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ABSTRACT

Given a closed Riemannian manifold (M, g), i.e. compact and boundaryless, there is a partition of its
tangent bundle TM =

⋃
i 6i called the focal decomposition of TM. The sets 6i are closely associated

to focusing of geodesics of (M, g), i.e. to the situation where there are exactly i geodesic arcs of the
same length joining points p and q in M . In this note, we study the topological structure of the focal
decomposition of a closed Riemannian manifold and its relation with the metric structure of the manifold.
Our main result is that flat n-tori, n ≥ 2, are focally rigid in the sense that if two flat tori are focally
equivalent then the tori are isometric up to rescaling. The case n = 2 was considered before by F. Kwakkel.

Key words: Riemannian manifolds, focal decomposition, rigidity.

DEFINITIONS AND STATEMENT OF RESULTS

In general, topological characteristics of a Riemannian manifold do not determine its geometry, that is, its
metric structure. However, starting in the 1960s, examples have been discovered for which such character-
istics do determine the geometry. The manifolds can not be deformed without changing the characteristic.
One speaks of rigidity. The prototype rigidity result is due to Mostow (Mostow 1968).

MOSTOW’S RIGIDITY THEOREM. Two compact hyperbolic n-manifolds, n ≥ 3, with isomorphic funda-
mental groups are isometric.

Given an analytic manifold M , we denote Rω(M) the class of analytic Riemannian structures on M .
This class of structures is dense in the class R∞(M) of smooth Riemannian structures in the C∞ strong
Whitney topology, see (Hirsch 1976). Let (M, g) and (M̃, g̃) be closed (compact and boundaryless) ana-
lytic manifolds. Two Riemannian manifolds are said to be isometric up to a rescaling if, up to a constant
rescaling of the metric g̃, the manifolds (M, g) and (M̃, g̃) are isometric.
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In (Kupka et al. 2006), the notion of focal stability is introduced for smooth Riemannian manifolds
in dimension n. In analogy with structural stability for dynamical systems, this gives rise to the focal
stability conjecture: given p ∈ M , the generic Riemannian structure is focally stable at p. In (Peixoto
and Pugh 2007), if n = 2 and there are no conjugate points, the above conjecture has been shown to be
true. The notion of focal stability is local. The purpose of this note is to give the first examples of closed
manifolds, namely flat n-tori, and show that the focal decomposition is globally rigid. The concept of
focal rigidity was first studied for two-tori in (Kwakkel 2006).

THEOREM A. Focally equivalent flat n-tori, n ≥ 2, are isometric, up to rescaling.

The proof, though elementary, makes use of the notion of Brillouin zones intrinsic to the focal de-
composition. In a forthcoming note (Kwakkel 2010), we prove the analogue of Theorem A in the setting
of hyperbolic manifolds in dimension n ≥ 2. In order to define the notion of focal equivalence, we need
several preliminaries. Fix a complete Cω manifold (M, g).

DEFINITION 1. The focal index, I (p, v), of the vector v ∈ Tp M is defined by

I (p, v) = #
{
w ∈ Tp M | |v| = |w| and expp(v) = expp(w)

}
.

The focal component of index i at p is

σi (p) =
{
v ∈ Tp M | i = I (p, v)

}
.

Vectors v ∈ σi (p) are equivalent modulo exponentiation to i − 1 other vectors of Tp M of equal length.

DEFINITION 2 (Focal decomposition). The partition of Tp M into its focal components {σi (p)}∞i=1 is
called its focal decomposition at p; we have

Tp M =
∞⋃

i=1

σi (p) and σi (p) ∩ σ j (p) = ∅, if i 6= j. (1)

The tangent bundle has a corresponding focal decomposition {6i }∞i=1, where 6i =
⋃

p∈M σi (p) and corre-
spondingly

T M =
∞⋃

i=1

6i and 6i ∩6 j = ∅, if i 6= j. (2)

The focal decomposition only depends on the Riemannian metric g. It is also a global concept: all
geodesics passing through p play a role in the construction of σi and all geodesics in the manifold M play
a role in the construction of the sets 6i . We will abbreviate {σi }∞i=1 = {σi } and {6i }∞i=1 = {6i }.

DEFINITION 3 (Focal equivalence). Two complete analytic manifolds (M1, g1) and (M2, g2) are focally
equivalent, if there exists an orientation-preserving homeomorphism ϕ : T M1 → T M2, withψ : M1 → M2

the homeomorphism induced on the zero section, such that for every p ∈ M1 and q = ψ(p) ∈ M2,

(i) ϕ|Tp M1
: Tp M1 → Tq M2 and ϕ|Tp M1

(0) = 0,

(ii) ϕ|Tp M1
(σ 1

i (p)) = σ 2
i (q), for every 1 ≤ i ≤ ∞.

It follows from (i) and (ii) in Definition 3 that ϕ(61
i ) = 62

i . It is verified that focal equivalence indeed

defines an equivalence relation. Further, manifolds that are isometric, up to rescaling, are focally equivalent.
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THE FOCAL DECOMPOSITION AND BRILLOUIN ZONES

The concept of the focal decomposition was introduced in (Peixoto 1982) under the name of sigma de-

composition in the context of the two-point boundary value problem for ordinary second order differential

equations. It was then naturally extended to complete Riemannian manifolds of any dimension in (Kupka

and Peixoto 1993).

In (Kupka et al. 2006), a survey is given of the focal decomposition of complete smooth (C∞)

Riemannian manifolds. The main results are that for a generic1 Riemannian metric, the index i of σi is

bounded by dim(M)+ 1 and the index i of 6i is bounded by 2 dim(M)+ 2. Also in (Kupka et al. 2006),

it is indicated how the concept of focal decomposition relates naturally to physical concepts such as the

Brillouin zones of a crystal, the semi-classical quantization via Feynman path integrals and to Diophantine

equations in number theory.

Recall that a Riemannian manifold (M, g) is said to be complete if for every point p ∈ M the ex-

ponential map at p, expp : Tp M → M , is defined at all points of Tp M . Every compact Riemannian

manifold is complete by the Hopf-Rinow Theorem. Even though the focal decomposition of a smooth

Riemannian manifold always exists, the choice of putting the discussion in the setting of analytic Rieman-

nian manifolds is motivated by the following, see (Kupka and Peixoto 1993).

EXISTENCE THEOREM. Let (M, g) be a complete analytic Riemannian manifold, then there is an analytic

Whitney stratification of T M such that each 6i is the union of strata of this stratification. Similarly for

the restricted problem with base point p ∈ M: there is an analytic Whitney stratification of Tp M such

that every set σi is the union of strata of this stratification. Analytically stratifiable means that the focal

components σi can be expressed as locally finite disjoint unions of strata.

REMARK 1. This result is sharp in the sense that if the Riemannian metric is smooth but not analytic, the

focal components may be non-stratifiable, i.e. topologically pathological, see (Kupka et al. 2006).

REMARK 2. It follows from the Angle Lemma in (Kupka and Peixoto 1993) that no σi with i ≥ 2 has any

interior points. Combined with the Whitney stratification property, one can show that σ1 has full measure.

Closely related to the focal decomposition, is the notion of Brillouin zones (Peixoto 1997), which in a

way organizes the structure of the focal decomposition at a point p.

DEFINITION 4 (Brillouin Zones). For v ∈ Tp M , we define the Brillouin index

B(p, v) = #
{
w ∈ Tp M | |w| ≤ |v|, expp(w) = expp(v)

}
. (3)

For every integer k ≥ 1, the k-th Brillouin zone is the interior Int(Bk(p)), of the set Bk(p) = {v ∈

Tp M | B(p, v) = k} of all points with Brillouin index k.

REMARK 3. The k-th Brillouin zone is also defined to be Bk(p), rather than its interior. The significance

in taking the interior in our definition is that, in general, σ1 need not be open, see (Kupka et al. 2006).

1 containing a residual subset in the space of smooth metrics R∞(M) equipped with the C∞ strong Whitney topology.
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The first Brillouin zone appears in many different places; for example, it appears as the Wigner-Seitz

cell in physics, as the Dirichlet region of a Fuchsian group in geometry and as the Voronoi cell in the

study of circle packings, see (Jones 1984) and (Skriganov 1987).

FOCAL RIGIDITY OF FLAT TORI

As the flat torus admits a transitive group of isometries, the focal decomposition is identical at every

basepoint. Therefore, it suffices to study the focal decomposition at a single base point. Given a flat torus

(Tn, g), it is isometric to a torus of the form (Rn/0, gcan), where 0 is a translation group of rank n and

gcan the canonical metric induced from the Euclidean metric of Rn , see (Wolf 1977). Therefore, we may

as well assume that

Tn = Rn/0 and T̃n = Rn/0̃, (4)

both equipped with the induced Euclidean metric gcan, where 0 and 0̃ are translation groups of rank n

acting on Rn . In what follows, we identify the tangent plane TpTn with the universal cover Rn of Tn

and we denote d the distance function on Rn induced by the standard Euclidean metric. Choosing the

basepoints to be 0 ∈ Tn and 0 ∈ T̃n , where 0 = π(0) with 0 ∈ Rn the origin, we denote σi (0) = σi and

Bk(0) = Bk for brevity (and similarly for T̃n). In terms of this uniformization and notation, the focal

decomposition and corresponding Brillouin zones have the following description.

DEFINITION 5. Given a flat torus Rn/0, let 3 = 0(0) the associated lattice. The Brillouin hyperplane

Vλ ⊂ Rn , λ ∈ 3 ⊂ Rn , is defined to be the set Vλ = {v ∈ Rn | d(0, v) = d(v, λ)}. For 0 ∈ 3, we define

V0 = ∅ and denote V =
⋃
λ∈3 Vλ.

In what follows, we will refer to a Brillouin hyperplane simply as B-plane.

REMARK 4. As the lattice 3 is discrete, the set of B-planes V ⊂ Rn is locally finite in the sense that for

every v ∈ V and every compact set K ⊂ Rn containing v, only finitely many B-planes meet K .

Let `v ⊂ Rn be the open (i.e. not containing 0 and v) line segment connecting 0 and v in Rn and

define the indices

ι(v) = # {λ ∈ 3 | Vλ ∩ `v 6= ∅} and μ(v) = # {λ ∈ 3 | Vλ 3 v} .

The following result gives a description of the focal decomposition and Brillouin zones for the

torus, see (Peixoto 1997) and (Peixoto et al. 2000).

PROPOSITION 1. The focal decomposition of the torus Tn (at the basepoint 0), is given by the following.

(1) σi = {v ∈ Rn | μ(v) = i − 1} and, consequently, Rn \ σ1 = V .

(2) For v ∈ Rn, v ∈ Int(Bk) if and only if ι(v) = k − 1 and μ(v) = 0.

(3) Cl(Int(Bk)) = Bk.
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Let us now turn to the proof of Theorem A. We denote by ϕ : Rn → Rn the orientation preserving

homeomorphism for which ϕ(0) = 0 and ϕ(σi ) = σ̃i , which is the restriction to a single tangent plane of

the homeomorphism ϕ defined globally between the tangent bundles of the tori. Denote V =
⋃
λ∈3 Vλ

and Ṽ =
⋃
λ̃∈3̃ Vλ̃ the entire union of all B-planes. Let v ∈ Rn and let {Vλ j }

m
j=1 be the set of B-planes for

which v ∈ Vλ j , 1 ≤ j ≤ m. Note that m = μ(v). Let ν(v) be the dimension of the span of the vectors

λ1, . . . , λm . Further, a B-plane Vλ separates Rn into two connected components, i.e.

Rn − Vλ = H1 ∪H2, with H1 ∩H2 = ∅. (5)

We say that Vλ separates the points v and w, if v ∈ H1 and w ∈ H2.

LEMMA 2 (Plane Lemma). For every λ ∈ 3, there exists a unique λ̃ ∈ 3̃ such that ϕ(Vλ) = Vλ̃.

In order to prove this lemma, we use the following auxiliary lemmas.

LEMMA 3. Let V = Rk be a Euclidean space and W ⊂ V a closed codimension two subset. Then V \ W

is path-connected and V \ W is dense in V .

PROOF. As W ⊂ V is closed, V \ W is open. Further, as W has codimension two relative to V , it is clear

that V \ W is dense in V . We need to show that V \ W is path-connected. To this end, take any two points

x, y ∈ V \ W and consider the straight segment ` ⊂ V connecting x and y. Take a product neighborhood

N of the segment `. The set of segments in N that meet W has codimension one in N . Therefore, we can

find a segment `′ arbitrarily close to ` such that `′ ∩ W = ∅. Further, since x, y ∈ V \ W and V \ W is

open, by choosing the segment `′ close enough to `, we can connect x with x ′ and y with y′ by an arc in

V \ W , thus producing the desired path from x to y. �

LEMMA 4. Let V1, . . . , Vm ⊂ Rn and V ′
1, . . . , V ′

m ⊂ Rn be two collections of codimension one hyper-

planes in Rn, where m ≥ 2, such that

(1) Vk and V ′
k pass through 0 ∈ Rn, for all 1 ≤ k ≤ m, and

(2) the dimension of the span of the normal vectors to V1, . . . , Vm and V ′
1, . . . , V ′

m is both two.

Let h : Rn → Rn be a homeomorphism such that h(0) = 0 and

h

(
m⋃

k=1

Vk

)

=
m⋃

k=1

V ′
k .

Then, after a suitable relabeling if necessary, we have h(Vk) = V ′
k .

PROOF. Since the dimension of the span of the two collections of hyperplanes passing through the origin

is two, after pre- and postcomposing with suitable rotations, we may assume that

m⋃

k=1

Vk = Q × Rn−2 and
m⋃

k=1

V ′
k = Q′ × Rn−2, (6)
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where Q ⊂ R2 is a union of m straight Euclidean lines Lk passing through the origin 0 ∈ R2, accord-

ing to the rule Vk = Lk × Rn−2, where each line Lk is perpendicular in R2 to the normal vector to the

plane Vk , where k = 1, . . . ,m, one line Lk precisely corresponding to a plane Vk . Similarly for Q′. Thus

Rn \
⋃m

k=1 Vk consists of 2m connected components and so does Rn \
⋃m

k=1 V ′
k . Take a simple closed

curve γ ⊂ R2 × {0} winding around the origin 0 ∈ R2, such that the curve γ intersects every line Lk

exactly once. Label the intersection points {zs}2m
s=1 of γ with

⋃m
k=1 Lk \ {0} according to their cyclic

ordering along γ , relative to an orientation and initial point z1, which we may assume to be contained

in L1. Further, we may assume that h(z1) ∈ V ′
1. In this labeling, zs and zs+m belong to the same line

Lk and thus to the same plane Vk . Given a line Lk , the B-plane Vk corresponding to Lk separates Rn into

two connected components H+
k and H−

k , each containing precisely m connected components of the

complement of Rn \
⋃m

k=1 Vk . Since h sends connected components of Rn \
⋃m

k=1 Vk , in a one-to-one

correspondence, to the connected components of Rn \
⋃m

k=1 V ′
k , the images h(H+

k ) and h(H−
k ) contain

precisely m connected components of Rn \
⋃m

k=1 V ′
k each. This can only be if h(zs) and h(zs+m) belong to

the same image plane. It thus follows, upon an appropriate labeling, that h(Vk) = V ′
k , as required. �

PROOF OF LEMMA 2. Fix a B-plane Vλ. Let v ∈ Vλ for which μ(v) = 1 and let ϕ(v) = ṽ and therefore

μ(ṽ) = 1. Let Vλ̃ be the unique B-plane passing through ṽ. It suffices to show that ϕ(Vλ) ⊆ Vλ̃. Indeed,

if this is proved, then by symmetry ϕ−1(Vλ̃) ⊆ Vλ and therefore ϕ(Vλ) = Vλ̃. To prove that ϕ(Vλ) ⊆ Vλ̃,

consider

Iλ :=
{
v ∈ Vλ | μ(v) ≥ 2, ν(v) ≥ 3

}
⊂ Vλ,

and define

Wλ = Iλ ∪




⋃

λ̃∈3̃

ϕ−1(Iλ̃) ∩ Vλ



 ⊂ Vλ (7)

As Iλ and ϕ−1(Iλ̃) ∩ Vλ have codimension two relative to Vλ, are closed subsets, and since the union of

B-planes relative to 3̃ is a locally finite union of planes, by Lemma 3, it follows that Vλ \ Wλ is open

and path-connected and Vλ \ Wλ is dense in Vλ, since a locally finite union of closed codimension two

subsets is closed and has codimension two. Furthermore, Vλ \ Wλ has the property that every point v ⊂

Vλ \ Wλ, for which μ(v) = m ≥ 2, we have ν(v) = 2 and furthermore, μ(ṽ) = m and ν(ṽ) = 2.

Since Vλ \ Wλ is open, we can take a small Euclidean ball Uv centered at v, and by shrinking the ball if

necessary, we may assume that Uv only meets those B-planes that pass through v. Since ϕ is a homeo-

morphism, ϕ(Uv) will only meet those B-planes that pass through ṽ. Moreover, as Uv is an open ball,

which is homeomorphic to Rn , and so in the image, we are now in the position of Lemma 4, which says

that, within the ball Uv, the portion of the plane Vλ ∩ Uv is mapped to Ṽλ ∩ ϕ(Uv). Since this holds for

every sufficiently small ball Uv, centered at any point v ∈ Vλ \ Wλ, and Vλ \ Wλ is path-connected, we have

ϕ(Vλ \ Wλ) ⊂ Ṽλ. Furthermore, as taking closures commutes under a homeomorphism, and Vλ \ Wλ is

dense in Vλ, we in fact have that ϕ(Vλ) ⊆ Ṽλ, which is what we needed to show. �

Given a lattice point λ 6= 0, such that the open straight line segment between 0 and λ contains no

lattice points, define the collection Bλ of B-planes determined by λ as follows

Bλ =
{

Vkλ | k ∈ Z \ {0}
}
. (8)
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The B-planes in the collection Bλ are parallel. Consequently, Vλ separates 0 from V2λ, the latter separates

Vλ from V3λ etc. As the same separation properties hold for their images, since ϕ is a homeomorphism,

combining this with Lemma 2, it follows that ϕ(Bλ) = Bλ̃ for a unique (modulo sign) λ̃ ∈ 3̃. We say

that the collections Bλ1, . . . ,Bλm are linearly independent if ν(v) = m, i.e. the dimension of the span of

the vectors λ1, . . . , λm equals m. In what follows, we denote {Bk}k∈N and {B̃k}k∈N the Brillouin zones

relative to 3 and 3̃ respectively.

LEMMA 5. For every k ≥ 1, we have that ϕ(Bk) = B̃k .

PROOF. Let v ∈ Int(Bk) ⊂ Rn and let w = ϕ(v). By Proposition 1, there are k − 1 planes Vλ1, . . . , Vλk−1

such that Vλs ∩ `v 6= ∅, 1 ≤ s ≤ k − 1 and μ(v) = 0. It follows that μ(w) = 0.

We need to show that ι(w) = k − 1. By Lemma 2, ϕ(Vλ) = Vλ̃, where λ ∈ 3 and λ̃ ∈ 3̃. As ϕ is

a homeomorphism for which ϕ(0) = 0, Vλ separates 0 and v if and only if Vλ̃ separates 0 and w in Rn .

Hence Vλ̃s
∩ `w 6= ∅, for every 1 ≤ s ≤ k − 1 where Vλ̃s

:= ϕ(Vλs ). Therefore, ι(w) = k − 1 and thus

w ∈ B̃k . This proves that

ϕ(Int(Bk)) = Int(B̃k).

By Proposition 1, we have Cl(Int(Bk)) = Bk and thus ϕ(Bk) = B̃k . �

LEMMA 6. The homeomorphism ϕ lies at a bounded distance from A, that is,

ϕ(v) = A(v)+ δ(v) (9)

with A ∈ GL(n,R) and ‖δ‖ bounded.

PROOF. We will show that there exists a uniform tiling of Rn by identical parallelepipeds which is mapped

by ϕ to a tiling of Rn by the image parallelepipeds (which are again all identical). This will give us a linear

map A which also preserves this tiling. Because this tiling is uniform, the diameter, say K , of an image

parallelepiped gives a uniform bound on the distance of a point v ∈ Rn under ϕ and A, i.e.

|ϕ(v)− A(v)| ≤ K , for all v ∈ Rn.

If we define δ(v) := ϕ(v)− A(v), then |δ(v)| ≤ K and thus ‖δ‖ is bounded.

Consider ϕ(Bλ) = Bλ̃ for an essentially unique λ̃ ∈ 3̃, where ±λ̃ ∈ 3̃. As ϕ(0) = 0, we have that

ϕ(Vkλ) = V±kλ̃. The collection Bλ does not consist of equally spaced B-planes, i.e. the distance between

the two B-planes Vλ and V−λ is twice the distance between any other two successive B-planes. However,

B′
λ :=

{
Vkλ | k ∈ Z \ {0}, k odd

}
⊂ Bλ

does consist of equally spaces B-planes. Choose λ1, λ2, . . . , λn ∈ 3 such that the corresponding collec-

tions Bλi , with 1 ≤ i ≤ n, are linearly independent. Then

Rn \
n⋃

s=1

B′
λs

(10)
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defines a tiling of Rn by identical parallelepipeds. To finish the proof, we need to show that ϕ maps this

tiling to a uniform tiling of Rn . It suffices to show that if we have n linearly independent collections of

B-planes as above, then the images of these collections under ϕ are linearly independent as well. So let

us prove this. Take n linearly independent collections Bλ1, . . . ,Bλn . The union of these B-planes tile Rn

into n-dimensional parallelepipeds. Take one such parallelepiped P . Then ∂P is topologically equivalent

to Sn−1. Because ϕ is a homeomorphism, ϕ(∂P) is topologically equivalent to Sn−1 as well. This can only

be if the collections B′
λ1
, . . . ,B′

λn
are linearly independent. As the collections Bλ̃1

, . . . ,Bλ̃n
are linearly

independent, the union of the B-planes from the collections B′
λ̃1
, . . . ,B′

λ̃n
form a tiling of Rn . This tiling is

preserved by ϕ which now can be approximated by the linear map A as described in (9). �

LetA(r, R) ⊂ Rn be the Euclidean annulus with inner radius r and outer radius R centered at 0 ∈ Rn .

The following result describes the asymptotic properties of the Brillouin zones, see (Jones 1984) and

(Skriganov 1987). We give a sketch of the proof for the convenience of the reader.

LEMMA 7. For every k there exist 0 < rk < Rk < ∞ such that

Bk ⊂ A(rk, Rk), with |Rk − rk | ≤ C,

for some constant C > 0 independent of k.

SKETCH OF THE PROOF. The condition that v ∈ Int(Bk) is, by Proposition 1, equivalent to the number

of lattice points of 3 contained in the Euclidean ball D(v, |v|) being equal to k. As this number, up to

an error relatively small compared to the total number of lattice points for large |v|, does not depend on v

but only on |v|, the claim follows for Int(Bk) and therefore for Bk by passing to the closure. �

Let us now finish the proof of our main result.

PROOF OF THEOREM A. By Lemma 6, there exists a linear A ∈ GL(n,R) such that ϕ is homotopic to A,

that is, there exists a uniformly bounded δ : Rn → Rn such that ϕ(v) = A(v)+δ(v). By Lemma 5, we have

that ϕ(Bk) = B̃k for every k ≥ 1. By Lemma 7, the Brillouin zones Bk and B̃k are contained in Euclidean

annuli with uniformly bounded thickness. It thus follows that, as δ is uniformly bounded, A sends spheres

to spheres. Therefore, by standard linear algebra, A is an orthogonal mapping, i.e. A ∈ O(n,R). To finish

the proof, we must show that Ṽ = ϕ(V) = A(V). From this it follows that 3̃ = A(3) as every B-plane is

the perpendicular bisector of a point of the corresponding lattice.

To prove this, it suffices to show that ϕ(Bλ) = A(Bλ) for every Bλ. We define the axis of Bλ to

be the line through the origin perpendicular to the B-plane Vλ ⊂ Bλ. Let l be the axis Bλ and l̃ the

axis of ϕ(Bλ) and denote l ′ = A(l). We claim that l̃ = l ′. Indeed, if l̃ 6= l ′, then the planes ϕ(Vλ) and

A(Vλ) are not parallel, with Vλ ⊂ Bλ. We can choose a point v ∈ Vλ (with big distance from the axis l),

such that the ball centered at A(v) with radius K misses the hyperplane ϕ(Vλ) altogether, contradicting

Lemma 6. Therefore, l̃ = l ′. Similarly, the distance between two successive planes in A(Bλ) and ϕ(Bλ)

has to be equal, as assuming otherwise is easily seen to yield again a contradiction with the uniform bound

on |δ(v)| = |A(v) − ϕ(v)|. Therefore, ϕ(Bλ) = A(Bλ) and since this holds for every Bλ, it follows

that Ṽ = ϕ(V) = A(V).
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Thus, as the lattices 3 and 3̃ are related by an element of O(n,R), the tori are isometric, up to
rescaling. �

CONCLUDING REMARKS

The central question raised is what geometrical information of a closed Riemannian manifold is encoded
in the mere topology of its focal decomposition. We showed that for flat n-tori, the isometry type is
essentially determined by the topology of the focal decomposition at a single tangent plane, since the torus
is homogeneous.

In general however, considering the focal decomposition at a single basepoint would not suffice in
order to determine the geometry of the underlying manifold. Indeed, if one takes a round two-sphere
and an ellipsoid of revolution, then the focal decomposition in two tangent planes, one in either surface,
being homeomorphic, or even equal, does not imply these are isometric, as an ellipsoid of revolution has
umbilical points at which basepoint the focal decomposition equals that of a round sphere. At other base-
points the focal decomposition of an ellipsoid will be different from that of the round sphere.

Let us further remark the following. From the focal decomposition at a given basepoint, one can
determine how many geodesics of a given length start at the basepoint and end at another certain point.
Besides this information, the focal decomposition also contains information about how these loci of points
interrelate and this information is important for the above rigidity phenomenon in the following sense.

A notion similar to, but in a sense weaker than, the focal decomposition, is the length spectrum of
a manifold, which records the lengths of closed geodesics of a manifold, taking into account the multi-
plicity of geodesics given a certain length. In the setting of flat tori, this is determined as follows. Let
3 ⊂ Rn be a lattice of rank n and record the radii ρ for which the (Euclidean) sphere Sρ of radius
ρ centered at the origin in Rn meets 3 and count the number of lattice points meeting the sphere Sρ .
Even though this information determines for example the two-torus up to isometry, it fails to do so in
higher dimensions. More precisely, it was shown in (Witt 1941) that in dimension 16 there exist lat-
tices 3, 3̃ ⊂ R16 that are not SO(16,R) equivalent, yet have equal spectra. Using this information, it
was remarked in (Milnor 1964) that the sequence of eigenvalues of the Laplace operator of a compact
Riemannian manifold (M, g) does not, in general, characterize its Riemannian metric.

In (Peixoto 1994) a notion of spectrum is discussed which is similar to the length spectrum. Take again
a flat torus and now record the radii for which the sphere Sρ in the cover either (1) is tangent to a B-plane
or (2) meets an intersection of two or more B-planes. Call this sequence the focal spectrum of the torus.
The sequence of radii in the length spectrum above is a subsequence of this focal spectrum, but the focal
spectrum records radii that are not present in the length spectrum. Moreover, the focal spectrum is very
sensitive to the position of the lattice points in space and seems a finer measurement. Let us pose here
the question whether for flat n-tori, with n ≥ 2, the focal spectrum determines the geometry of the torus
up to isometry.
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RESUMO

Dada uma variedade Riemanniana (M, g) fechada, isto é, compacta e sem bordo, existe uma partição de seu fibrado

tangente TM =
⋃

i 6i chamada decomposição focal de TM. Os conjuntos6i estão intimamente associados ao modo

como focalizam as geodésicas de (M, g), isto é, à situação em que existem exatamente i arcos de geodésica de mesmo

comprimento unindo pontos p e q em M . Nesta nota, estudamos a estrutura topológica da decomposição focal de

uma variedade Riemanniana fechada e sua relação com a estrutura métrica de M . Nosso principal resultado é que

n-toros planos, n ≥ 2, são focalmente rigidos, isto é, se dois toros planos são focalmente equivalentes, então os dois

toros são isométricos módulo mudança de escala. O caso n = 2 foi considerado anteriormente por F. Kwakkel.

Palavras-chave: variedade Riemanniana, decomposição focal, rigidez.
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