fix(ψ) = 2 and suppose that X is 〈ϕ,ψ〉-reversible-equivariant.

Next result will be useful in the sequel.

THEOREM 3 (Bochner and Montgomery 1946). Let G be a compact group of Ck diffeomorphisms

defined on a Ck≥1 manifoldM. Suppose that all diffeomorphisms in G have a common fixed point, say x0.

Then, there exists a Ck coordinate system h around x0 such that all diffeomorphisms in G are linear with

respect to h.
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Putting G = 〈ϕ,ψ〉, as ϕ(0) = 0 and ψ(0) = 0, Theorem 3 says that there exists a coordinate system

h around 0 such that ϕ̃ = h−1ϕh and ψ̃ = h−1ψh are linear involutions. Now consider X̃ as X in this new

system of coordinates, that is, X̃ = h∗ X . Then X̃ is 〈ϕ̃, ψ̃〉-reversible-equivariant.

Now choose any linear involution R0 : R4 → R4 with dim Fix(R0) = 2. As R0 and ϕ̃ are linearly

conjugated, we can pass to a new system of coordinates such that X̃ is 〈R0, ψ̃0〉-reversible-equivariant

for some ψ̃0. However, it is not possible to choose a priori a good (linear) representative for the second

involution, ψ̃0.

In other words, it is not possible to produce an analog version of Theorem 1 for reversible-equivariant

vector fields. We shall take into account all the possible choices for the second involution.

PROBLEM A: Let G = 〈ϕ,ψ〉 be a group generated by involutive diffeomorphisms, and X ∈ X0(R2n)

be a G-reversible-equivariant vector field. Find all of the (X,G)-compatible representations σ with

σ(ϕ) = R0, R0 given by (3).

To solve Problem A, we have to determine all the linear involutions S such that 〈R0, S〉 ∼= G and

SDX (0)+ DX (0)S = 0 (this last relation is the compatibility condition for the linear part of X ).

4 PROOF OF THEOREM A

In this section we prove Theorem A, that deals with (X,Dn)-compatible representations for n = 2, 3, 4,

that is, the list of groups to be considered is: D2
∼= (Z2 × Z2), D3 and D4.

In the rest of this section we denote by A the matrix A(α, β) defined in (1).

4.1 CASE Z2 × Z2

Fix the matrix

R0 =








1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1







. (4)

Note that R2
0 = I d and R0 A = −AR0. We need to determine all possible involutive matrices

S ∈ R4×4 such that

S A = −AS

and

〈R0, S〉 ∼= Z2 × Z2.

Note that the relation 〈R0, S〉 ∼= Z2 × Z2 is equivalent to R0S = SR0 and S2 = I d.

Put

S =








a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4







. (5)
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The relations S A = −AS, S2 = I d and R0S = SR0 are represented by the following systems of

polynomial equations:






a2
1 − 1 + c1a3 = 0

a1c1 + c1c3 = 0

b2d2 + d2d4 = 0

a3a1 + c3a3 = 0

b4b2 + d4b4 = 0

b2
2 + d2b4 − 1 = 0

c1a3 + c2
3 − 1 = 0

d2b4 + d2
4 − 1 = 0






−a1α − b2α = 0

−c1β − αd2 = 0

b2α + a1α = 0

d2β + αc1 = 0

−a3α − βb4 = 0

−c3β − d4β = 0

b4α + βa3 = 0

d4β + c3β = 0

(6)

LEMMA 4. System (6) has 4 solutions:

S1 =








−1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1







, S2 =








−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1








S3 =








1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1







, S4 =








1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1








PROOF. This can be done in Maple 12 by means of the Reduce function from the Groebner package and

the usual Maple’s solve function. We remark that the solution S4 is degenerate, i.e., S4 = R0. Moreover,

we remark that the above representations of Z2 × Z2 are not equivalent. �

Now we state the main result for Z2 × Z2-reversible vector fields. With the notation of Section 3, it

assures that the linear involutions Sj are the unique possibilities for ψ̃0.

THEOREM 5. Let �Z2×Z2 ⊂ X(α,β)0 (R4) be the set of Z2 × Z2-reversible-equivariant vector fields X ∈

X
(α,β)

0 (R4). Then �Z2×Z2 = �1 ∪�2 ∪�3, where X ∈ � j if X is (R0, Sj )-reversible-equivariant in some

coordinate system around the origin.

PROOF. Let X ∈ �Z2×Z2 . Then there are distinct and nontrivial involutions ϕ,ψ : R4, 0 → R4, 0 with

ϕψ = ψϕ such that X is ϕ-reversible and ψ-reversible. By Theorem 3, there is a system of coordinates

around the origin where X is R0-reversible and S0-reversible, with R0(x1, x2, y1, y2) = (x1,−x2, y1,−y2)

and S0 a linear involution with R0S0 = S0 R0. By Lemma 4 S0 ∈ {S1, S2, S3, S4}. As ϕ 6= ψ , S0 6= S4. So

X is R0-reversible and Sj -reversible for some j ∈ {1, 2, 3}. Then X ∈ �1 ∪�2 ∪�3. �

REMARK 6. Theorem 5 can be proved without using Lemma 4. The following technique, that also applies

to Theorems 11 and 14, was communicated to us by one of the referees.
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Consider the decomposition of R4 in the generalized eigenspaces R4 = Aut (α)⊕ Aut (β), where

Aut (λ) =
{

x ∈ R4; ∃ k ≥ 1 : (A − λ ∙ I d)k x = 0
}
.

Then the equation S A = −AS keeps the above decomposition fixed (for α 6= β). This reduces

the problem of determining S to two two-dimensional linear problems, and can be easily generalized to

arbitrary dimensions.

We keept the algorithmic proofs just because we are more familiar with the computational approach.

Now let us give a characterization of the vector fields which are (R0, Sj )-reversible. Let us fix

X (x) = A(α, β)x +
(

f1(x), f2(x), f3(x), f4(x)
)T
, (7)

with x ≡ (x1, x2, y1, y2). The proof of next results will be omitted.

COROLLARY 7. The vector field (7) is (R0, S1)-reversible if and only if the functions f j satisfy






f1(x) = − f1
(
x1,−x2, y1,−y2

)
= f1

(
− x1, x2,−y1, y2

)

f2(x) = f2
(
x1,−x2, y1,−y2

)
= − f2

(
− x1, x2,−y1, y2

)

f3(x) = − f3
(
x1,−x2, y1,−y2

)
= f3

(
− x1, x2,−y1, y2

)

f4(x) = f4
(
x1,−x2, y1,−y2

)
= − f4

(
− x1, x2,−y1, y2

)
.

In particular, f1,3(x1, 0, y1, 0) ≡ 0 and f2,4(0, x2, 0, y2) ≡ 0.

COROLLARY 8. The vector field (7) is (R0, S2)-reversible if and only if the functions f j satisfy






f1(x) = − f1
(
x1,−x2, y1,−y2

)
= f1

(
− x1, x2, y1,−y2

)

f2(x) = f2
(
x1,−x2, y1,−y2) = − f2

(
− x1, x2, y1,−y2

)

f3(x) = − f3
(
x1,−x2, y1,−y2) = − f3

(
− x1, x2, y1,−y2

)

f4(x) = f4
(
x1,−x2, y1,−y2

)
= f4

(
− x1, x2, y1,−y2

)
.

(8)

In particular, f1,3(x1, 0, y1, 0) ≡ 0 and f2,3(0, x2, y1, 0) ≡ 0.

COROLLARY 9. The vector field (7) is (R0, S3)-reversible if and only if the functions f j satisfy






f1(x) = − f1(x1,−x2, y1,−y2) = − f1(x1,−x2,−y1, y2)

f2(x) = f2(x1,−x2, y1,−y2) = f2(x1,−x2,−y1, y2)

v f3(x) = − f3(x1,−x2, y1,−y2) = f3(x1,−x2,−y1, y2)

f4(x) = f4(x1,−x2, y1,−y2) = − f4(x1,−x2,−y1, y2).

(9)

In particular, f1,3(x1, 0, y1, 0) ≡ 0 and f1,4(x1, 0, 0, y2) ≡ 0.
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4.2 CASE D3

As above we fix the matrix

R0 =








1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1







. (10)

Now we need to determine all possible involutive matrices S ∈ R4×4 such that

S A = −AS

and

〈R0, S〉 ∼= D3.

Considering again

S =








a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4







, (11)

the equations S A + AS = 0, S2 − I d = 0 and (R0S)3 − I d = 0 are equivalent to a huge system of

equations. Their expression will be not presented.

LEMMA 10. The system generated by the above conditions has the following non degenerate solutions:

S1 =














−
1

2

√
3

2
0 0

√
3

2

1

2
0 0

0 0 −
1

2

√
3

2

0 0

√
3

2

1

2














, S2 =











−
1

2

√
3

2
0 0

√
3

2

1

2
0 0

0 0 1 0

0 0 0 −1











, S3 =











1 0 0 0

0 −1 0 0

0 0 −
1

2

√
3

2

0 0

√
3

2

1

2











.

PROOF. Again, the proof can be done in Maple 12 using the Reduce function from the Groebner package

and the usual Maple’s solve function. �

At this point, we can state the following:

THEOREM 11. Let �D3 ⊂ X
(α,β)

0 (R4) be the set of D3-reversible-equivariant vector fields X ∈

X
(α,β)

0 (R4). Then �D3 = �1 ∪ �2 ∪ �3, where X ∈ � j if X is (R0, Sj )-reversible-equivariant in some

coordinate system around the origin.

PROOF. This proof is very similar to that of Theorem 5. �

Now we present some results in the sense of Corollary 7 applied to D3-reversible vector fields. The

characterization is given just for the (R0, S2)-reversible vector fields. Similar statements for (R0, Sj )-

reversible vector fields, with j ∈ {1, 3} can be easily deduced.
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Let us fix again

X (x) = A(α, β)x +
(
g1(x), g2(x), g3(x), g4(x)

)T
, (12)

with x ≡ (x1, x2, y1, y2). Keeping the same notation of Section 4.1, we have now 〈R0, Sj 〉 ∼= D3. We

consider for instance j = 2.

COROLLARY 12. The vector field (12) is (R0, S2)-reversible if and only if the functions g j satisfy






g1(x) = −g1(x1,−x2, y1,−y2)

g2(x) = g2(x1,−x2, y1,−y2)

g3(x) = −g3(x1,−x2, y1,−y2)

g4(x) = g4(x1,−x2, y1,−y2)

and 




g1(x) = −g1

(
x1,−x2,− 1

2 y1 +
√

3
2 y2,

√
3

2 y1 + 1
2 y2

)

g2(x) = g2

(
x1,−x2,− 1

2 y1 +
√

3
2 y2,

√
3

2 y1 + 1
2 y2

)

1
2 g3(x)−

√
3

2 g4(x) = g3

(
x1,−x2,− 1

2 y1 +
√

3
2 y2,

√
3

2 y1 + 1
2 y2

)

√
3

2 g3(x)+ 1
2 g4(x) = −g4

(
x1,−x2,− 1

2 y1 +
√

3
2 y2,

√
3

2 y1 + 1
2 y2

)

In particular g1,3(x1, 0, y1, 0) ≡ 0 and g2,4(0, x2, 0, y2) ≡ 0.

The next section deals with the characterization of the D4-reversible vector fields. The analysis of the

D3-reversible case will be omitted since it is very similar to the D4-reversible case and this last case is more

interesting (there are more representations).

4.3 CASE D4

Fix the matrix

R0 =








1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1







. (13)

Again, our aim is to determine all the possible involutive matrices S ∈ R4×4 such that

S A = −AS

and

〈R0, S〉 ∼= D4.

Considering again

S =








a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4







, (14)
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the equations S A + AS = 0, S2 − I d = 0 and (R0S)4 − I d = 0 are represented by a easily deduced but

huge system having 12 non degenerate solutions, arranged in the following way:

41 =













0 −1 0 0

−1 0 0 0

0 0 1 0

0 0 0 −1







,








0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 −1













, 42 =













−1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0







,








−1 0 0 0

0 1 0 0

0 0 0 −1

0 0 −1 0













43 =













1 0 0 0

0 −1 0 0

0 0 0 1

0 0 1 0







,








1 0 0 0

0 −1 0 0

0 0 0 −1

0 0 −1 0













, 44 =













0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0







,








0 −1 0 0

−1 0 0 0

0 0 0 −1

0 0 −1 0













45 =













0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 1







,








0 −1 0 0

−1 0 0 0

0 0 −1 0

0 0 0 1













, 46 =













0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0







,








0 −1 0 0

−1 0 0 0

0 0 0 1

0 0 1 0













Recall that the above arrangement has obeyed the rule:

LEMMA 13. Si , Sj ∈ 4k ⇔ 〈R0, Si 〉 = 〈R0, Sj 〉.

For each i ∈ {1, . . . , 6}, denote by Si one of the elements of 4i . The proof of the next result follows

immediately the above lemmas.

THEOREM 14. Let �D4 ⊂ X
(α,β)

0 (R4) be the set of D4-reversible-equivariant vector fields X ∈

X
(α,β)

0 (R4). Then �D4 = �1 ∪ �2 ∪ . . . ∪ �6, where X ∈ � j if X is (R0, Sj )-reversible-equivariant

in some coordinate system around the origin.

PROOF. This proof is very similar to that of Theorem 5. It will be omitted. �

Now we present some results in the sense of Corollary 7 applied to D4-reversible vector fields. The

characterization is given just for the (R0, S1)-reversible vector fields. Similar statements for (R0, Sj )-

reversible vector fields, with j ∈ {2, 3, 4, 5, 6} can be easily deduced.

Let us fix again

X (x) = A(α, β)x +
(
g1(x), g2(x), g3(x), g4(x)

)T
, (15)

with x ≡ (x1, x2, y1, y2). Keeping the same notation of Section 4.1, we have now 〈R0, Sj 〉 ∼= D4.

COROLLARY 15. The vector field (15) is (R0, S1)-reversible if and only if the functions g j satisfy






g1(x) = −g1(x1,−x2, y1,−y2) = −g2(x2, x1, y1,−y2)

g2(x) = g2(x1,−x2, y1,−y2) = −g1(x2, x1, y1,−y2)

g3(x) = −g3(x1,−x2, y1,−y2) = −g3(x2, x1, y1,−y2)

g4(x) = g4(x1,−x2, y1,−y2) = g4(x2, x1, y1,−y2)

(16)

In particular g1,3(x1, 0, y1, 0) ≡ 0 and g2,4(0, x2, 0, y2) ≡ 0.
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5 APPLICATIONS TO NORMAL FORMS (PROOF OF THEOREM B)

Let X ∈ X(α,β)0 (R4) be a D4-reversible vector field and X N its reversible-equivariant Belitskii normal form.
To compute the expression of X N , we have to consider the following possibilities of the parameter

λ = αβ−1:

(i) λ /∈ Q,

(ii) λ = 1,

(iii) λ = pq−1 6= 1, with p, q integers and (p, q) = 1.

In the case (i), one can show that the normal forms for the reversible and reversible-equivariant cases
are essentially the same. This means that any reversible field with such linear approximation is automat-
ically reversible-equivariant. In view of this, case (i) is not interesting, and its analysis will be omitted.
We just note that case (ii) will not be discussed here because of its deep degeneracy, as the range of its
homological operator

L A(α,α) : H k → H k

is a very low dimensional subspace of H k . Also recall that we suppose α 6= β in the definition of A(α, β).
Our goal is to focus on the case (iii). Put α = p and β = q, with p, q ∈ Z and (p, q) = 1. How

to compute a normal form which applies for all D4-reversible vector fields, without choosing specific
involutions?

According to the results in the last section, it suffices to show that X N satisfies

R0
(
X N (x)

)
= −X N

(
R0(x)

)

and
Sj

(
X N (x)

)
= −X N

(
Sj (x)

)
, j = 1, . . . , 6,

with Sj given on Lemma 13, as the fixed choice for the representative of 4i .
First of all, we consider complex coordinates (z1, z2) ∈ C2 instead of (x1, x2, y1, y2) ∈ R4:

{
z1 = x1 + i x2

z2 = y1 + iy2
(17)

We will write <(z) for the real part of the complex number z and =(z) for its imaginary part.
Define 





11 = z1z1
(
= x2

1 + x2
2

)

12 = z2z2
(
= y2

1 + y2
2

)

13 = zq
1 z p

2

14 = 13

Note that each 1 j corresponds to a resonance relation among the eigenvalues of the matrix A(p, q)
(given in (1)). For instance, if λ1 = pi and λ2 = qi , then

mλ1 + mλ1 + nλ2 + nλ2 = 0

for all m, n ≥ 1. Then
λ1 = (m + 1)λ1 + mλ1 + nλ2 + nλ2
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is a resonance relation, and this relation corresponds to the resonant monomial

z1
(
z1z1

)m(
z2z2

)m ∂

∂z1
= z11

m
1 1

m
2
∂

∂z1
.

Collecting all the resonant monomials, the complex Belitskii normal form for X in this case is expressed
by 





ż1 = piz1 + z1 f1
(
11,12,13,14

)
+ zq−1

1 z p
2 f2

(
11,12,13,14

)

ż2 = qiz2 + z2g1
(
11,12,13,14

)
+ zq

1 z p−1
2 g2

(
11,12,13,14

)
,

(18)

with f j , g j without linear and constant terms. For more details on the construction of this Belitskii normal
form, we refer to Belitskii (2002).

Now we consider the effects of D4-reversibility on the system (18). Writing our involutions in
complex coordinates, we derive immediately that

LEMMA 16. Let
ϕ0

(
z1, z2

)
= −

(
z1, z2

)

ϕ1
(
z1, z2

)
=

(
i z1, z2

)
ϕ2

(
z1, z2

)
= −

(
z1, i z2

)

ϕ3
(
z1, z2

)
=

(
z1,−i z2

)
ϕ4

(
z1, z2

)
= −

(
i z1, i z2

)

ϕ5
(
z1, z2

)
= −

(
i z1, z2

)
ϕ6

(
z1, z2

)
= (−i z1, i z2)

Then each group 〈ϕ0, ϕ j 〉 corresponds to 〈R0, Sj 〉, j = 1, . . . , 6.

To compute a D4-reversible normal form for a vector field, one has first to define which of the groups
in Lemma 16 can be used to do the calculations. Now we establish a normal form of a D4-reversible and
p : q-resonant vector field X , depending only on p, q and not on the involutions generating D4:

THEOREM 17. Let p, q be odd numbers with pq > 1 and X ∈ X(p,q)0 (R4) be a D4-reversible vector field.
Then X is formally conjugated to the following system:






ẋ1 = −px2 − x2
∑∞

i+ j=1 ai j1
i
11

j
2

ẋ2 = px1 + x1
∑∞

i+ j=1 ai j1
i
11

j
2

ẏ1 = −qy2 − y2
∑∞

i+ j=1 bi j1
i
11

j
2

ẏ2 = qy1 + y1
∑∞

i+ j=1 bi j1
i
11

j
2,

(19)

with ai j , bi j ∈ R depending on jk X (0), for k = i + j .

REMARK 18. The hypothesis on p, q given in Theorem 17 can be relaxed. In fact, if p, q satisfies the
following conditions






q ≡4 1 or q ≡4 3 or
(
q ≡4 0 and p + q = 2k + 1

)
or

(
q ≡4 2 and p + q = 2k

)

p ≡4 1 or p ≡4 2 or p ≡4 3

p ≡4 1 or p ≡4 3 or (p ≡4 0 and q = 2k + 1) or
(

p ≡4 2 and q = 2k
)

then the conclusions of Theorem 17 are also valid (see Martins 2008).

REMARK 19. The normal form (19) coincides (in the nonlinear terms) with the normal form of a reversible
vector field X ∈ X(α,β)0 (R4) with αβ−1 /∈ Q. Remember that this fact allowed us to discard the case
αβ−1 /∈ Q at the beginning of this section.

An Acad Bras Cienc (2011) 83 (2)



“main” — 2011/5/10 — 11:24 — page 386 — #12

386 MARCO A. TEIXEIRA and RICARDO M. MARTINS

The proof of Theorem 17 (even with the hypothesis of Remark 18) is based on a sequence of lemmas.
The idea is just to show that with some hypothesis on p and q, all the coefficients of 13 and 14 in the
reversible-equivariant analogue of (18) must be zero.

First let us focus on the monomials that are never killed by the reversible-equivariant structure.

LEMMA 20. Let v = az j1
m
1 1

n
2
∂
∂z j

, a ∈ C. So, for any j ∈ {1, . . . , 6}, the ϕ j -reversibility implies
a = −a (or <(a) = 0). In particular, these terms are always present (generically) in the normal form.

PROOF. From

ϕ0

(
az11

m
1 1

n
2
∂

∂z1

)
= −a z11

m
1 1

n
2
∂

∂z1

and

az11
m
1 1

n
2
∂

∂z1

∣
∣
∣
∣
(−z1,−z2)

= −az11
m
1 1

n
2
∂

∂z1

follows that −a = a. �

Now let us see what happens with the monomials of type (z1)
q−1z p

2
∂
∂z1

. We mention that only for such
monomials a complete proof will be presented. The other cases are similar. Moreover, we will give the
statement and the proof as stated in Remark 18.

LEMMA 21. Let v = bz1
q−1z p

2
∂
∂z1

, b ∈ C. So, we establish the following tables:

reversibility hypothesis on p, q conditions on b
ϕ0 p + q even <(b) = 0

p + q odd =(b) = 0
ϕ1 q ≡4 0 <(b) = 0

q ≡4 1 <(b) = −=(b)
q ≡4 2 =(b) = 0
q ≡4 3 <(b) = =(b)

ϕ2 p ≡4 0, q even <(b) = 0
p ≡4 0, q odd =(b) = 0
q ≡4 1, q even <(b) = =(b)
q ≡4 1, q odd <(b) = −=(b)
q ≡4 2, q even =(b) = 0
q ≡4 2, q odd <(b) = 0
q ≡4 3, q even <(b) = −=(b)
q ≡4 3, q odd <(b) = =(b)

ϕ3 p ≡4 0 <(b) = 0
p ≡4 1 <(b) = =(b)
p ≡4 2 =(b) = 0
p ≡4 3 <(b) = −=(b)
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reversibility hypothesis on p, q conditions on b
ϕ4 p + q ≡4 0, q even <(b) = 0

p + q ≡4 0, q odd =(b) = 0
p + q ≡4 1, q even <(b) = =(b)
p + q ≡4 1, q odd <(b) = −=(b)
p + q ≡4 2, q even =(b) = 0
p + q ≡4 2, q odd <(b) = 0
p + q ≡4 3, q even <(b) = −=(b)
p + q ≡4 3, q odd =(b) = =(b)

ϕ5 q ≡4 0, p + q even <(b) = 0
q ≡4 0, p + q odd =(b) = 0
q ≡4 1, p + q even <(b) = =(b)
q ≡4 1, p + q odd <(b) = −=(b)
q ≡4 2, p + q even =(b) = 0
q ≡4 2, p + q odd <(b) = 0
q ≡4 3, p + q even <(b) = −=(b)
q ≡4 3, p + q odd <(b) = =(b)

ϕ6 p + q ≡4 0 <(b) = 0
p + q ≡4 1 <(b) = −=(b)
p + q ≡4 2 =(b) = 0
p + q ≡4 3 <(b) = =(b)

PROOF. Let us give the proof for ϕ2-reversibility. The proof of any other case is similar. Note that

{
ϕ2

(
v(z1, z2)

)
= −bzq−1

1 z2
p ∂
∂z1

v
(
ϕ2(z1, z2)

)
= b(−1)q−1i pzq−1

1 z2
p

Then, from ϕ2(v(z)) = −v(ϕ2(z)) we have b = (−1)q−1i pb. Now we apply the hypotheses on p, q and
the proof follows in a straightforward way. �

Next corollary is the first of a sequence of results establishing that some monomial do not appear in
the normal form:

COROLLARY 22. Let X ∈ X(p,q)0 (R4) be a 〈ϕ0, ϕ j 〉-reversible vector field. Then if

• q ≡ 1 mod 4 or

• q ≡ 3 mod 4 or

• q ≡ 0 mod 4 and p + q odd or

• q ≡ 2 mod 4 and p + q even,

then the normal form of X does not contain monomials of the form

a1z1
nq−1zn

2 p
∂

∂z1
, a2zmq

1 zmp−1
2

∂

∂z2
, a1, a2 ∈ C. (20)
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PROOF. Observe that the ϕ0, ϕ j -reversibility implies that the coefficients in (20) satisfy

<(a j ) = =(a j ) = 0. �

REMARK 23. Note that if p, q are odd with pq > 1, then they satisfy the hypothesis of Corollary 22.

The following results can be proved in a similar way as we have done in Lemma 21 and Corollary 22.

PROPOSITION 24. Let X ∈ X(p,q)0 (R4) be a 〈ϕ0, ϕ j 〉-reversible vector field. If one of the following
conditions is satisfied:

(i) q ≡ 1 mod 4,

(ii) q ≡ 3 mod 4,

(iii) q ≡ 0 mod 4 and p + q

(iv) q ≡ 2 mod 4 and p + q even,

then the normal form of X, given in (18), does not have monomials of type

z1

(
zq

1 z p
2

)m ∂

∂z1
, z2

(
zq

1 z p
2

)m ∂

∂z2
, m ≥ 1.

PROPOSITION 25. Let X ∈ X(p,q)0 (R4) be a 〈ϕ0, ϕ j 〉-reversible vector field. If one of the following
conditions is satisfied

(i) q ≡ 1 mod 4,

(ii) q ≡ 3 mod 4,

(iii) q ≡ 0 mod 4 and p + q odd,

(iv) q ≡ 2 mod 4 and p + q even,

then the normal form of X, given in (18), does not have monomials of type

z1

(
zq

1 z p
2

)m ∂

∂z1
, z2

(
zq

1 z p
2

)m ∂

∂z2
, m ≥ 1.

REMARK 26. In fact, the conditions imposed on λ in the last results are used just to assure the 〈ϕ0, ϕ j 〉-
reversibility of the vector field X with j = 1. For 2 ≤ j ≤ 6, the normal form only contains monomials
of type

z j1
m
1 1

n
2
∂

∂z j
.

Now, to prove Theorem 17, we have just to combine all lemmas, corollaries and propositions given
above.

PROOF OF THEOREM 17. Note that the conditions imposed on λ in Theorem 17 fit into the hypothesis of
Corollary 22 and Propositions 24 and 25. So, if p, q are odd numbers with pq > 1, then the normal form
just have monomials of type

z j1
m
1 1

n
2
∂

∂z j
, j = 1, 2, m, n > 1. �
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6 CONCLUSIONS

In Theorem A we have classified all involutions that make a vector field X ∈ X(p,q)0 (R4) 〈ϕ,ψ〉-reversible
when the order of the group 〈ϕ,ψ〉 is smaller than 9.

We used the classification obtained in Theorem A to simplify the Belitskii normal form of D4-re-
versible vector fields in R4, according to their resonances.

A normal form can be used to study stability questions and also reveal hidden symmetries. It also
paves the way to get first integrals and sometimes to show that the system is an integrable hamiltonian
system. Moreover, the truncated normal form gives a good approximation (or at least an asymptotic one)
for the original vector field. So it is very important to write the normal form as simply as possible.

Our results show that in some cases it is possible to write the normal form of D4-reversible vector
fields near a resonant singularity in the simplest possible way, that is, without the resonant terms coming
from the nontrivial resonant relation among the eigenvalues. This allows us to write, for instance, the
center manifold reduction in the simplest possible way.

We remark that the same approach can be made to the discrete version of the problem, or when the
singularity is not elliptic (see for example Jacquemard and Teixeira 2002).

One can easily generalize the results presented here mainly in two directions: for vector fields on
higher dimensional spaces and for groups with higher order. In both cases the hard missions are to face the
normal form calculations and to solve some very complicated system of algebraic equations.
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RESUMO

Este artigo utiliza ferramentas da teoria de grupos e computação simbólica para dar uma classificação das represen-

tações de grupos finitos de ordem menor ou igual a 9 que podem ser consideradas no estudo local de campos vetoriais

reversíveis-equivariantes em R4. Os resultados são obtidos resolvendo algebricamente equações matriciais. Em par-

ticular, exibimos as involuções utilizadas no estudo local de campos vetoriais reversíveis-equivariantes. Baseado em

tal abordagem, nós apresentamos, para cada elemento desta classe, uma forma normal de Belitskii simplificada.

Palavras-chave: Sistemas dinâmicos reversíveis-equivariantes, simetrias involutórias, formas normais.
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