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ABSTRACT
Considering the importance of monitoring the water quality parameters, remote sensing is a practicable 
alternative to limnological variables detection, which interacts with electromagnetic radiation, called 
optically active components (OAC). Among these, the phytoplankton pigment chlorophyll a is the most 
representative pigment of photosynthetic activity in all classes of algae. In this sense, this work aims to 
develop a method of spatial inference of chlorophyll a concentration using Artifi cial Neural Networks 
(ANN). To achieve this purpose, a multispectral image and fl uorometric measurements were used as input 
data. The multispectral image was processed and the net training and validation dataset were carefully 
chosen. From this, the neural net architecture and its parameters were defi ned to model the variable of 
interest. In the end of training phase, the trained network was applied to the image and a qualitative analysis 
was done. Thus, it was noticed that the integration of fl uorometric and multispectral data provided good 
results in the chlorophyll a inference, when combined in a structure of artifi cial neural networks.
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INTRODUCTION

Water is a natural resource of vital ecological and 
economic importance, essential for the survival of 
all life forms on the planet. Although its limitation 
in quality and quantity are widely reported, water 
resources currently available have been used over 
the years without adequate planning and control.

In order to evaluate and monitor water resources 
quality, researchers and managers analyze various 
substances and organisms in the water, trying to 
relate their presence to water quality standards. 

Among these, the chlorophyll a, which is the 
primary pigment of all photosynthetic organisms 
and it is present in all types of algae (Wetzel 2001), 
constitutes approximately 1 to 2% of the dry weight 
of planktonic algae and has been considered an 
indicator of algal biomass and also the trophic state 
of aquatic systems (Apha 1998).

Representative measures of chlorophyll a
concentration are fundamental to infer about 
the ecological processes that occur in a aquatic 
system, but they are diffi cult to achieve, particu-
larly when the sample size should be too large to 
allow a suitable analysis of the aquatic system. 
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In this context, as cited by Londe (2008), remote 
sensing is an effective alternative for monitoring 
water quality, for enabling studies in appropriate 
temporal and spatial scales. Moreover, chlorophyll 
a is considered an optically active component 
(OAC) due to the property of interact with 
electromagnetic radiation, causing different 
patterns of absorption and scattering. Thus, it 
is possible correlate its presence to refl ectance 
measurements obtained from spectral bands of 
remote sensing images.

Also, chlorophyll is considered a fl uorescent 
substance, i.e., when it is irradiated at a specifi c 
wavelength (excitation), the electronic state of the 
molecule changes and it tends to return quickly to 
ground state by a process of radioactive decay at 
a wavelength typically longer than the excitation 
(Holler et al. 2009).

According to Barbosa (2003), monitoring 
chlorophyll fl uorescence to obtain information 
about the aquatic system is a valid concept, 
since fl uorescence is measured externally to the 
photosynthetic organism and can be detected 
in a non-invasively and non-destructive way. 
Therewithal, remote sensors can be used with this 
intention, with the additional advantage that the 
measures can be taken at different scales, both 
spatial (from microns to kilometers) and temporal 
(from microseconds to months).

Thereby, the spectral peculiarities of chlorophyll 
provides several ways for its detection in large-
scale in aquatic systems. Scientifi c community 
should study methods for integrating data sources 
about the variable. If the purpose is the knowledge 
of the spatial distribution of the pigment, inference 
techniques should be used. Among these techniques, 
the use of Artifi cial Neural Networks (ANN) can be 
considered a powerful tool for spatial inference of 
environmental variables using remote sensing data.

As stated by Haykin (1999), an ANN is a 
parallel distributed processor made up of simple 
processing units, which have a natural propensity 

for storing experiential knowledge and making it 
available for use. It resembles the human brain in 
two aspects: (i) the network acquires knowledge 
using a learning process, and (ii) connection 
strengths between neurons, known as synaptic 
weights, are used to store the acquired knowledge.

The increasing acceptance of artifi cial neural 
networks in remote sensing due to its ability to (i) 
learn complex patterns, considering any complex 
non-linear relationship between the dependent and 
explanatory variables, (ii) generalization in noisy 
environments, which makes robust ANNs solutions 
in the presence of incomplete or inaccurate data, (iii) 
incorporate a priori knowledge and real restrictions 
in data analysis, (iv) to integrate different types of 
data for analysis, due to the absence of assumptions 
about the data set (Mas and Flores 2008).

The inference of biophysical parameters from 
remote sensing data using artifi cial neural networks 
assumes that the remote sensing data serve as input 
data to the network. A training sample, selected from 
the input data, is presented to net. After the training 
and defi nition of a structure of weight connections, 
the neural net is able to produce a numeric output for 
the studied parameter. The approaches that combine 
ANNs and remote sensing data have been applied 
to various fi elds of knowledge such as meteorology 
(Jang et al. 2004), agriculture (Danson et al. 2003), 
pedology (Chang and Islam 2000), oceanography 
(Bukton et al. 1999, Gross et al. 2000, Keiner and 
Brown 1999, Keiner and Yan 1998, Schiller and 
Doerffer 1999), among others.

Considering the above, it was identifi ed a 
small water body for public water supply, located 
within the urban limits of Marilia city, São Paulo 
State, called Cascata reservoir.

The research aimed to perform the spatial 
inference of chlorophyll a, using an artifi cial neural 
network, trained from a set of georeferenced measures 
of chlorophyll concentration collected in situ, and 
refl ectance values recorded in a multispectral image. 
The following specifi c objectives were outlined:
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• To verify the suitability of the fi eld 
fl uorometry to register low levels of 
chlorophyll a and to enable the acquisition of a 
dense sampling of the variable;
• To evaluate the potential of a multispectral 
image with high spatial resolution in the 
detection of chlorophyll a in the aquatic 
system;
• To analyze the performance of an artifi cial 
neural network in the process of spatial 
inference.

MATERIALS AND METHODS

The chlorophyll a spatial inference was made 
using an artifi cial neural network based on 
georeferenced measures taken by a fi eld fl uorometer 
between March 17-18th, 2011, and a radiometrically 
corrected multispectral image taken on March 20th, 
2011. The study was developed as follows:

• Field survey complemented by the 
acquisition of a multispectral image, obtaining 
the values of chlorophyll a in points with 
known coordinates;
• Worldview-2 multiespectral image treat-
ment and analysis;
• Defi nition of the architecture, input data 
set and training of the ANN;
• Application of the trained network to the 
image;
• Analysis of generated representations.
The sequence of these activities is presented in 
Figure 1, highlighting the three methodological 
approaches of the work.

To develop the research, different data 
sources were used: a multispectral image, a fi eld 
fl uorometer to acquire chlorophyll a concentration 
measurements, an artifi cial neural network 
simulator and other software and ancillary data.

Besides of fl uorometry data, a multispectral 
image Worldview-2 was used as input for the 

spatial inference. It is an orbital system developed 
by Digital Globe which is considered the successor 
of QuickBird series. According to the company, 
Worldview-2 is the fi rst commercial sensor to 
provide images with high spatial resolution in eight 
multispectral bands. The sensor characteristics are 
presented in Table I.

In the atmospheric correction of the image, a 
MODIS (MODerate resolution Imaging Spectrora-
diometer) product (MOD07_L2) was used. This 
product is generated from data collected by MODIS 
sensor installed on TERRA platform.

The acquisition of georeferenced measu-
rements of chlorophyll a was performed using a 
fi eld fl uorometer, which quantifi es the pigment 
through its fl uorescence. The equipment used was 
the 10-AU, produced by Turner Designs enterprise, 
from United States of America. It provides direct 
measurements of chlorophyll a fl uorescence and 

Figure 1 - Experimental design.
ANN: Artifi cial Neural Networks.
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other phytoplankton pigments in live algal cells. 
The technique in vivo fl uorescence (IVF) is ideal 
for profi ling in real time, because it does not 
require special treatment of the samples (Turner 
Designs 2004).

To locate correctly the sample elements it 
was used a GNSS (Global Navigation Satellite 
Systems) receptor.

The software used in the inference by ANN was 
the Java version of the Stuttgart Neural Network 
Simulator - JavaNNS (Fischer et al. 2001), available 
at <http://www.ra.cs.uni-tuebingen.de/SNNS/>. http://www.ra.cs.uni-tuebingen.de/SNNS/>. http://www.ra.cs.uni-tuebingen.de/SNNS/
IDRISI Andes software was used to convert the 
net input data for use in JavaNNS and to convert 
the output data from it. To the image preprocessing 
and to select data to training the ANN, the software 
ENVI 4.8 was used. Finally, ArcGIS was used to 
produce the maps and spreadsheets to assisting the 
task of data conversion.

CHLOROPHYLL A CONCENTRATION BY FIELD FLUOROMETRY

The data of chlorophyll taken by 10-AU fl uorometer 
are a relative measure, because the fl uorescence 
intensity is directly proportional to the fl uorophore 

concentration (Holler et al. 2009). Then, it is 
necessary to calibrate the fl uorometer measures 
using sample elements which the pigment are 
determined by a recognized laboratory method, 
enabling to obtain the actual concentration of 
chlorophyll a.

The fi eld campaign carried out between March 
17-18th, 2011; it aimed to acquire measures and 
also to calibrate the instrument. Simultaneously the 
acquisition of the fl uorometric measures, a punctual 
sampling was made in the fi rst day, in which aliquots 
of water were collected in each point for laboratory 
determination of chlorophyll a. The points were 
defi ned based on a random sampling scheme, and 
were properly positioned using a GNSS receiver 
Hiper GGD. The survey method used was the Stop-
and-Go, or relative semi-kinematic. A base receiver 
was positioned on the side of the reservoir, and its 
coordinates were defi ned by relative static positioning.

The aliquots of water collected were stored 
at low temperature for subsequent determination 
of chlorophyll a concentration using the High a concentration using the High a
Performance Liquid Chromatography technique 
(HPLC) in the laboratory of the Núcleo de Pesquisas 
Avançadas em Matologia (NUPAM / FCA) at the 
Universidade Estadual Paulista (UNESP) Botucatu.

The determination of chlorophyll concentra-
tion in the sample elements was necessary to do the 
calibration curve and consequent adjustment of the 
readings of the fi eld fl uorometer. To do this curve, 
8 sample elements were used, ensuring a good fi t.

The collection in continuous flow was 
carried out on March 18th, 2011. The course of 
collection was recorded with a GNSS receiver, 
this time using kinematic relative positioning 
method with the same base point used in Stop-
and-Go positioning. To synchronize fl uorescence 
measures and the coordinates of the points, the 
two instruments had their collection rates set to 5 
seconds and were triggered simultaneously. The lag 
between them was 2 seconds and was considered 
acceptable. Thus, with fl uorometer data calibrated 

TABLE I
Worldview-2 system specifi cations.

Launch October 8, 2009
Orbit Type Sun-synchronous

Orbit Altitude 770 km
Spatial Resolution 

(at Nadir)
Panchromatic: 0,46 m 
Multispectral: 1,84 m

Spectral Bands Coastal (400 – 450 nm)
Blue (450 – 510 nm)
Green (510 – 580 nm)
Yelow (585 – 625 nm)
Red (630 – 690 nm)
Red Edge (705 – 745 nm)
Near InfraRed 1 - NIR-1
(770 – 895 nm)
Near Infra Red 2 - NIR-2
(860 – 1,040 nm)

Dynamic Range 11 bits per pixel

Font: Adapted from Digital Globe 2010.
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and synchronized with UTM coordinates, a dense 
sampling with 728 observations of the actual 
concentration of chlorophyll a was obtained in the 
study area.

MULTISPECTRAL IMAGE PREPROCESSING TO CHLOROPHYLL 

DETECTION

The multispectral image Worldview-2 was taken on 
March 20th 2011. In this case, the time lag with the fi eld th 2011. In this case, the time lag with the fi eld th

campaign was two days. Since there was no sudden 
weather change, or direct interventions in the water 
resource that could signifi cantly alter its limnological 
characteristics, this delay was acceptable.

This scene was acquired at the process level 
2A or Ortho Ready Standard Imagery. This is an 
image with basic level of radiometric and geometric 
correction, including correction of sensors inherent 
errors and relating the scene to a reference system.

Atmospheric correction is essential for 
handling the spectral attributes of a scene. In the 
present investigation the atmospheric correction 
was performed in ENVI 4.8 software, using the 
FLAASH module (Fast Line-of-sight Atmospheric 
Analysis of Spectral Hypercube).

First, it was performed the calibration of 
Worldview-2 radiance values. ITT (2010) cites 
that the images of this sensor are provided to 
users on relative radiance values, therefore the 
initial processing applied to spectral bands was 
the radiometric calibration, resulting in absolute 
radiance values in the sensor. The procedure for 
this calibration is described in Updike and Comp 
(2010), and is also implemented in ENVI.

Thereafter, atmospheric correction was made. 
For this, FLAASH requests the parameters of 
the geometry scene acquisition and atmospheric 
parameters related with the atmospheric model, water 
vapor concentration, aerosol model and visibility.

The atmospheric model was defi ned as tropical, 
since this is the geographical region of study area; 
the parameter of water vapor concentration was 

based on the standard value for a tropical model, 
with the addition of a multiplier factor that was 
determined from the MOD07_L2 product, whose 
data were collected simultaneously with the 
Worldview-2 acquisition.

The aerosol model was urban, since the 
reservoir is located in the urban area of Marilia city 
and the visibility value was empirically defi ned as 
suggested by Ennes (2008), that cites the need to 
estimate initially the visibility parameter and then 
reset it until the refl ectance spectra of the resulting 
model are consistent with the spectral response 
expected for the targets.

After atmospheric correction of the scene was 
performed, the target of interest was isolated. This 
made it possible to analyze separately its spectral 
attributes and later modeling the occurrence 
of chlorophyll a in the study area. Water body 
isolation was performed using the result of an 
image segmentation of spectral band 7 (NIR-1 is 
the region that the spectral response of the water 
is almost null, which permit to differentiate it from 
other targets), whose mask was used to extract the 
surface refl ectance values just inside the water 
body in each Worldview-2 spectral band.

The next steps aimed at exploring the spectral 
attributes of the image. Although the scene has 8 
spectral bands, only 7 were used in the study. This 
because the NIR-2 band (860-104 nm) is not a region 
suitable for spectral studies of water, since this target 
absorbs all incident electromagnetic radiation.

A visual inspection of the image shows 
a speckled effect throughout the water body. 
Considering the fact that signifi cant changes in 
the spectral response of a small water body rarely 
occur abruptly and since the spatial resolution of the 
image is 2 meters, this effect may not be associated 
with the response of water itself.

In this sense, the use of fi ltering techniques to 
remove the effect of spectral variation, since this 
does not represent the actual interaction of REM in 
the water column, was the option found to match the 
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use of these images to infer chlorophyll. For image 
smoothing, is commonly used low-pass fi lters, 
which preserve the low frequency components 
of an image, smoothing it out. Richards and Jia 
(2006) highlighted that the low-pass fi lters based 
on the mean and median are the most commonly 
used smoothing method. While the mean fi lter 
smoothes the image in general and also can remove 
edges, the median fi lter preserves it, and may even 
enhance this information. In this sense, searching 
for a product suitable for spatial inference, it was 
performed a smoothing with two types of fi lters, 
both using a neighborhood of 3 x 3 pixels.

ARTIFICIAL NEURAL NETWORK TO SPATIAL INFERENCE OF 

CHLOROPHYLL-AHLOROPHYLL-AHLOROPHYLL-

To the geographical inference process it is necessary 
to defi ne the input and output data to insert to the 
network. Thus, the Worldview-2 spectral bands in 
which chlorophyll presence can change the spectral 
response of water were the input data and both 
bands with original surface refl ectance and the ones 
smoothed with the mean fi lter were used. Then, the 
spectral bands were combined in three different 
ways, enabling the creation of six sets of input data.

The fi rst three sets (I, II and III) are 
combinations of original spectral bands, while sets 
IV, V and VI constitute arrangements among the 
smoothed spectral bands (Table II). 

The fi rst combination used seven bands in 
which water has spectral response (bands 1 to 7) 
and it was used to evaluate the contribution of 
the refl ectance values throughout the spectrum to 
the spatial modeling of chlorophyll. In the second 
type of combination, the aim was to use the bands 
whose wavelengths are strongly infl uenced by 
the presence of chlorophyll, presenting features 
of scattering (bands of green and red edge), or 
presenting absorption features, such as the red light 
region (combinations II and V). The third set aimed 
to select the regions with the two highest peaks of 

refl ectance, which have chlorophyll contribution 
to the defi ne their magnitude, i.e., bands 3 (green) 
and 6 (red edge), generating the combinations III 
and VI. The combinations of bands specifi ed are 
summarized in Table II.

TABLE II
Input data combination to the JavaNNS.

Set Description
I All original bands (1, 2, 3, 4, 5, 6, 7)
II Original spectral bands 3, 5, 6
III Original spectral bands 3, 6
IV All smoothed bands (1, 2, 3, 4, 5, 6, 7)
V Smoothed bands 3, 5, 6
VI Smoothed bands 3, 6

As the purpose was to infer chlorophyll a, 
the output data refer to discrete point values of 
the pigment concentration in the water body. The 
image with chlorophyll a values was produced in 
IDRISI Andes, using the geographic parameters of 
Worldview-2 scene and converting the chlorophyll 
a values from a vector fi le to the matrix format. 
Thus, the input data (image) and output (chlorophyll 
concentration) of the neural network are spatially 
corresponding.

After the selection of input and output data 
of the network, the next step was to defi ne the 
training and validation sets. As stated by Zell et al. 
(1995), the generalization ability of neural network 
is one of its greatest advantages, and for better 
generalization, the authors recommend that the 
database is divided into three parts:

• Training set: used for learning the neural 
network. The error of the database is minimized 
during training;
• Validation set: used to estimate the perfor-
mance of neural network on the set of patterns 
that were not trained during learning.
• Test set: used to check the overall perfor-
mance of the network, which is actually the data 
set that the trained network will be applied.
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Since the test set is the whole scene, it was 
necessary to define the training and validation 
sets. They were selected from the survey of 
continuous flow of the chlorophyll a, and 
consisted of a set of 282 elements for training 
and 260 for validation of ANN.

To use the JavaNNS, the data must be converted 
to a fi le format that the simulator recognizes (*. pat). 
Thus, it was necessary to create such fi les after 
defi ning the training and validation samples. For 
this, a computer program was implemented, that 
permits to create the patterns fi les from the data 
required for ANN training and validation and, from 
there, it was possible to establish the architecture 
of the neural network.

By defi nition, the number of units of the 
input layer corresponds to the number of input 
layers. The output layer is the number of expected 
responses that, in the case of inference, it is just 
one. For each combination of input data, different 
network architectures were evaluated, which were 
constituted of one or two hidden layers and a 
variable number of processing units in these layers.

The actual information processing within the 
units in JavaNNS is modeled with an activation 
function and output function. First, the activation 
function calculates the unit net infl ow from the 
weighting of the output values of previous units. 
Then it calculates the new activation of this unit, 
using the selected activation function, and the 
output function takes this result to create output 
value, which will serve as input for the next layer 
of units (Zell et al. 1995).

It is possible to edit the activation functions 
of each layer in JavaNNS, allowing greater 
control in defi ning the network topology. For this 
work, following the guidelines of Osório (2006), 
the units of the input layer have an activation 
function of the type identity, in the hidden layer 
activation function was sigmoid (act_logistic), 
and the output layer the activation function was 
defi ned as 'act_identityplusbias', in which there is 

a component that adds a gain to the entry value of 
the function, providing real value of the inferred 
variable. The author cites this setting as suitable 
for tasks of approximation/regression, as is the 
case of this research.

The output functions of units in all layers 
were defi ned as identity function, to keep the 
value processed by the activation function as a 
result of processing in that unit. This confi guration 
of the units in each layer was maintained for all 
architectures tested.

The neural network training is the way the 
net learns that a specifi c entry corresponds to a 
given value of output. Therefore, it is through the 
behavior of a neural network during the training 
that its suitability for the categorization of available 
data can be assessed. This means that in addition 
to network architecture (defi ned by the number of 
hidden layers and number of units in each layer) 
must be chosen the parameters related to the 
functions of learning, the rules for updating the 
weights network boot and the criteria to stop the 
training (Galo 2000).

The training algorithm used was the Resilient 
Backpropagation (RPROP), which is a variation of 
the classic backpropagation and has been frequently 
used for studies of geographical inference (Moreira 
2001, Nunes et al. 2007). The RPROP is an algorithm 
of local adaptation, which requires the defi nition 
of three parameters: the initial update value (Δ0), 
a maximum update limit (Δmax) and the decay 
exponent of the weight (α) (Zell et al. 1995).

The fi rst one, as the name implies, is an initial 
value, from which the weights will begin to be 
adjusted. The maximum update limit is to prevent 
the weights to be changed abruptly and the decay 
exponent of the weight aims to reduce weight, 
resulting in better generalization (Moreira 2001).

The training algorithm and its parameters were 
defi ned based on Zell et al. (1995), Moreira (2001) 
and Nunes et al. (2007). It was used the RPROP 
learning algorithm, Δ0 equals to 0.1, Δmax equals 40 
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and the value of α equals to 4. Some tests were made 
using Δmax = 50 and α = 5, but it was verifi ed that the 
change in Δmax did not cause signifi cant changes in 
the results, while changing α considerably damaged 
the representations generated.

Another important component of training is 
to establish an ending criterion of the iterations 
of the learning algorithm. Since the simulator 
allows to operate simultaneously with two sets of 
standards, training and validation sets, the most 
appropriate way to check the generalization ability 
of the network is to monitor the fall of the mean 
square error (MSE) of the validation set during the 
training phase, and end the process when it reaches 
a minimum value (Zell et al. 1995). For each data 
set, the validation MSE obtained the minimum 
value in different iterations.

After the training of each network, these were 
applied to the entire area of the experiment. The 
JavaNNS provides a result in ASCII format with a 
specifi c encoding, so it was necessary to convert it. 
After that, the text fi le containing the coordinates and 
the inferred values were imported into IDRISI Andes 
and later converted to an image representation, in 
the same way was made to generate the chlorophyll 
image collected with fl uorometer.

Finally, a visual analysis and statistical analysis 
of the basic attributes of the data were done, trying 
to compare them with data collected with the 
fl uorometer to determine the degree of similarity 
with real data.

RESULTS

CHLOROPHYLL CONCENTRATION IN THE EXPERIMENTAL AREA

As stated, from a set of sample with values of 
chlorophyll fl uorescence measured by a fi eld 
fl uorometer and chlorophyll concentration 
determined in the laboratory, it was possible to 
fi t a regression line for the fl uorometric measures 
calibration. The points used in the calibration 
include the predominant range of fl uorescence 

measurements, so the regression line used for 
calibration was modeled according to the real 
characteristics of the fi eld data, resulting in the 
equation (1):

[Chl-a] = 0.3501* F         (1)0.3501* F         (1)0.3501* F

Where [Chl-a] is the concentration of 
chlorophyll estimated and F is the value of F is the value of F
chlorophyll fl uorescence.

The correlation and the coeffi cient of deter-
mination obtained were satisfactory (r = 0.8915 and 
R2 = 0.7925, respectively), enabling to update the 
values of the chlorophyll a concentration measured 
with the fl uorometer in continuous fl ow on March 
18th 2011. The basic statistics obtained from a th 2011. The basic statistics obtained from a th

sample of 728 observations is presented in Table III.

TABLE III
Basic statistics of fl uorescence obtained 

by sampling in continuous fl ow.

18th March 2011
Minimum 1.57
Maximum 5.22

Mean 2.36
Standard deviation 0.41

It is noticed low values of chlorophyll a 
concentration (with an average of 2.36 mg/L) and 
little variation in these readings (s = 0.41). The small 
variability in the data increases the diffi culty of the 
spatial inference and modeling the phenomenon.

SPECTRAL REFLECTANCE OF CHLOROPHYLL OBTAINED

BY THE IMAGE

The statistical indicators of the Cascata reservoir 
with and without atmospheric correction in seven 
spectral bands used in the study are presented in 
Table IV.

Comparing the digital numbers and refl ectance 
averages in each band, it is realized they exhibit the 
same variation, reducing their values from band 1 
to band 2, then increasing in band 3, decreasing 
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again in the fourth band and so on. The standard 
deviation did not follow the same behavior, which 
may indicate with the minimization of atmospheric 
effects, the combination of different optically 
active components in the water body causes distinct 
changes throughout the electromagnetic spectrum.

Figure 2 shows the refl ectance image of the 
spectral band 3 before and after smoothing.

The high variation in the values recorded in 
the original band 3 of Worldview-2 image (Figure 
2a) was smoothed by a mean fi lter (Figure 2b) and 
median fi lter (Figure 2c). However, last fi lter caused 

TABLE IV
Basic statistics of Cascata’s reservoir spectral attributes.

Digital Number Surface refl ectance(*104)
Spectral Bands Mean Std. Deviation Mean Std. Deviation

B1 – Coastal 334.6565 9.6281 394.5470 66.2251
B2 – Blue 247.6795 10.3307 388.8598 58.0216

B3 – Green 264.3918 14.7204 428.0365 47.8276
B4 – Yellow 183.5864 16.8027 375.7113 55.6964

B5 – Red 105.9276 14.5465 283.2701 62.5362
B6 – Red Edge 125.9864 28.2601 305.7339 92.5249

B7 – Near Infra Red 1 91.4104 35.1614 204.2784 103.1716

Figure 2 - Original refl ectance image of band 3 (a), the one smoothed with mean fi lter (b), and smoothed 
with median fi lter (c). 

a “wavy” appearance in the scene whereas the mean 
fi lter produced a more homogeneous image. So, the 
images smoothed with mean fi lter were used in the 
spatial inference of chlorophyll a, together with the 
original spectral bands.

CHLOROPHYLL A MAPPING AND ANN PERFORMANCE

The quality of inference depends on appropriated 
selection of the input data, the training and the 
validation areas. As shown in Table III, the actual 
values of chlorophyll have a small variation, so 

the areas chosen for training and validation must 
maintain this small variability. The statistical 
attributes of the areas of training and validation 
are presented in Table V.

The statistics presented in Table V indicate 
that, for both the training and validation data, 
chlorophyll a values vary little around the mean 
with a standard deviation of about 0.3, although 
the difference between the maximum and 
minimum value is approximately 2.2 and 1.5 for 
the training and validation data, respectively. In 
this sense, even though the extreme values cannot 
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be considered representative of the sample, it 
was decided to not remove them, since the use 
of average values could result in a representation 
with variability even smaller.

The network training and validation were perfor-
med in JavaNNS, in which a number of architectures 
and learning parameters were tested. For the best 
results, each set of input parameters of the synthesis of 
each ANN used and the respective numbers of cycles 
and MSE are presented in Table VI.

The parameters of the learning algorithm 
were kept the same in all networks and lower 
validation errors were obtained in different cycles 
for each ANN tested. In general, the number of 
cycles required was relatively small, because it is 
considered that the training paradigm used consists 
of an algorithm with faster conversion than the 
backpropagation one (Braga et al. 2000), with the 
exception of the second ANN (II - original bands 3, 
5 e 6) that had 3400 cicles.5 e 6) that had 3400 cicles.5 e 6

The evaluation of the results was done prima-
rily through the indices provided by the simulator, 
which indicated the quality of the architecture 
chosen based on the ANN training and validation 
data. In Table VI it can be noticed that the smoothed 
data provided validation errors smaller than the 
original data. Based on MSE, the best confi guration 
was the one based on spectral bands 3 (green), 5 (red) 
and 6 (red edge) smoothed (V). In this analysis, 
the selection of bands for specific features of 

TABLE V
Descriptive statistics of the training and validation sets.

TABLE VI
Descriptive statistics of the training and validation sets.

Training Validation

Minimum 1.568 1.603

Maximum 3.781 3.077

Mean 2.613 2.290

Standard deviation 0.312 0.344

Number of elements 282 260

Combination of input data Architecture Δ0 Δmax α # cicles MSEvalidation

I – all original bands 7-5-4-1 0.1 40 4 400 0.003906

II – original bands 3, 5, 6 3-2-1 0.1 40 4 3400 0.003858

III – original bands 3, 6 2-5-3-1 0.1 40 4 200 0.003780

IV – all smoothed bands 7-5-4-1 0.1 40 4 200 0.002801

V – smoothed bands 3, 5, 6 3-2-1 0.1 40 4 100 0.002733

VI – smoothed bands 3, 6 2-5-3-1 0.1 40 4 100 0.002892

chlorophyll a did not provide results far superior 
to the use of all bands. Thus, it is considered that 
the main contribution to improve the results of the 
network is associated with the need for multispectral 
image processing.

After analyzing the performance of each ANN 
itself, spatial representations of chlorophyll a were 
generated, also aiming to compare the results 
obtained with different confi gurations (Figure 3).

As the validation errors indicated, the 
networks trained with smoothed data showed 
results of spatial distribution of chlorophyll a
visually superior to the networks trained with 
original data. It is noticed again the importance 
of image preprocessing, and also how the 
characteristic of the input data remains in the ANN 
output, since the grainy appearance of the original 
images persisted.



An Acad Bras Cienc (2013) 85 (2)

529ARTIFICIAL NEURAL NETWORKS ON CHLOROPHYLL A INFERENCE

The resulting representations with the original 
bands did not allow observing regions with well-
defi ned chlorophyll concentration differences, while 
these differences were detected in smoothed images, 
especially the representations with spectral bands 
3, 5, 6 (V) and 3, 6 (VI). In these two results it is 
clear that the region with lower levels of chlorophyll 
occur near of the reservoir source, in its south region.

The representations with smoothed images 
showed well-defi ned edges with small amounts of 
chlorophyll and were inferred chlorophyll values 

even for a place with no water response, because 
of a little bridge in the small region in west. In the 
representations with the original data the bridge 
region is preserved without values inferred. Thus, 
it is clear that is required caution in the analysis in 
edge regions of smoothed images.

The mainly descriptive statistics of the 
attributes estimated by ANN different architectures 
(minimum and maximum values, mean and 
standard deviation) and the values obtained in the 
fi eld by fl uorometer are presented in Table VII.

TABLE VII
Descriptive statistics of the attributes estimated by ANN different architectures.

All original 
bands

Original 
bands
3, 5, 6

Original 
band 3, 6

All 
smoothed 

bands

Smoothed 
bands
3, 5, 6

Smoothed 
bands
3, 6

Fluorometer

Minimum 0.831 0.624 0.024 0.205 0.254 0.100 1.57

Maximum 2.810 3.122 2.881 3.006 2.717 2.654 5.22

Mean 2.514 2.536 2.519 2.406 2.378 2.380 2.36

Standard 
deviation

0.268 0.136 0.189 0.570 0.434 0.466 0.41

Figure 3 - Spatial representation of values inferred by different confi gurations of ANN.
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Table VII shows that none of the networks 
gave higher values of chlorophyll a, concentrating 
it on the range where there are more data (2 to 3 µg/L). 
Again, the representations that closest to the fi eld 
data were smoothed spectral bands 3, 5, 6 (V) and 
3, 6 (VI) in this order. This confi rms that from a 
set of multispectral images processed, the inclusion 
of bands in regions of the spectrum in which the 

spectral response of chlorophyll changes the 
spectral characteristics of the water provides better 
results in the inference.

The best performance in all analysis perfor-
med was found with the combination of smoothed 
bands 3 (green), 5 (red) and 6 (red edge) (V). The 
result of geographical inference of chlorophyll a
using ANN, for this data set, is presented in Figure 4.

Figure 4 - Chlorophyll concentration inferred from smoothed spectral bands 3, 5 and 6 of 
Worldview-2 image.
ANN: Artifi cial Neural Networks.

DISCUSSION

The effi ciency of a fi eld fl uorometry to estimate 
chlorophyll was certifi ed, providing an adequate 
amount of data to environmental modeling. 
However, to obtain reliable models, a critical 
step is the cali bration of the fl uorometric data, 
so the laboratory analysis of water must be 
carefully executed to enable the fl uorometric 
data represent reality, otherwise it should be 
clear that it is using a relative measure. In this 
work, whose water body studied had very small 
concentrations of the variable in question, it was 
observed that the techniques for determination of 

chlorophyll a were appropriate, since the sensing a were appropriate, since the sensing a
ranges of the fl uorometric method (fi eld) and 
HPLC (laboratory) are superior to those obtained 
by spectrophotometry.

Regarding the multispectral image, it is 
necessary to use spectral bands related with the 
chlorophyll response that was showed by the worst 
results obtained when all seven spectral bands 
were used. Also, it is important to reaffi rm the 
importance of atmospheric correction and analysis 
of the quality of the atmospheric model used. In 
this case, due the acquisition scene conditions was 
necessary its smoothing with a mean fi lter.
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For the use of the artifi cial neural networks is 
necessary to know the phenomenon to defi ne the 
activation functions. Moreira (2001) and Nunes 
(2007) used ANN for inference, but all activation 
functions of the units were defi ned as logistics 
functions, generating an output network between 
0 and 1, consistent with the application of these 
authors, since it sought to infer the degree of 
aptitude for some activities. In this work, a logistic 
function would not be appropriate, since it would 
not provide actual values of chlorophyll a.

The defi nition of training and validation sets 
should be done carefully, trying to include the 
main differences of the variable to be inferred, 
otherwise, the ANN can over-generalize the result. 
For this work, as the variation of chlorophyll a was 
small, the ability to extrapolate values has not been 
suffi ciently tested.

Finally, it was observed the need for additional 
analysis to evaluate the performance of the ANN, 
beyond of validation errors presented by the 
network. In this research, the use of visual analysis 
and comparison of statistical attributes were the 
alternatives found, but for cases where the variations 
of the model are greater, the correlation analysis 
can be used. Although this study had a suffi cient 
number of sample elements measured in the fi eld to 
perform this kind of the analysis, the characteristic 
of homogeneity of the variable chlorophyll a did 
not allow such operations.

CONCLUSIONS

The research allowed to evaluate the integrated 
use of spectral and fl uorometric data in spatial 
inference of chlorophyll a. It was noticed that the 
interaction between fl uorometric and multispectral 
data provided good results when combined in an 
artifi cial neural networks structure, allowing to 
infer the variability of the studied pigment.

Even presenting low and homogeneous values 
of chlorophyll a, it was possible to develop an 
appropriate model of inference, which represents 

the actual variations observed in situ. The research 
allowed the defi nition of the data set that best fi t 
the reality of the environment studied, which may 
serve as a basis for studies in other environments.

Finally, it is recommended to evaluate the 
methodology in areas with signifi cant variations 
of chlorophyll a, aiming to confi rm whether the 
method used for areas with small variations is also 
effective in cases of high variability.
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RESUMO

Considerando a importância do monitoramento de 
parâmetros da qualidade da água, o sensoriamento 
remoto é uma alternativa viável à detecção de variáveis 
limnológicas que possuem propriedades de interação 
com a radiação eletromagnética, chamadas componentes 
opticamente ativos (COA). Dentre esses, cita-se a 
clorofi la a, que é o pigmento mais representativo da 
atividade fotossintética em todas as classes de algas. 
Nesse sentido, o presente trabalho se propôs a desenvolver 
um método de inferência espacial da concentração de 
clorofi la a utilizando Redes Neurais Artifi ciais (RNA). a utilizando Redes Neurais Artifi ciais (RNA). a
Para atingir tal objetivo, foi utilizada uma imagem 
multiespectral e medidas fluorimétricas como dados 
de entrada. A imagem multiespectral foi tratada, 
os dados de treinamento e validação da rede foram 
cuidadosamente selecionados e, a partir disso, foi 
defi nida a arquitetura de RNA e parâmetros mais ade-
quados para modelar a variável de interesse. Ao final 
do treinamento, a rede foi aplicada à imagem e foi 
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efetuada uma análise de qualidade. Com isso, percebeu-se 
que a interação entre dados fl uorimétricos e multiespectrais 
forneceu bons resultados de aplicação quando combinados 
em uma estrutura de redes neurais artifi ciais.
Palavras-chave: sensoriamento remoto da água, 
fl uorescência, clorofi la a, inferência espacial, rede 
neural artifi cial.
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