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ABSTRACT
This paper discusses a number of aspects concerning the analysis, interpretation and reporting of correlations 
in agricultural sciences. Various problems that one might encounter with these aspects are identified, and 
suggestions of how to overcome these problems are proposed. Some of the examples presented show how 
mistaken and even misleading the interpretation of correlation can be when one ignores simple rules of analysis.
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INTRODUCTION

Pearson’s correlation coefficient (hereafter called 
simply “correlation coefficient”) is a statistical 
method of quantifying the association, or 
“coherence”, between two variables. It is therefore 
a very popular tool for analysing data that arise in 
many scientific disciplines, for instance biology 
(e.g., Soares et al. 2011, Juliá and Peris 2010, 
Camargo et al. 2011), biomedical and medical 
sciences (e.g., Camacho et al. 2010, Oliboni et al. 
2011), earth sciences (e.g., Fontana et al. 2010, 
Rangel et al. 2011), social sciences (e.g., Conte et al. 
2011), economics (e.g., Misztal 2011), ergonomics 
(e.g., Bin and Richardson 2010, Zadry et al. 2011), 
and of course agriculture (e.g., Chełkowski et al. 
2000, Cheng et al. 2010, Lakhesar et al. 2010, 
Bandehagh and Hossein Zadeh Moghbeli 2011, 

Cherati et al. 2011, Heidari Zooleh et al. 2011, 
Herrero et al. 2011, Kesavacharyulu et al. 2011, 
Rogiers et al. 2011).

Because of this pervasive usefulness, the 
methodology is taught at basic levels and to a very 
wide audience, even in secondary schools (Holmes 
2001). In fact it is so common, so frequently used (if 
not overused), and so “well-known” as a technique 
that quite probably many of those who apply it do 
so rather automatically, without the proper careful 
consideration of what is being done and how the 
results should be interpreted. Moreover, various 
recommendations and rules for interpretation that 
are offered by some textbooks and webpages may 
not be particularly accurate or helpful, and these 
can end up by doing more harm than good.

The purpose of this paper is therefore to 
assist agricultural researchers in understanding 
the correlation coefficient, by pointing out some 
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common problems and pitfalls in its use, and 
by clarifying some characteristics relating to its 
inference and its interpretation. We will show that 
sometimes too much credence is given to correlation 
and its testing, and that proper interpretation is 
essential if strange and non sensical results are to be 
avoided (even if one follows commonly advocated 
rules). We start by briefly elucidating the nature of 
correlation, and then go on to consider each of the 
main aspects that we wish to highlight.

WHAT IS CORRELATION?

Whenever a researcher has measured two variables, 
it is natural to ask whether or not they exhibit any 
“coherence” – in other words, whether they behave 
consistently in rising and falling in value together 
or whether there is no discernible pattern to their 
joint behaviour. At the theoretical level, such co-
association is quantified by the covariance between 
two random variables. This is the expected value 
of the product of the deviation from the mean of 
each variable. If the variables rise together then the 
two deviations tend to be either positive together 
or negative together, so their products tend to be 
positive and the expected value yields a positive 
covariance. If one rises as the other falls then 
positive deviations in one variable tend to be 
associated with negative ones in the other so the 
products tend to be negative and the expected value 
yields a negative covariance. On the other hand, if 
there is no discernible pattern in the behaviour of the 
two variables then positive and negative products 
will tend to cancel and the covariance will be near 
zero. However, the size of the covariance is not 
predictable in any given situation, other than that its 
absolute value must be no greater than the product 
of the standard deviations of the two variables. So 
dividing the covariance by this product of standard 
deviations yields the correlation, whose value must 
therefore lie between -1 and +1.

Theoretically, the correlation coefficient should 
therefore be limited to describing the association 

between two variables that are not in a cause-
and-effect relationship. In practice, however, it is 
common to use correlation simply as a measure of 
strength and direction of a relationship, whether or 
not it is a cause-and-effect relationship. Examples 
of when it is such a relationship can be found in 
numerous papers in which correlation is reported 
as a part of regression analysis (e.g., Torrico and 
Janssens 2010, Keiser 2010), but this in general 
is not how correlation should be applied for the 
simple reason that it measures different phenomena 
and between different types of variables than does 
regression analysis (e.g., Kozak 2008a).

Reasons for this confusion may be found in 
the calculations that result when the theoretical 
expectations of random variables are replaced 
by the averaging of observed variable values. 
The reasoning outlined above behind theoretical 
covariance and correlation values will in general 
only hold good for linear association when it is 
extended to the averaging of observed variable 
values. The calculation of the correlation coefficient 
will only therefore be a meaningful measure of 
strength of association if the relationship between 
the two variables is a linear one. This heavy 
reliance on linearity has linked correlation and 
regression in researchers' minds, leading to some 
of the potential problems mentioned above. Indeed, 
what to do when there is lack of linearity is the first 
consideration in our main following section.

PROBLEMS AND PITFALLS WITH INFERENCE, INTERPRETATION 

AND PRESENTATION OF CORRELATION

Lack of Linearity

If a relationship is non-linear then it may be 
possible to linearise it, by transforming one or 
both variables; the most common among such 
transformations are the logarithmic or root-
square ones. Alternatively, if the relationship is 
not linear but monotonic then Spearman's rank 
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correlation coefficient is an appropriate measure of 
association. If neither of these cases pertains, then 
applying correlation to a non-linear relation will 
not represent the association between two variables 
as it is an inappropriate measure to use. This can be 
well illustrated by Anscombe's (1973) four data sets 
that are shown in Figure 1. In each panel the value 
of the correlation coefficient is the same and equals 
0.82, being significant at p = 0.002. However, the 
assumption of linear association is valid only for 
the data in top left panel, while the other data sets 
violate this basic assumption, either representing 
non-linear association (top right panel) or being 
strongly affected or influenced by an outlier 
(both bottom panels).

Kozak and Wnuk (2011) proposed a graphical 
method of inspecting linearity of associations in 
multidimensional data sets that uses the fact that 
for linear association Pearson's and Spearman's 
correlation should give very similar values. So, 
a high difference between these two types of 
correlation coefficient points to a lack of linearity of 
the association of the two corresponding variables. 
This method can be particularly useful for data sets 
with many variables, but it can also be very well 
seen in Anscombe's quartet; referring to Figure 1, we 
obtain the following pairs of correlation coefficients:

Figure 1 - Anscombe's (1973) four data sets.

Thus, one should always check on linearity 
of an association in non-massive data before 
calculating a correlation coefficient, and the best 
way of doing so is by graphing pairs of variables 
in a scatterplot (as in Figure 1). By this means one 
can detect not only the possibility of a non-linear 
association, but also outlier observations, grouped 
data and other problems that are described in the 
following sections.

top left panel : Pearson = 0.82 Spearman = 0.82 diff = 0.00 

top right panel  : Pearson = 0.82 Spearman = 0.69 diff = 0.13

bottom left panel : Pearson = 0.82 Spearman = 0.99 diff = -0.17

bottom right panel : Pearson = 0.82 Spearman = 0.50 diff = 0.32

As previously mentioned, therefore, only the 
data in the top-left panel are appropriate for Pearson's 
correlation coefficient, and whether the other ones 
are appropriate for Spearman's correlation requires 
only checking if the corresponding relationships 
are monotonic.

Outliers

A single outlier can strongly affect the correlation 
value. This can be easily seen from Figure 1, where 
the two bottom panels suffer from outliers.

How outliers can affect correlation analysis 
has been discussed for example by Kozak (2009c), 
who argues that merely removing outliers is seldom 
the best choice (except, of course, when the outlier 
originates from an error in data entry, but this must 
be carefully checked). The point is to discover 
"what the outlier means and what implications 
it may have for the phenomenon being studied". 
In fact, outliers can be a source of interesting 
information on the phenomena being studied, often 
constituting the most interesting observations in the 
data set. Not checking data for outlier values can 
lead to gross mistakes in data analysis and most of 
all interpretation. We need to emphasize that for 
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correlation there can be three types of outliers that 
can affect interpretation: an outlier in the value of the 
first variable (which is a value that is not typical for 
this variable), an outlier in the value of the second 
variable, and an outlier in the bi-variate sense (which 
is a value that does not have to be atypical for these 
two variable considered separately, but is atypical 
for the relationship between them). An example of 
such a bi-variate outlier can be found in Figure 2.

I. versicolor it is much higher and reaches almost 
0.8. However, when we pool the data, the correlation 
coefficient increases up to 0.96, suggesting a very 
strong linear relationship. The reason for this 
strange-at-first-glance result is the shift of values 
for I. setosa considerably below the other ones. 
This is a completely technical "trick" that inflates 
the correlation coefficient to a non sensically high 
level, and if one does pool the data for correlation 
analysis, as in the left panel of Figure 3, one makes 
a methodological mistake. Unfortunately this is 
quite a common mistake in the applied sciences, 
agricultural sciences not being an exception.

Figure 2 - A bivariate outlier: a value that is not atypical for the 
distributions of variables x and y considered separately, but is atypical 
for their bivariate distribution.

Grouped Data

In agricultural data analysis we often encounter 
grouped data, the groups representing different 
populations (e.g., species, factor levels, vegetation 
seasons, locations etc.). If we operate on raw data 
from such groups, then before pooling such data 
(i.e., combining them into one correlation analysis 
by ignoring the grouping structure), the data must be 
carefully checked to make sure that there are no major 
discrepancies between the various within-group 
associations. For this, the best method is to simply 
graph the data in a scatterplot or a set of scatterplots.

A simple illustration comes from the Iris data set 
(Anderson 1935, Fisher 1936). Figure 3 highlights 
the problem, showing that for the two Iris species I. 
setosa and I. virginica the correlation is quite similar 
(slightly above 0.3, as shown by the practically 
parallel corresponding lines in the graphs), but for 

Figure 3 - Association between petal length and width for three 
Iris species: I. setosa (+), I. versicolor (×) and I. virginica (○). In 
the left panel, groups (Iris species) are ignored and the correlation 
coefficient (0.96) is determined for the pooled data. In the right panel, 
groups are correctly taken into account and correlation coefficient is 
determined for each species separately, giving 0.33 for I. setosa, 0.79 
for I. versicolor and 0.32 for I. virginica.

Such problems in data analysis are often 
referred to as the Simpson paradox (Simpson 
1951). Originally dealing with contingency tables, 
nowadays the Simpson paradox is also related to 
associations in general, such as those in Figure 3. In 
fact, one can often obtain much greater differences 
between the correlation for pooled data and separate 
within-group correlation coefficients.
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In agricultural research, one must be especially 
careful when thinking of using correlation for 
data from designed experiments, because as such 
they are always grouped (by factor(s) levels). In 
fact, to make it sensible to employ correlation for 
designed experiments, ideally one should calculate 
the coefficient separately for each factor level (for 
one-way experiments) or factor combination (for 
more complex experiments). This use of correlation 
is natural since each factor level represents some 
population of interest, but the fact that each factor level 
or combination should be represented by a sufficient 
number of replications is a problem. A possible 
alternative is to calculate the coefficient from means 
of factor levels or factor combinations. However, 
this use is not so natural because then the assumption 
for correlation that each observation comes from 
the same population is violated. Nevertheless, the 
coefficient can be employed as a summary statistic 
but care is needed when interpreting it. Moreover, in 
this case the sample size may be quite small, which 
presents additional problems for interpretation.

Sample Size

A small sample causes problems for any statistical 
inference, because estimation will not be precise. 
For agricultural researchers, this means that their 
conclusions may be of little value. The case of 
correlation is no different in general, but it is a 
particularly critical case because low precision in 
its estimation can easily lead to rather substantially 
false conclusions. Small samples can be very 
dangerous for the correlation coefficient (Kozak 
2009a, 2011). It is not uncommon to estimate a 
correlation coefficient based on 5 or so sample 
elements, but in this case there is an appreciable 
probability of obtaining an estimate very far from 
the true population coefficient.

We will support Kozak (2009a, 2011) results 
by showing how imprecise confidence interval 
estimation can be in small samples. According to 

Kozak (2008b), the most interesting information 
about correlation (providing that the assumptions 
have been approximately met) can be obtained from 
confidence interval estimation. This is because the 
standard estimator of Pearson's correlation has a 
non-symmetrical distribution, and so its standard 
error can be misleading too. A confidence interval 
for the correlation coefficient, on the other hand, 
shows how precise the estimation is: it shows the 
most probable range of the population coefficient, 
given the confidence level.

Figure 4 shows widths of confidence intervals 
for the correlation coefficient for different sample 
correlations and sample sizes. Note that the 
maximal width of such an interval is 2 (because 
correlation ranges from -1 to 1). Note also that 
an interval of width 1 is rather wide: this would 
mean for example obtaining an interval of (-0.5, 
0.5), not really a precise estimate. The graphs 
show that the width can vary greatly depending 
on the estimate of the correlation coefficient and 
on the sample size. The conclusion that can be 
drawn is clear cut: if one estimates the correlation 
coefficient from a small sample, one must be 
aware that a confidence interval for the population 
correlation will be very wide, meaning imprecise 
estimation and inference, and so interpretation 
of little precision. This should always be kept 
in mind because researchers seldom seem to be 
aware how imprecise the correlation coefficient is 
when estimated from a small (and even medium, 
of size 20-30) sample.

The problem is that it is rather uncommon 
to estimate confidence intervals for correlation 
coefficients, no matter how useful is this way 
of inference for correlation coefficient (Kozak 
2008b). Indeed, estimating such an interval, one 
can see that the estimation is often imprecise; 
otherwise, if one only reports a correlation 
coefficient and its corresponding p-value (see the 
section below), this important information about 
precision of estimation is usually lost.
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Hypothesis Testing

Reporting correlations with accompanying results 
of hypothesis testing is a standard in agricultural 
research. This is usually done either in the text, 
by reporting a correlation coefficient with the 
corresponding p-value for the null hypothesis that 
the population correlation is zero, or by reporting 
a correlation table with asterisks to represent 
statistical significance of the coefficients. Asterisks 
inform whether a corresponding hypothesis has 
or has not been rejected, so treat verification of 
the hypothesis as a black and white situation: the 
relationship is or is not significant. Kozak (2010) 
claims that asterisks used in such a context can 
do more harm than good for the reasons given 
above – such an emphatic statement (significant 
/ non-significant) disregards sample size and 
those situations in which the significance is at the 
boundary level (e.g., p-value is around 0.05). For 
these reasons Kozak (2010) suggests – wherever 

possible – giving up asterisks and reporting 
p-values instead. Confidence intervals are an 
even better option, especially because p-values 
are themselves random variables that can be very 
variable (Cumming 2008).

The problem of hypothesis testing for 
the correlation coefficient has been implicitly 
touched on above, while discussing sample size. 
The general and most common way of viewing 
hypothesis testing of correlation is to treat the null 
hypothesis that the population correlation is zero as 
an indication of lack of linear relationship between 
the two variables. This is correct, but do note that 
if the null hypothesis is not true and the population 
correlation is, say, 0.10, then it does not mean that 
there is a linear relationship. Kozak (2008b) showed 
that for very large samples (10,000 in his example), 
very small sample correlation coefficients can be 
statistically significant (0.023 in his example). Such 
significance merely suggests presence of a non-zero 
population correlation coefficient, not necessarily an 
“important” or substantial one. On the other hand, 
for small samples the sample correlation coefficient 
must be close to 1 to be “significant” (“significant” 
here meaning statistical significance, which is far 
from what would be considered significant by our 
logic – see, e.g., Reese 2004). Thus, hypothesis 
testing for correlation should always be treated with 
caution, confidence intervals – as discussed earlier – 
being a much better option.

Incorrect or Clumsy Interpretation

Correlation is far too often interpreted by applying 
strict boundaries for its values, for example |r| 
higher than 0.7 represents very strong association 
while |r| smaller than 0.3 means very weak or 
non-existing correlation. Such interpretation is 
incorrect because it totally disregards the context 
of the phenomenon studied (Kozak 2009b). 
A low value of the correlation coefficient can 
represent incredibly strong association, while a 

Figure 4 - Width of a 95% confidence interval for the correlation 
coefficient for samples of sizes of 5 to 10,000. Note that 99% 
confidence intervals would be even wider.
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high value can still represent weak correlation. 
One can never say that without knowledge of the 
context of the association.

Simply put, if the correlation is expected to be 
very high (e.g., close to 1) and in the sample it is 
not, then such association should not be considered 
strong (even when the value of the correlation 
coefficient suggests that, reaching e.g. 0.7 or 0.8), 
and if the correlation is expected to be near zero, 
then even the value of sample correlation around 
0.3 might be considered high.

For example, if two precise methods of 
measurement of the same parameter give different 
results with the correlation around 0.8, is it a strong 
correlation? Or, if two parameters that should not be 
related are correlated at the level of 0.4, is it a weak 
correlation? Responses to these questions should 
be given in the context of the problem as well as 
of the study, because possible reasons for such 
non sensical results can be confounding variables, 
pooled data (as in Figure 3) or an incorrectly 
designed study.

Presenting Correlations and Correlation Tables

When reporting correlations, one needs to 
remember that two issues are important: the size 
of the sample correlation and its precision. Thus 
when reporting it, one should provide not only 
its value, but also at least sample size, confidence 
interval or significance (although the last option 
is least preferred, especially when it is provided 
not as a p-value, but as an asterisk to represent 
bounds of p-values, as discussed above). In 
addition, one should remember that for correlation 
it suffices to use two decimal digits, three or more 
being redundant and representing only negligible 
variation (Kozak et al. 2011).

When there are many variables to correlate, often 
correlation coefficients among them are presented in 
a so-called correlation table or correlation matrix 
giving the correlations between every pair of 

variables. Sometimes a lower (White and Watson 
2010) (or upper) triangle is given only because 
the other triangle contains the very same values; 
often then the first data row and the last column 
are removed since they add no information, unless 
the lower and upper triangles report correlations 
from two different sets of data (e.g., two years). 
Sometimes one of the triangle of the correlation table 
reports sample correlations, while the other triangle 
their p-values (e.g., Alves et al. 2011).

Interpreting Correlation among Many Variables

If there are even just 5 or 6 variables in an 
observational study, many researchers are 
confused when trying to disentangle relationships. 
Unfortunately, the most frequent approach seems 
to be one in which all the correlations that are 
significant in the matrix are picked out and 
discussed individually, without considering 
whether, for example, the significant correlation 
between A and B arises as a consequence of the 
joint association of A and B with one of the other 
variables. Consequently, associations are interpreted 
disregarding any causal links that may be present 
among them. One can use partial correlations to 
establish such pathways, but this can be a very 
laborious process in the absence of prior intuition 
about the variables and a descriptive approach 
would be better. In fact, partial correlations are 
seldom encountered in agricultural applications 
(for an example see Lorentz et al. 2011), the 
opposite being the case in psychology (e.g., 
Rosmarin et al. 2011).

In this regard a few relatively simple ideas 
have been around for many years. In the first one, 
if one of the eigenvalues of the correlation matrix is 
zero, then the corresponding eigenvector elements 
give the coefficients in an exact linear relationship 
between the standardised variables. So, looking at 
eigenvectors corresponding to "small" eigenvalues 
can be very useful in detecting relationships among 
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all the (standardised) variables. Hills (1969) showed 
how a correlation coefficient can be converted into 
a "distance" between the two variables, so either 
a metric scaling or a cluster analysis will pick out 
groups of "similar" variables and thereby simplify 
the picture. Path analysis (Wright 1921) is one of the 
most common methods for identifying cause-and-
effect associations among a set of variables, also in 
agriculture (actually, Wright invented it for genetics 
and published in the Journal of Agricultural Research, 
so path analysis has its origin in agricultural sciences). 
Path analysis has been very popular in various fields, 
agriculture not being an exception (e.g., Lakshmi and 
Padma 2011, Maleki et al. 2011). More recently path 
analysis is considered a part of a more general method, 
structural equation modeling (Shipley 2002), with a 
new estimation methodology and more application 
possibilities; applications of such approach to path 
analysis are also becoming more and more popular 
in the agricultural sciences (e.g., Dhungana et al. 
2007, Kozak et al. 2008). It is worth mentioning that 
criticism of path analysis is practically as old as the 
method itself (Niles 1923), and does not seem to stop. 
Some say it is a method of statistical fantasy rather 
than reasoning (Everitt and Dunn 1991).

CONCLUSION

The correlation coefficient is one of the most often 
used statistical tools for analysing associations among 
traits. It is considered simple and intuitive, and it 
usually is so, but practice shows that far too often it is 
misinterpreted or misunderstood. But we do believe 
too that if one is aware of the aspects discussed in this 
paper, then one should be aware of the traps that exist 
for the unwary when interpreting correlations.

It is always important to bear in mind any 
assumptions that underlie the analysis being 
undertaken or interpretation of any results that 
have been obtained. We have already stressed 
the assumption of linear association that is 
necessary prior to the calculation of the correlation 

coefficient, and have mentioned the possibility of 
using Spearman's coefficient for those monotonic 
relationships that cannot be linearised. However, 
another important assumption that has not already 
been mentioned is one that is implicit in any 
inferential procedure carried out on a sample 
correlation coefficient. The calculation of the limits 
in confidence intervals or p-values in hypothesis 
tests depends on the approximate normality of the 
Fisher-transformed correlation value (see, e.g., 
Steel and Torrie 1980, p. 279). The approximation 
improves as sample size increases, so whereas the 
inferences for large samples will be reliable, in 
small samples there may be some inaccuracy and 
this should be borne in mind.

As a final point, it is worth mentioning a 
couple of cases where something slightly more 
complicated than a simple correlation coefficient 
may be needed. For data sets in which the different 
pairs of observations are subject either to different 
precisions or importances, and it is possible to 
quantify these differences by attaching weights to 
the observations, then one can calculate a weighted 
correlation coefficient simply by obtaining the 
constituent weighted variances and covariances in 
the usual way. For data sets in which there is no 
meaningful way of deciding which measurement 
belongs to which variable, one needs to calculate 
the intraclass correlation coefficient. A typical 
example would be when obtaining the correlation 
between the weights of twins. Here the usual roles 
of “variables” and “individuals” in correlation 
are reversed, because we only have one attribute 
(weight) but two values of it (one on each twin) and 
there is no meaningful way of saying which twin's 
weight should be x and which twin's weight should 
be y. Nevertheless, if we have n pairs of twins, then 
it is valid to ask what the correlation is for the n 
pairs of weights. This situation can be thought of 
as grouped data with two individuals in each of n 
groups, and is readily extended to the general case 
with more than two individuals in each group – 
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e.g. to obtain the association of some genetic trait 
among all the siblings of n families. Various ways 
of obtaining such a correlation have been proposed, 
but nowadays the coefficient is usually estimated 
using the between-group and within-group mean 
squares in an analysis of variance (see, e.g., Steel 
and Torrie 1980, p. 282). However, supplying 
further details would take us beyond the scope of 
the present article.

At the very end, it is worth adding that applying 
correlation does presuppose that the researcher 
knows what he or she is doing, because if the 
context for the correlation does not make sense, 
interpretation of the correlation coefficient will not 
make sense either.

RESUMO

Este artigo discute uma série de aspectos relacionados a 
análise, interpretação e forma de relatar correlações em 
ciências Agrárias. São identificados vários problemas 
que podem ser encontrados, bem como feitas sugestões 
de como superá-los. Alguns dos exemplos apresentados 
mostram quão erradas e mesmo enganosas podem ser as 
interpretações de correlação quando regras simples de 
análise são ignoradas.

Palavras-chave: design experimental, linearidade, aná
lise de trilha, paradoxo de Simpson, análise estatística.
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