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ABSTRACT

The ultimate purpose of this paper is to present a new analytical formulation to simulate diffusion with
retention in a reactive medium under stable thermodynamic conditions. The analysis of diffusion with
retention in a continuum medium is developed after the solution of an equivalent problem using a discrete
approach. The new law may be interpreted as the reduction of all diffusion processes with retention to
a unifying phenomenon that can adequately simulate the retention effect namely a circulatory motion. It
is remarkable that the governing equation requires a fourth order differential term as suggested by the
discrete approach. The relative fraction of diffusion particles β is introduced as a control parameter in the
diffusion-retention law as suggested by the discrete approach. This control parameter is essential to avoid
retention isolated from the diffusion process. Two matrices referring to material properties are introduced
and related to the real phenomenon through the circulation hypothesis. The governing equation may be
highly non-linear even if the material properties are constant, but the retention effect is a function of the
concentration level, that is, β is a function of the concentration.

Key words: diffusion, retention, constitutive law, discrete approach, population dynamics, fourth order
differential equations.

INTRODUCTION

Spreading of particles or microorganisms immersed in a given medium or deployed on a given substrata is

frequently modeled as a diffusion process. The mathematical formulation of the classical diffusion problem

in a three-dimensional space x = [x1, x2, x3]T can be written as follows:

∂p

∂t
= div (Kgrad (p(x, t)))

[
x ∈

∣
∣V ⊂ R3, x =

[
xi

]T
, i = 1, 2, 3

]
and t ≥ 0 ,
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defined in V for t ≥ 0 together with the boundary and initial conditions:

< [p (x, t)]x∈∂V = =
[

p (x̄, t) , ∂p (x̄, t)
/
∂x

]
x̄ ∈ ∂V, t ≥ 0

p (x, 0) = p0 (x) x ∈ V, t = 0

where < and = represent respectively a differential operator and a function related to given initial conditions,

p(x, t) stands for the particle concentration and K is the diffusion coefficient.

The system above represents quite satisfactorily the behavior of several physical phenomena related

to dispersion processes. For some cases, however, the simplified approach above fails to represent the real

physical behavior. Population spreading or dispersing particles may be partially and temporarily blocked

when immersed in some particular media. An invading species, for instance, may hold a fraction of the

total population stationary on the conquered territory in order to guarantee territorial domain. Chemical

reactions may induce adsorption processes for the diffusion of solutes in liquid solvents in the presence of

adsorbent material (Brandani et al. 2000). Multiphase flow, flows through porous media (Liu and Thompson

2002) and particulate systems are also among physicochemical phenomena that need improvement of the

analytical formulation due to side effects not included in the classical diffusion modeling.

It is also important to remark that the determination of the diffusion parameters for more complex

phenomena requires at least a reliable analytical representation. Certainly models are nothing but an ap-

proximation of the real world. However the more sophisticated the experimental setups, the more advanced

the analytical formulation should be. There is evidence that particle retention may occur in diffusion pro-

cesses for some dispersing substances immersed in particular supporting media (Atsumi 2002, D’Angelo

et al. 2003, Deleersnijder et al. 2006, Green 1996, Liu and Thompson 2002, Muhammad 2004). The

classical diffusion equation doesn’t represent satisfactorily the retention phenomenon since there is a new

phenomenon involved in the process that cannot be characterized simply by manipulating the diffusivity

parameters. The main purpose of this paper is to present a new model that explicitly includes retention

processes. The theory introduced here shows that a higher order partial differential equation is required

that, consequently, involves the inclusion of new parameters. These new parameters, besides the diffusion

coefficient, characterize the blocking process. Specific experimental techniques need to be settled to de-

termine those complementary coefficients. Trying to solve the retention problem by imposing an artificial

dependence of the diffusion coefficient on the particle concentration p(x, t) or introducing extra differential

terms while keeping the second order rank of the governing equations, or both, disguises the real physical

phenomenon occurring in the process. We will show that there is a more precise modeling that explicitly

takes into account the retention effect in the dispersion process.

In the following sections the diffusion in a complex medium – admitting retention – is developed, first

with a discrete approach and afterwards using a continuum approach. As will be explained later, in the

context of the present theory retention is a dynamical rather than a stationary state.

POPULATION DYNAMICS: A DISCRETE APPROACH

This section is introduced here to make the paper self-contained. The formulation below is part of another

paper, to appear shortly, dealing with the discrete approach of transport phenomena (Bevilacqua et al. in

press).
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Consider the process depicted in Figure 1. The rule governing the redistribution of contents of each

cell indicates that a fraction of the contents αpn is retained in the nth cell and the exceeding volume is

evenly transferred to the neighboring cells, that is, 0.5βpn to the left, (n − 1)th cell, and 0.5βpn to the

right, (n + 1)th cell, at each time step, where β = (1 − α). This means that the dispersion runs slower than

for the classical diffusion problem. Note that if β = 1, the problem is reduced to the classical Gaussian

distribution.

Translating this rule into algebraic expressions we get:

pt
n = (1 − β)pt−1

n +
1

2
βpt−1

n−1 +
1

2
βpt−1

n+1 , (1a)

pt+1
n = (1 − β)pt

n +
1

2
βpt

n−1 +
1

2
βpt

n+1 . (1b)

/2 /2 /2 /2/2 /2

/2/2

n n+1 n+2 n+3n 1n 2n 3

n n+1 n+2 n+3n 1n 2n 3

n n+1 n+2 n+3n 1n 2n 3

Fig. 1 – Symmetric distribution with retention β = (1−α). A fraction α of each cell content remains in the cell, and the remaining

portion is symmetrically redistributed to the neighboring cells with the proportion β/2 at each time step.

It is now possible to manipulate Eq. (1a) and Eq. (1b) in order to obtain finite difference terms. It

is important to notice that the rearrangement of terms must be done carefully otherwise we could obtain

an equation that doesn’t reproduce the required solutions for the limits β = 0 and β = 1. That is,

the differential terms involved in the final expression may not reproduce the behavior required by the

fundamental set of equations for the entire range of the parameters. Therefore, it is necessary to test the

intermediate expressions at critical steps to verify if the underlying assumptions related to Eq. (1a) and

Eq. (1b) are preserved. This means that, for β = 1, corresponding to no retention, the classical Gaussian

distribution is obtained, that is, the contents of each cell is equally redistributed to the neighboring ones at

each time step. If β = 0 on the other hand the solution is stationary that is, the total content of each cell

remains the same all time.
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Subtracting Eq. (1a) from Eq. (1b), after reducing all terms to the time t − 1, leads to:

pt+1
n − pt

n = β

[
−

1

2

(
pt−1

n−1 + pt−1
n+1

)
+ (1 − β)

(
pt−1

n−1 + pt−1
n+1 − pt−1

n

)
+

1

4
β

(
pt−1

n−2 + 2pt−1
n + pt−1

n+2

)
]

. (2)

After a relatively lengthy and careful algebraic manipulation – see appendix – the following expression is

finally obtained:

1pt+1t
n

1t
= β

{
1

2

L2
0

T0

12 pn

1x2
+

O
(
1x2

)

1x2
− (1 − β)

1

4

L4
1

T0

14 pn

1x4

}t−1t

. (3)

Note that taking β = 1 Eq. (3) reduces to the classical diffusion problem, that is no retention, and with

β = 0 Eq. (3) represents a stationary solution since the right hand side term vanishes. Consequently the

time rate variation of the contents pn equals zero for all t for all cells.

Calling K2 = L2
0/2T0 and K4 = L4

1/4T0, and taking the limit as 1x → 0 and 1t → 0, we obtain:

∂p

∂t
= βK2

∂2 p

∂x2
− β (1 − β) K4

∂4 p

∂x4
. (4)

The fourth order term with negative sign introduces the retention effect. Clearly this term comes in naturally,

without any artificial assumption, as an immediate consequence of the temporary retention imposed by the

redistribution law. We would like to call the attention that similar equations can be obtained by introducing

non-linear correlations in the Fick’s law (Cohen and Murray 1981). These equations, however, are derived

to take into account physical phenomena that hardly could be associated to the retention effect.

The result presented above justifies the following statement:

PROPOSITION. Suppose a one-dimensional diffusion process consisting of N particles moving in a ho-

mogeneous, isotropic supporting medium according to the Fick’s law. If a fraction f (N ) = (1 − β) of

the diffusing particles is temporarily trapped along their trajectories due to some mechanical, physical,

chemical or physicochemical interaction with the medium, the governing equation must include a fourth

order differential term of the form:

−0β(1 − β)
∂4 p

∂x4

where 0 is a time-independent material constant, (1 − β) is the fraction of the particles temporarily

trapped, with 0 < β ≤ 1 constant, and p(x, t) stands for the particle concentration in the medium.

It will be shown in the sequel that this proposition may be generalized in order to allow β and 0 to

be time and space dependent parameters. In this case, however, a more complex differential equation is

obtained including non-linear terms, and it would be necessary a more detailed discussion that we are going

to postpone for a future paper.

PHENOMENOLOGICAL CONSIDERATIONS OF DIFFUSION PROCESSES

Before stating the laws that govern retention, it is worthwhile describing some basic ideas sustaining

the formulation that will be introduced later on. Scientists and particularly engineers have frequently

to deal with a class of problems that, behind an apparent simplicity, hides complex events. A problem
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with hidden complexity results from the simultaneous convergence of several phenomena involving a

relatively large number of transformation processes. Most of the problems belonging to this class that

appear in engineering practice require the determination of certain variables, that we will call here macro-

state variables, representing complex physical, chemical or physicochemical interactions at micro scales.

For the engineering point of view, within certain limits, it is not necessary to analyze the phenomenon at

the smallest possible scale, because frequently the basic phenomena are not yet fully understood. It suffices

knowing the behavior of the macro-state variables. That is, for a problem with hidden complexity, in several

circumstances, the main task is to determine the relationship between the input variables and the output

variables flowing in and out of a “black box”.

The determination of a method or a theory adequate to establish the behavior of the macro-variables is

by no means an easy task. The main difficulty arises from the fact that the theory must play a unification

role. That is, the theory must as far as possible translate, with a relatively simple set of rules and laws,

the response of the macro-state variables to the perturbations introduced in the system under consideration.

More than that, a successful theory should give adequate response to several similar phenomena belonging

to the same class. For instance, dispersion of gas, liquid or solid particles in different supporting media

should be accurately modeled by the same theoretical framework because they belong to the same class

of problems independently of the particle nature and of the medium. The macro-variable for this class of

phenomenon is the particle concentration denoted by p(x, t). The theory proposed in this paper is derived

from the following ideal process.

Consider a collection of particles immersed in some medium and moving in a preferred direction driven

by repulsion forces such that they displace from high concentration regions towards low concentration

regions free from constraints. The motion is not subjected to any critical barrier that could induce a

significant perturbation in the process. Under this circumstance it is plausible to admit that the average

speed of the particles is proportional to the concentration gradient, the particles being driven from regions

with high concentration levels, strong repulsive forces, to regions with low concentration levels, weak

repulsive forces. This is the fundamental idea supporting Fick’s law. For the one-dimensional problem in a

homogeneous medium, the absolute value of the diffusion speed may be defined as Dgrad(p(x, t)), where

D is the diffusion coefficient.

The diffusion coefficient cannot be considered as a parameter characterizing all physicochemical phe-

nomena associated to the diffusion processes. It is instead a coefficient associate to an ideal event that

simulates satisfactorily a wide range of phenomena. The diffusion coefficient may have different physi-

cal interpretations depending on the particular phenomenon under consideration. Another way to see this

methodology is to consider a “black box” that transforms input variables into output variables according to

well-established laws, irrespectively from the physics that may be going on inside the box. In this sense,

the Fick’s law is a decomplexification process.

Now suppose that other events interfere in the diffusion mechanism. In this case the law must be

modified accordingly. For instance, the effects of sources or sinks in a diffusion process cannot be modeled

by some artificial modification of the flow velocity or distorting the interpretation of the diffusion coefficient.

A new term is necessary to be incorporated in the governing equation. Diffusion with sinks or sources

belongs to a different class of phenomena.
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To avoid possible misunderstandings referring to more complex diffusion problems, we would like to

remark that it is possible within a same class of phenomena to improve the respective laws incorporating

extra terms. For the case of diffusion, for instance, Fick’s law may be extended to incorporate higher order

terms in the definition of the flux b(x, t). For the one-dimensional case Cohen and Murray, starting from a

generalized law for the internal energy, arrived to the following expression for the flux:

b(x, t) = Dgrad
(

Ap(x, t) + Bp3(x, t) − k
∂2 p(x, t)

∂x2

)
.

This means that the driving forces inducing the particle motion are not related only to the gradient of the

concentration grad(Ap(x, t)) as in Fick’s law, but require the consideration of higher order terms. Since

the corresponding governing equation includes for this case two new parameters B and k, it would be

presumably possible to obtain a better representation of experimental results by adjusting properly the

values of these two parameters. This is a refinement of the theoretical framework, but the basic event

remains the same, belonging to the class of diffusion problems without taking into account any other

phenomenon as retention for instance.

If however there is some essential modification of the phenomenology governing a given process, it is

necessary to review the theoretical framework to find some universal model adequate to decomplexify the

corresponding class of phenomenon. Unfortunately attempts to extend a theory fitted to represent a given

class of events to a new phenomenological class are not seldom found in the literature. The results are

certainly not universal and may fail to express a reliable response of the macro-state variables. This is the

case of diffusion with temporary retention. The phenomenon of temporary retention cannot be adequately

modeled by Fick’s law or any refinement of the classical diffusion law. Diffusion with temporary retention

belongs to another class of phenomena. A new suitable law could be stated axiomatically. It would be

better to find a kind of universal event that may encompass a large number of phenomena and may also

provide a consistent evaluation of the macro-state variables.

The main purpose of this paper is to propose a model that can be used to simulate with good accuracy

the retention effect in a diffusion process. Based on that model, a new universal theoretical framework to

decomplexify the temporary process is derived.

THE DIFFUSION CONSTITUTIVE LAW

The diffusion law adopted here is the classical Fick’s law. Define 9D as:

9D = d ∙ n

where n is the unit vector normal to ∂V and d is the diffusivity vector. The diffusivity vector consistently

with the Fick’s law is defined as:

d = −Dgrad
(

p(x, t)
)
.

Let us call D the diffusion matrix that is related to the physical properties of the medium, and p(x, t) is

the mass concentration function. The components of D characterize the diffusion properties of the mass

concentration in the embedding medium. For the general case, the matrix D is full (MacElroy 1996) and
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the diffusivity vector reads:

d = −di j
∂
(

p(x, t)
)

∂x j
Eei .

The minus sign comes from the well-known fact that under normal conditions the motion direction is

oriented towards the regions of decreasing mass concentration.

THE RETENTION CONSTITUTIVE LAW

In this section we will introduce the key contribution of this paper, which is the derivation of the function

9R(p(x, t)) representing the retention rate of the particle concentration trapped on the boundary layer in

the vicinity of ∂V . The reasoning that will follow was guided by the result obtained with the discrete

approach in the sense that the final equation governing diffusion with retention should include fourth order

differential terms.

Instead of using an axiomatic approach through the definition of analytical expressions that would

lead to the expected results, we will explore a plausible physical interpretation along with the development

of the mathematical formulation. The physics of the problem postulated here is not unique, but is adequate

to simulate a large range of cases. A consistent interpretation can also be given to the material parameters

that will be introduced later on. The reader must have in mind that our purpose is to achieve a general law,

that is, a law that would fit possibly all cases of diffusion including temporary retention. This means that

the basic phenomenon introduced here to explain retention, has to be seen as a universal phenomenon or,

more precisely, a universal virtual phenomenon.

The study of particular cases trying to simulate as close as possible the physical and chemical inter-

actions governing the retention effect belongs to other approaches focusing very specific problems. Each

problem requires a particular solution that cannot be extrapolated to other cases.

Two main ideas are enclosed in the definition of 9R:

i) Recall that the terms representing the retention effect according to the previous derivation must be

multiplied by β(1 − β) as shown in Eq. (4). To be consistent with the discrete approach, the effective

mass temporarily trapped per unit of time 9R must be proportional to the relative mass of the diffusing

particles β as will become explicit in the next section from Eq. (5a). Clearly the factor β(1 − β)

is a control parameter imposing variation limits on the blocking effect to avoid unacceptable mass

accumulation on the boundary layer next to ∂V , where otherwise the density might grow beyond phys-

ically acceptable limits. Moreover it is also physically consistent to admit the retention effect directly

proportional to the diffusing fraction. Indeed, the probability of particles being trapped increases with

increasing intensity of particles diffusing in the medium.

ii) Now let us introduce a vector b for the retention state similar to the vector d for the diffusion state.

The effective mass trapped in the boundary layer per unit of time, that is 9R , is proportional to the

component of the vector b orthogonal to the boundary surface ∂V . Considering the proportionality

law proposed in i) above we may write:

9R = β (b ∙ n) .
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The vector b will be called blocking vector. We introduce now the fundamental hypothesis to derive

the formation law of the blocking vector.

First of all let us recall that we are dealing with temporary retention. Permanent retention corresponds

to a sink that belongs to another class of phenomenon. Temporary retention may occur under different

forms that are very difficult to represent analytically. As a matter of fact, if specific formulations for each

kind of phenomenon are to be derived – temporary interstitial retention, temporary blocking by mechanical

obstacles, chemical reactions, tortuosity of the substrata – it would be necessary to develop very complex

theories, each one corresponding to a specific class of phenomenon.

What we intend to do here is to detect the key phenomenon that is common to all or at least to the

majority of the diffusion processes under the effect of retention. That is, we are seeking for a unified model

that represents the fundamental effects of the retention process for a large range of cases. The retention

coefficients appearing in the evolution equation will in some cases represent the parameters corresponding

to a virtual phenomenon simulating the real one.

The unifying phenomenon that will be assumed to simulate the retention effect for all cases is the

circulation in a boundary layer in the neighborhood of the surface ∂V . That is, a fraction of the particles

follows a helicoidal trajectory consisting of n spirals distributed on very thin boundary layer 1s in the

neighborhood of the surface ∂V (Fig. 2a). While travelling along this helicoidal trajectory, the particle

will be considered trapped in the boundary layer in the vicinity of the surface ∂V . The retention effect is

therefore simulated by a temporary circulation in the neighborhood of the surface enclosing the volume V .

The time delay for a particle to cross the boundary layer is proportional to the number of loops n and the

angular velocity ω. In order to simplify the analysis, consider the loops compressed into a single closed

trajectory contained in a plane 5 tangent to the boundary. That is, the particle moves with velocity v on a

circumferential path with radius a on the plane 5. To simulate the displacement of the particle along the

direction parallel to n after the completion of n loops covering a distance 1s in a time 1t , the plane 5

is assumed to move inwards the volume V with a velocity u. The retention effect is therefore simulated

by a circulation with angular velocity ω =
(
|v|

/
a
)

n on the plane 5 coupled with a translation inwards

the volume V with velocity u. The modulus of u may be easily calculated |u| = 1s
/
1t = ωλ

/
2π , and

therefore u =
(
ωλ

/
2π

)
n. The modulus of u is very small since it is assumed that the pitch λ of the

helicoidally motion is very small consistent with the hypothesis of retention within a very thin boundary

layer. That is, the fraction of the particles moving on a temporarily closed trajectory (Fig. 2b) coupled

with a very slow motion u of the circulation plane inwards the volume V will be considered trapped on

the surface ∂V .Thus, the retention phenomenology defined here requires the particles to be temporarily

confined in a boundary layer in the vicinity of the surface ∂V .

In order to describe the equivalent circulation motion, two different matrices of material parameters

will be introduced. The first one denoted by C characterizes the velocity, of the equivalent circulatory

motion. The second material matrix called R expresses the effectiveness of the blocking effect through the

projection of the enclosed area by one loop on the tangent plane (t1xt2) of ∂V multiplied by the number

of loops, such that the time delay equivalent to the temporary retention is achieved. Cases where a fraction

of the dispersing particles is physically trapped for a certain amount of time on some material obstacle, as

is the case of porous media, can be interpreted as a singularity where the radius of the circulation tends to
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(a) (b)
Fig. 2 – Physical process simulating the temporary retention within the boundary layer in the vicinity of ∂V . (a) Helicoidal motion

with a pitch λ and n loops of a characteristic particle. The retention is simulated by the time delay 1t that is proportional to the

number of loops n and the angular velocity ω. (b) Simplified motion reduced to a circulation on the plane 5 and a displacement

orthogonal to 5 with a very small velocity u.

zero and the motion is reduced to a spin. Description of some specific physical phenomena referring to the

blocking time can be found in (Deleersnijder et al. 2006, Green 1996, Mota et al. 2004).

Now given the above hypothesis let us introduce the retention law.

1. The retention phenomenon occurring simultaneously with diffusion in a reactive medium under a state

of stable thermodynamic equilibrium may be simulated by a circulatory motion defined by the rotational

of an appropriate vector t given by:

rot(t) = Cgrad
(

p(x, t)
)

where C is a matrix of equivalent physical constants. That is the components ci j of C refer to a

circulation effect that adequately simulates the real phenomenon with respect to the dynamical and

geometric characteristics of the circulatory motion.

2. The blocking matrix B is given by:

B = grad
(
rot (t)

)
= grad

(
Cgrad(p(x, t))

)

and the blocking vector b representing the retention rate is given by:

b = Rdiv
(
grad(Cgrad(p(x, t)))

)
.

An Acad Bras Cienc (2011) 83 (4)



“main” — 2011/10/14 — 0:28 — page 1452 — #10

1452 LUIZ BEVILACQUA, AUGUSTO C.N.R. GALEÃO and FLAVIO P. COSTA

The components of the matrix R are also related to material properties that define the retention effec-

tiveness that is the time delay imposed by the blocking effect. The matrix R stands for the control

mechanism regulating the circulation intensity that is the number of loops in the equivalent spiral

motion. The experimental determination of C and R defines the equivalent circulation associated

with the effective actual phenomenon.

3. The net retention rate 9R corresponding to the particles temporarily trapped on the surface ∂V is given

by the projection of b on the normal to the surface ∂V multiplied by the particles diffusing fraction β.

That is:

9R = β(b ∙ n) .

Now taking the physical interpretation explained before for the retention effect as a circulation plus a

translation, it is obvious that b = u. Note that we are dealing with a process evolving under a thermodynamic

stable equilibrium. For more complex cases involving thermodynamic coupling the energy conservation

principle must be taken into account. The theory for those cases introducing the retention effect has still to

be developed.

The matrices C and R containing the physical parameters ci j and ri j depend on the interaction properties

between supporting medium and diffusing substance. The determination of the dimensions of the variables

intervening in the retention law may help to find the physical meaning of the components of C and R. Let

the physical meaning of t be defined as the angular momentum of the trapped particles per unit of volume.

The corresponding dimension is written as:

dim [t] F
[

M

L3

L2

T

]
F

[
M

L

1

T

]
.

The notations M, L , T mean the dimensions of mass, length and time, respectively. Combining the ex-

pression above for the dimension of t with the definition of rot(t) introduced in the retention law we

have:

dim [rot(t)] F
[

M

L2

1

T

]
=

[
C

1

L

M

L3

]
.

From which follows the dimension of the components of the matrix C;

[C] =
[

L2

T

]
.

Note that this is the same dimension as for the diffusion coefficients composing the diffusion matrix D.

Now the dimension of B = grad(rot(t)) comes immediately:

dim [B] F
[

M

L3

1

T

]
.

Now combining the dimension of b required by the principle of mass conservation with the definition of

the blocking vector b introduced in the retention law, b = R div (B), we obtain:

dim [b] F
[

M

L3

L

T

]
=

[
R

M

L3

1

L

1

T

]
.
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Therefore, the dimension of the coefficients of the matrix R is [R] = [L]2.

This is a plausible definition of the dimensions of the variables related to the retention law. From

the dimensions of rot(t) and b, the dimensions of the components of C and R can be readily obtained,

namely [L2/T ] and [L]2, respectively, which is a an expansion speed and an area as suggested by the

phenomenological assumption introduced before. The dimension of the components of the blocking matrix

B shows that B may be interpreted as the time rate of the specific mass variation. It would be possible

to generate other slightly different combinations of the fundamental dimensions but, if the concentration

and concentration gradient are preserved as key elements any other alternative would not introduce any

essential deviation of the interpretation presented here.

The physical components ci j and ri j must be determined experimentally. These coefficients depend

exclusively on the physicochemical or mechanical properties of the reactive medium interacting with the

dispersing particles. One has to keep in mind that the experimental determination of C and R based on the

present theory fits to a circulation effect simulating the actual retention phenomenon. The coefficients ci j

and ri j may represent the real physical reaction depending on how the circulation hypothesis fits to the real

case under consideration. This simplification, or, as stated before, this decomplexification process, is by no

means a disadvantage of the present theory as compared with other approaches available in the specialized

literature. The other theories are also based on a set of hypotheses that rarely explains the connection

with the actual phenomenon. So the experimental coefficients obtained using other theories equally fails to

represent those associated to the real case. The present formulation has the advantage of making it explicit

the kind of simulation adopted namely the circulatory motion. Also the same equivalent phenomenon is

taken for all cases that allows for the comparison of the coefficients ci j and ri j associated to different cases

since all of them are modeled through the same universal representation.

It was mentioned before that the dimensions of the matrices D and C are the same. Also both appear in

the formulations of the diffusion law and the retention law as well, as factors of the same quantity composing

similar expressions, Dgrad(p(x, t)) and Cgrad(p(x, t)). This suggests that it would be plausible, in the

absence of other more significant reason, to assume that they are equal, that is C = D. If this is true,

the retention coefficients determining the temporary blocking process are reduced to those composing the

matrix R. This would simplify considerably the experimental investigation. For sake of generality we will

keep both independent in the sequel since there is no significant simplification from the theoretical point of

view to make them equal.

Maybe most important of all is the introduction of higher order differential terms resulting from the

present formulation of the retention law. This law is clearly inspired by the results obtained with the discrete

approach without which it would be hard to establish a consistent representation of temporary retention.

The presence of fourth order terms, consistent with the discrete approach, naturally follows from the law

proposed above.

Now for the sake of completeness let us write the expanded expressions for the rot(t), B and b accord-

ing to the above functional representation. In expanded notation we have successively:

rot(t) =
(

cik
∂p (x, t)

∂xk

)
Eei ,
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B = grad
(
rot(t)

)
=

[
∂

∂xi

(
c jk

∂p (x, t)
∂xk

)]
,

div
(
grad (rot (t))

)
=

∂

∂x j

(
∂

∂xi

(
c jk

∂p (x, t)
∂xk

))
Eei ,

b = R divB = rmi
∂

∂xi

(
∂

∂x j

(
c jk

∂p (x, t)
∂xk

))
Eem .

Up to now we have left the theory as general as possible within the framework established for the represen-

tation of diffusion with retention. In this sense, the matrices D, C and R have been assumed to be complete.

It is quite reasonable, however, for several cases, to assume that D, C and R are diagonals matrices, that is

di j = 0, ci j = 0 and ri j = 0 for i 6= j . This hypothesis holds for the case of orthotropic processes. For the

more general case of skewed anisotropy the matrices D, C and R cannot be reduced to the diagonal terms.

For the sake of simplicity we will restrict ourselves in the sequel to orthotropic diffusion processes

with retention. This will not impose any critical limitations to the theory developed here.

The diffusivity vector can now be written:

d = −dii
∂ (p(x, t))

∂xi
Eei .

Similarly for the variables associated to the retention process we get:

rot(t) =
(

cii
∂p(x, t)

∂xi

)
Eei ,

B = grad(rot(t)) =
[

∂

∂xi

(
c j j

∂p(x, t)

∂x j

)]
.

For this case, the matrix B coincides with the Jacobian of rot(t), that is:

B = J
(
C∇ p(x, t)

)
=

∂
(

c11
∂p
∂x1

, c22
∂p
∂x2

, c33
∂p
∂x3

)

∂ (x1, x2, x3)
=

[
∂

∂xi

(
c j j

∂p (x, t)
∂x j

)]
.

The vector b reads:

b = R div(B) = rii
∂

∂xi

(
∂

∂x j

(
c j j

∂p (x, t)
∂x j

))
Eei .

THE CONTINUUM APPROACH FORMULATION OF DIFFUSION WITH RETENTION

Now once established the basic mechanisms for the diffusion with retention, let us derive the governing

equation assuming, as said before, that the process takes place under stable thermodynamic conditions.

Consider a sufficient large set of elementary particles scattered in some reactive medium, that is, a medium

with the property of delaying the motion of a certain number of particles for a given period of time as reported

by some authors in physicochemical experiments (Atsumi 2002, D’Angelo et al. 2003, Deleersnijder et

al. 2006, Green 1996, Liu and Thompson 2002, Muhammad 2004). Consider the open set V bounded by

the surface ∂V at a given time t (Fig. 3). The total number of particles in V ∪ ∂V is divided into two

groups. The first group comprises the particles belonging to V , and the set of particles distributed in the
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neighborhood of ∂V constitutes the second group. The specific mass of the dispersing particles, considered

as a continuum, at that time t referred to an arbitrary point x =
[
x1x2x3

]T
is defined by p(x, t). For the

sake of simplicity we will use the Cartesian system for the analytical development.

=div( )

=div( )

P(x1,x2,x3)

x1

x3

x2

Fig. 3 – The vector b represents the time rate of the specific mass of the diffusing particles through an element dS on the surface

of V , and the vector d represents the time rate of the specific mass of the trapped particles on the same elementary surface.

Call 1M1the net mass variation inside the volume V in the time interval 1t . That is:

1M1 =
∫

V

(p(x, t + 1t) − p(x, t))dv . (5a)

Now, suppose that the medium interacts with the elementary particles in such a way that a fraction of the

particles on ∂V scatters through the medium, and the complementary fraction is trapped in a state that we

will call temporarily retention state. Particles belonging to this state are captured back into the volume

V crossing the boundary at very low speed and remaining temporarily within a thin boundary layer next

to ∂V as explained in the previous section. In this sense we say that, while in the retention state, the

particles are trapped. The time rate of mass variation per area unit given by 9Dcharacterizes the diffusion

process, that is the outward particle flux through ∂V , and the time rate of mass variation per area unit

given by 9R characterizes the retention effect, that is the inward particle flux through ∂V . Both processes

are active simultaneously on ∂V . Let us assume that diffusion and retention are independent processes

homogeneously distributed on the surface ∂V covering two disconnected partitions of ∂V , that is, β∂V for

diffusion and (1 − β)∂V for retention. This means that the particles on ∂V are either spreading – diffusion

– or trapped – retention. Therefore, calling 1M2 the mass variation in the volume V due to the net flux

through the boundary ∂V in the time interval 1t , we have:

1M2 =






∫

∂V

[
β9D + (1 − β) 9R

]
ds





1t . (5b)
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The principle of mass conservation in the absence of sources or sinks reads (1M1 + 1M2)
/
1t = 0 or

recaling Eq. (5a) and Eq. (5b):
∫

V

p(x, t + 1t) − p(x, t)

1t
ds +

∫

∂V

[
β9D + (1 − β)9R

]
ds = 0 . (5c)

As stated above, the variables 9D and 9R are the effective diffusion rate and the effective retention rate,

respectively. Using the constitutive relations for diffusion and retention introduced in the previous sections,

Eq. (5c) may be rewritten:

∫

V

(
p(x, t + 1t) − p(x, t)

)
dv +






∫

∂V

[
βd + (1 − β)βb

]
∙ nds





1t = 0 . (6a)

Now assuming the function p(x, t) sufficiently smooth and using the divergence theorem we get:
∫

V

{
1p(x, t)

1t
+ div

[
βd + (1 − β)βb

]
}

dv = 0 . (6b)

Introducing the expressions of b and d previously derived and taking the limit as 1t → 0 we obtain:
∫

V

[
∂p(x, t))

∂t
+ div

(
β(1 − β)R div(B)

)
− div

(
βD grad(p(x, t))

)
]

dv = 0 . (6c)

Since V is arbitrary and expanding the representation of B:

∂p(x, t)

∂t
= −div

(
β(1 − β)R div(grad(C grad(p(x, t))))

)
+ div

(
βdiv(Dp(x, t))

)
. (7a)

Or using the component notation:

∂p(x, t)

∂t
= −

∂

∂xi

[
β(1 − β)rii

∂

∂xi

(
∂

∂xk

(
ckk

∂p(x, t)

∂xk

))]
+

∂

∂xi

[
βdii

∂p (x, t)
∂xi

]
. (7b)

Equation (7b) is the governing equation for the case of diffusion with retention. It differs significantly from

some others approaches found in the technical literature to simulate this type of phenomenon. The theory

developed above is consistent with the straightforward discrete derivation of the population dispersion with

temporarily retention to colonize the occupied territory. Equation (7a) is in fact the generalized version

of Eq. (4) corresponding to the discrete derivation. The determination of the physical components R, C

and D depends on experimental efforts. Anyway, starting from the Eq. (7a) it should be possible to devise

meaningful experimental strategies since it is clear what should be detected and measured.

For one-dimensional diffusion with retention along the x axis, the Eq. (7a) reduces to a simpler ex-

pression, namely:

∂p(x, t)

∂t
= −

∂

∂x

[
β(1 − β)r

∂2

∂x2

(
c
∂p(x, t)

∂x

)]
+

∂

∂x

[
βd

∂p(x, t)

∂x

]
. (7c)

Despite that the above equation is considerably simpler, it keeps some very fundamental information that

applies in general for more complex mass diffusion problems. Particularly interesting is the role of the
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parameter β. Note first that the diffusion term grows steadily with β, while the retention term varies

according to the logistic equation (Fig. 4). As a consequence, low intensity diffusion processes do not

mean high intensity retention. The control of the retention process introduced in the governing equation

avoids the existence of pure retention as expected, but allows for diffusion only, as it is also consistent with

the physics of the process.

0.50.0 1.0

0.25

0.50

1.00

0.75

Fig. 4 – Coefficients of the diffusion term and of the retention term as a function of β.

Now it is also reasonable to expect that the retention mechanism saturates after some time. This idea

may be introduced by defining the parameter β as a function of p(x, t). Let us assume β, a power function

of the saturation quotient q(x, t) = p(x, t)
/

p∗, that is β = [q(x, t)]m , where p∗ is the saturation limit of

the mass concentration. With this expression for β and with r , c and k constants, the Eq. (7c) gives:

∂q(x, t)

∂t
= ϕ1

∂q(x, t)

∂x
+ ϕ2

∂2q(x, t)

∂x2
+ ϕ3

∂3q(x, t)

∂x3
+ ϕ4

∂4q(x, t)

∂x4
(7d)

where the coefficients φi , i = 1, 2, 3, 4 are given by:

ϕ1 = dnqm−1 ∂q

∂x

ϕ2 = dqm

ϕ3 = rcnqm−1(−1 + 2qm)
∂q

∂x

ϕ4 = −rcqm(1 − qm)

1x2

1t
=

(
L0

m

)2 m2

T0
=

L2
0

T0
.

Figure 5 illustrates the variation of β with q(x, t) for several values of m. For m < 1 the retention

effect reaches the maximum, that is β = 0.5 for very low saturation quotient. That is, for relatively low

levels of mass concentration, the capacity of the supporting medium to block diffusion is close to the

upper limit. For m > 1 the situation is reversed. The maximum blocking effect is reached for relatively

high saturation quotient (Fig. 5).

An Acad Bras Cienc (2011) 83 (4)



“main” — 2011/10/14 — 0:28 — page 1458 — #16

1458 LUIZ BEVILACQUA, AUGUSTO C.N.R. GALEÃO and FLAVIO P. COSTA

m=1

m>1

m<1

q

1

1

(1,1)

(0,0)

=0,5

=1

=0,5

q=1

Fig. 5 – Variation of the parameter β as a function of the saturation quotient q(x, t).

For the case of linear correlation between β and q, that is m = 1, the Eq. (7d) reduces to:

∂q

∂t
= d

(
∂q

∂x

)2

+ dq
∂2q

∂x2
+ rc(−1 + 2q)

∂q

∂x

∂3q

∂x3
− rcq(1 − q)

∂4q

∂x4
(7e)

Close to the maximum retention effect that is when q(x, t) is in the neighborhood of 0.5, we may write

q(x, t) ≈ 0.5 + ε(x, t). Then, close to this point, the Eq. (7e) can be written:

∂ε

∂t
=

(
d

2
+ ε

)
∂2ε

∂x2
− rc

(
1

4
− ε2

)
∂4ε

∂x4
+

∂ε

∂x

(
d

∂ε

∂x
+ 2rcε

∂3ε

∂x3

)
(8)

CONCLUDING REMARKS

The phenomenon of diffusion with retention has been already observed and reported by several authors.

Analytical formulations have also been proposed by some authors based on certain assumptions focused

on the particular problem under consideration. All of them assume consistently the Fick’s law as the

analytical representation of the diffusion process even in the presence of retention effects. Consequently,

the governing equations for diffusion with retention appearing in the literature so far, to the best of our

knowledge, belong to the class of the second order partial differential equation as in the classical diffusion

approach. They are as a matter of fact modified versions of the classical diffusion equation. As a conse-

quence it would be virtually impossible to derive a general theory since each problem requires a particular

approach. The classical solution could apply with the introduction of sources and sinks, such that the

overall effect on the number of particles present in the medium remains unaltered after sufficiently long

time. But as explained before, this is a different phenomenon since it requires energy exchange with the

surrounding medium.

We believe that the diffusion through the brain intracellular space (Nicholson and Sykova 1998, Mota

et al. 2004) may be analyzed with the theory proposed here. The intracellular spaces, that is, the substratum

where neuroactive substances and molecules circulate, introduce a three-dimensional diffusion process
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due to the tortuosity of the free trajectories. If the tortuosity acts as an obstacle introducing only a kind of

circulation orthogonal to the main diffusion direction, the process may be simulated by a temporary delay

and the approach introduced here may represent this type of phenomenon. This is a typical example of a

complex problem being simulated by a general decomplexfication model.

This paper shows that the second order differential equation is not adequate to represent the physics

of diffusion with retention. The retention process requires a fourth order term multiplied by a control

factor β(1 − β) that is essential to avoid the formation of unattainable mass concentration. It is remark-

able that the solution of the discrete problem of population invasion with temporary territory occupation

provided the fundamental clue to derive the solution of the respective continuous problem. It has been

shown very clearly that a fourth order term appears in a straightforward manner to represent the retention

phenomenon. We believe that this argument suffices to prove the need to introduce this term to achieve

an accurate model for diffusion with retention. Problems with a source term are even more sensitive

to the presence of the fourth order term. Indeed the stability conditions cannot be correctly formulated

without the consideration of the retention coefficients ri j and ci j . Moreover, the redistribution parameter

β plays a very important role on the stability conditions. Indeed, for β ≈ (1 − ε) where ε is small,

solutions of the type ζ = ζ0 exp
(
2π i x

/
λ − ωt

)
may cause instability for a very large range of frequen-

cies independently of the values of the diffusion and retention coefficients (Bevilacqua et al. in press).

This means that a state of relative intense diffusion coupled with an external source is very sensitive to

small retention perturbations for a very large frequency range.

Fourth order terms may also appear when the Fick’s law is expanded to introduce nonlinear terms

(Cohen and Murray 1981). This approach, however, has no connection with the retention phenomenon.

Moreover, the nonlinear expansion of the Fick’s law introduces always nonlinear terms in the governing

equation and ignores the control parameter multiplying the fourth order term. The approach presented here

doesn’t require necessarily the introduction of nonlinear terms in the governing equation.

It is worthwhile mentioning the occurrence of fourth order terms in other engineering and physical

problems as those related to the determination of thin films profiles. Examples are molecular beam epitaxy

(Barabási and Stanley 1995) and surface coating with viscous fluids (Schwartz and Roy 2004, Myers 1998,

Mullins 1957). Fourth order term also appears in the partial differential equation for the determination of

the entropy evolution connected to the Shannon information density (Broadbridge 2008).

The theory presented here is satisfactory for moderate temperatures and small temperature variations.

The extended theory including thermodynamic coupling has still to be developed. Classical approaches

can be found in the current literature (Kirkland et al. 1990, Eon et al. 1997, Fitch et al. 1996, Schimpf

and Giddings 1989), but there is no satisfactory theory including retention effects. The determination of

the functional dependence of β on mass concentration, on temperature and on other intervening molecular

forces is, for instance, a challenge for further investigation. We believe, however, that, before extending

the theory to include energy equations, the experimental validation of the blocking effect as introduced

here, for thermodynamically stable processes, should be done. To concentrate efforts to find experimen-

tal evidence of the functional dependence of β on the saturation quotient is of particular importance.

The terms of the matrices C and R have also to be determined experimentally. As a first step it is advisable

to focus the attention on homogeneous media and one-dimensional flow. For these cases, the terms of
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matrices R and C come together (rc) which makes the experimental analysis easier despite being limited

regarding the phenomenology inherent in the process.

Analytical solution of the equations derived above could be found maybe only for very particular

cases. We believe that efforts should be concentrated on qualitative behavior, asymptotic and numerical

solutions. Similar equations have been studied by several authors (You and Kavet 2000, Lu et al. 2007,

Rubinstein et al. 1989, Bernoff and Bertozzi 1995, Myers 1998).

We believe that the theory presented here is consistent, compatible with a very robust discrete approach

and represents satisfactorily the retention phenomenon in reactive media. We have introduced a general

retention matrix for the sake of completeness. Possibly the retention matrix is also a diagonal matrix,

which simplifies considerable the formulation.

Finally other type of phenomena in reactive media as counter-diffusion may occur (Brandani et al.

2000). For this case a reactive medium is one that has the property of triggering a mechanism that

partially reverses the flow direction. This means that particle dispersion may occur simultaneously as

diffusion processes in opposite directions. This mechanism may be thought of as being induced by the

presence of ionic channels distributed in the support medium that are able to partially reverse the flow

direction. The governing equations for this case may be derived in a similar way. Fourth order terms,

however, may not appear in the governing equations.
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RESUMO

O objetivo último desse trabalho é apresentar uma nova formulação analítica para simular difusão com retenção em um

meio reativo sob condições termodinamicamente estáveis. A análise da difusão com retenção em um meio contínuo

é desenvolvida a partir da solução de um problema equivalente usando uma abordagem discreta. A nova lei pode

ser interpretada como a redução de todos os processos de difusão com retenção a um fenômeno unificador que pode

simular adequadamente a retenção. O propósito principal desse trabalho é apresentar uma nova formulação analítica

para simular difusão com retenção em meio reativo termodinamicamente estável. A análise da difusão com retenção

em um meio contínuo é desenvolvido a partir da solução de um problema equivalente usando uma abordagem discreta.

A nova lei pode ser interpretada como a redução de todos os processos com retenção a um fenômeno unificado que

pode simular adequadamente o efeito de retenção como um movimento circulatório. É notável que a equação que

governa o fenômeno exige a inclusão de um termo diferencial de quarta ordem conforme sugerido pela abordagem

discreta. A fração relativa β das partículas difundindo-se no meio é introduzida como um parâmetro de controle no

processo de difusão-retenção. Esse parâmetro de controle é essencial para evitar retenção independente do processo de

difusão. Duas matrizes contendo parâmetros relativos às propriedades materiais são introduzidas e relacionadas com

a hipótese de circulação. A equação que governa o fenômeno pode ser altamente não linear mesmo se as propriedades

materiais forem constantes desde que o efeito de retenção seja função da concentração, isto é que β seja função da

concentração.
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APPENDIX

SYMMETRIC DISTRIBUTION WITH RETENTION

Consider the symmetric distribution with retention as displayed in Figure 1. The distribution scheme can

be written as:

pt
n = (1 − β)pt−1

n +
1

2
βpt−1

n−1 +
1

2
βpt−1

n+1 (A1a)

pt+1
n = (1 − β)pt

n +
1

2
βpt

n−1 +
1

2
βpt

n+1 (A1b)

Reduction of the right hand side of Eq. (A1b) to time t − 1 leads successively to:

pt+1
n = (1 − β)

[

(1 − β) pt−1
n +

1

2
βpt−1

n−1 +
1

2
βpt−1

n+1

]
+

1

2
β

[

(1 − β) pt−1
n−1 +

1

2
βpt−1

n−2 +
1

2
βpt−1

n

]

+
1

2
β

[

(1 − β) pt−1
n+1 +

1

2
βpt−1

n +
1

2
βpt−1

n+2

]

pt+1
n = (1 − β)2 pt−1

n + β(1 − β)
(

pt−1
n−1 + pt−1

n+1

)
+

1

4
β2

(
pt−1

n−2 + pt−1
n + pt−1

n−1 + pt−1
n+2

)
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Subtracting pt
ngiven by (A1a) we get successively:

pt+1
n − pt

n = −β (1 − β) pt−1
n + β(1 − β)

(
pt−1

n−1 + pt−1
n+1

)
−

1

2
β

(
pt−1

n−1 + pt−1
n+1

)

+
1

4
β2

(
pt−1

n−2 + 2pt−1
n + pt−1

n+2

)

pt+1
n − pt

n = β

[
−

1

2

(
pt−1

n−1 + pt−1
n+1

)
+ (1 − β)

(
pt−1

n−1 + pt−1
n+1 − pt−1

n

)
+

1

4
β

(
pt−1

n−2 + 2pt−1
n + pt−1

n+2

)
]

pt+1
n − pt

n = β
1

4

[
pt−1

n−2 − 2pt−1
n−1 + 2pt−1

n − 2pt−1
n+1 + pt−1

n+2

]

+ (1 − β) β
1

4

[
− pt−1

n−2 + 4pt−1
n−1 − 6pt−1

n + 4pt−1
n+1 − pt−1

n+2

]
(A2)

Note that the left hand side of Eq. (A2) represents the difference in time (t + 1 and t) of contents for

the same cell n. In general the time associated to the term t + k means t + k1t , where 1t is the time

increment. All terms on the right hand side are referred to the same time t − 1, but involve sum and

difference operations of cell’s contents for cells ranging from n − 2 to n + 2.

The term pt+1
n − pt

n on the left hand side is the first-order difference with respect to the variable t .

We assign this difference with the notation:

1p
∣
∣t+1t
n = pt+1

n − pt
n .

There is one term on the right hand side of Eq. (4) of the form pτ
n−1 − 2pτ

n + pτ
n+1, and another one of

the form pτ
n−2 − 4pτ

n−1 + 6pτ
n − 4pτ

n+1 + pτ
n+2. These expressions are the second- and fourth-order differ-

ences, respectively, with respect to the space variable, centered at the cell n. We assign these differences

with the notation:

12 p
∣
∣τ
n = pτ

n−1 − 2pτ
n + pτ

n+1 and 14 p
∣
∣τ
n = pτ

n−2 − 4pτ
n−1 + 6pτ

n − 4pτ
n+1 + pτ

n+2 .

The Eq. (A2) can now be written in terms of the first and second order differentials:

1pt+1t
n = β

{
1

4

[
12 pt−1t

n−1 + 12 pt−1t
n+1

]
− (1 − β)

1

4
14 pt−1t

n

}
. (A3)

Now assume pt
n = p(xn, t) where p(x, t) is sufficiently differentiable with respect to the space variables

and a smooth function of t . That is, we want to consider Eq. (4) as the discrete formulation of certain PDE.

For p(x) sufficiently differentiable, the first-order difference referred to xn and xn+1, respectively,

differ by a quantity of order 1x2 where 1x = |xn+1 − xn|. Certainly for p(x, t) the previous calculation

is true provided that time is kept constant, that is:

1pt
n+1 = 1pt

n + O (1x) .

In a similar way it can be shown that the deviation of the second order differences centered at points

xn−1 and xn , respectively, is of the order of 1x3, that is O(1x2). That is:

12 pt
n+1 = 12 pt

n + O(1x2) .
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Introducing these expressions in (A3) we obtain after some simple operations:

1pt+1t
n

1t
1t = β

{

1x2

[
1

2

12 pn

1x2
+

O
[
1x2

]

1x2

]

− 1x4 (1 − β)
1

4

14 pn

1x4

}t−1t

(A4)

or:
1pt+1t

n

1t
= β

{
1x2

1t

[
1

2

12 pn

1x2
+

O
[
1x2

]

1x2

]

−
1x4

1t
(1 − β)

1

4

14 pn

1x4

}t−1t

(A5)

where 12 pn and 14 pn are the second and fourth order difference expressions. Let us take:

1x2

1t
=

(
L0

m

)2 m2

T0
=

L0
2

T0

1x4

1t
=

(
L1√

m

)4 m2

T0
=

L4
1

T0

where L0, L1 and T0 are scale factors, and 1x = L0
/

m = L1
/√

m and 1t = T0
/

m2 are increment

size and time interval, respectively. Substituting the above relations in (A5) we get:

1pt+1t
n

1t
= β

{
1

2

L2
0

T0

12 pn

1x2
+

O
(
1x2

)

1x2
− (1 − β)

1

4

L4
1

T0

14 pn

1x4

}t−1t

. (A6)

The scale factors L0, L1 and T0, together with the parameter m, provide very useful clues to define the

sizes of space increment and time step for numerical integration of the finite difference equation.
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