
An Acad Bras Cienc (2015) 87 (2)

Anais da Academia Brasileira de Ciências (2015) 87(2):
(Annals of the Brazilian Academy of Sciences)
Printed version ISSN 0001-3765 / Online version ISSN 1678-2690

www.scielo.br/aabc

539-568

http://dx.doi.org/10.1590/0001-3765201520140299

AMS (2010): 60E05, 62E10, 62N05
Correspondence to: Saralees Nadarajah
E-mail: mbbsssn2@manchester.ac.uk

Parameter induction in continuous univariate 
distributions: Well-established G families

MUHAMMAD H. TAHIR1 and SARALEES NADARAJAH2

1Department of Statistics, Baghdad Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
2School of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

Manuscript received on June 9, 2014; accepted for publication on November 25, 2014

ABSTRACT
The art of parameter(s) induction to the baseline distribution has received a great deal of attention in 
recent years. The induction of one or more additional shape parameter(s) to the baseline distribution makes 
the distribution more flexible especially for studying the tail properties. This parameter(s) induction also 
proved helpful in improving the goodness-of-fit of the proposed generalized family of distributions. There 
exist many generalized (or generated) G families of continuous univariate distributions since 1985. In this 
paper, the well-established and widely-accepted G families of distributions like the exponentiated family, 
Marshall-Olkin extended family, beta-generated family, McDonald-generalized family, Kumaraswamy-
generalized family and exponentiated generalized family are discussed. We provide lists of contributed 
literature on these well-established G families of distributions. Some extended forms of the Marshall-Olkin 
extended family and Kumaraswamy-generalized family of distributions are proposed.

Key words: Beta-distribution, exponentiated family, Kumaraswamy distribution, Marshall-Olkin family, 
McDonald distribution, reliability properties.

INTRODUCTION

There has been an increased interest in developing generalized (or generated) G families of distributions 
by introducing one or more additional shape parameter(s) to the base- line distribution. There is no doubt 
that the popularity and the use of Euler-beta and -gamma functions in some G families of distributions have 
attracted the attention of statis- ticians, mathematicians, scientists, engineers, economists, demographers 
and other applied researchers. One reason might be the computational and analytical facilities available 
in programming softwares like R (packages), ox5, Python, Matlab, Maple and Mathematica, through 
which researchers can easily tackle problems involved in computing incomplete- beta and -gamma 
functions in G families. The second reason is the tail properties of G distributions that can easily be 
explored by inducting one or more additional shape param- eter(s) to the baseline distribution. Thirdly, 
this parameter(s) induction has also proved to be helpful in improving the goodness-of-fit of the proposed 
G family of distributions. Fourthly, G families have the ability to fit skewed data better than existing 
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distributions (Pescim et al. 2010). Lastly, the Kumaraswamy G family of distributions can generate 
effective models for censored data (Cordeiro and de Castro 2011).

There exists many generalized (or generated) G family of distributions like Azzalini’s skewed family 
(Azzalini 1985), Marshall-Olkin extended (MOE) family (Marshall and Olkin 1997), exponentiated family 
(EF) of distributions (Gupta et al. 1998), beta-generated (beta G) family (Eugene et al. 2002, Jones 2004a), 
Ferreira and Steel’s skewed family (Ferreira and Steel 2006), transmutated family (Shaw and Buckley 2007, 
Aryal and Tsokos 2009, 2011), Gupta and Gupta’s skewed family (Gupta and Gupta 2008), gamma-generated 
(GG) families (Zografos and Balakrishnan 2009, Ristić and Balakrishnan 2012, Torabi and Montazari 2012, 
Nadarajah et al. 2015), transformed-transformer (T-X) family (Alza-Atreh 2011), Kumaraswamy generalized 
(Kw G) family (Cordeiro and de Castro 2011, Nadarajah et al. 2012a, Hussain 2013), generalized beta 
generated (GBG) or McDonald generalized (Mc G) family (Alexander et al. 2012), beta extended G family 
(Cordeiro et al. 2012f), Kummer beta generalized family (Pescim et al. 2012), exponentiated transformed- 
transformer family (ET-X) (Alzaghal et al. 2013), exponentiated generalized (Exp G) family (Cordeiro et 
al. 2013e), geometric exponential-Poisson family (Nadarajah et al. 2013a), truncated-exponential skew-
symmetric family (Nadarajah et al. 2013c), logistic-generated (Lo G) family (Torabi and Montazari 2014), 
Marshall-Olkin extended family (Alshangiti et al. 2014), log-gamma generated (LG G) families, (Amini et 
al. 2014), Weibull G family (Bourguignion et al. 2014), Libby-Novick beta family (Cordeiro et al. 2014e), 
truncated negative-binomial family (Nadarajah et al. 2014a), modified beta G family (Nadarajah et al. 2014b) 
and exponentiated exponential-Poisson family (Ristić and Nadarajah 2014). These G families of distributions 
have received a great deal of attention in recent years. In this paper, we discuss the EF, MOE, beta G, Mc G, 
Exp G and Kw G families of distri- butions and provide additional literature (in chronological order) on these 
six families of distributions. We also propose some extended forms of the Kw G families of distributions by 
introducing one more additional shape parameter(s).

Because of the length of this paper, we have not given details like probabilistic interpretations, 
analytical properties, estimation methods, simulation algorithms and applications. These details can be 
obtained from the cited references.

The rest of the paper is organized as follows. In Section 2, the EF of distributions is defined and a list 
of contributed work is presented. In Section 3, we describe the MOE family and propose one generalized 
MOE family of distributions. The contributed literature on the MOE family is also presented. In Section 4, 
the beta G family of distributions is discussed. The contributions to the beta G family of distributions are 
also listed in this section. In Section 5, the McDonald distributions and Mc G families of distributions are 
described. The contributed work on Mc G families of distributions is also presented. Section 6 consists of 
Kumaraswamy distributions and Kw G families of distributions. Some new types of the Kumaraswamy 
distribution and Kw G families of distributions are proposed. The contributed work on the Kw G family of 
distributions is also listed in this section. Section 7 ends the paper with some final remarks.

EXPONENTIATED FAMILY (EF) OF DISTRIBUTIONS

The genesis of this family can be traced back to the first half of the nineteenth century when Gompertz (1825) 
and Verhulst (1838, 1845, 1847) used the cumulative distribution function (cdf) G(t) = (1 − ρ e−λt)α for t > 
λ−1 log ρ, where ρ, α and λ are positive real numbers. Ahuja and Nash (1967) introduced the generalized 
Gompertz-Verhulst family of distributions to study growth curve mortality. Gompertz-Verhulst’s cdf was the 
first member of the EF of distributions. The exponentiated exponential (EE) distribution is its particular case 
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for ρ = 1. The properties and estimation methods for parameters of the EF of distributions have been studied 
by many authors, see Mudholkar and Srivastava (1993), Mudholkar and Hutson (1996), Mudholkar et al. 
(1995), Gupta and Kundu (1999, 2001a, b, 2007), Pal et al. (2006), Nadarajah and Kotz (2006a), Nadarajah 
(2011) and Nadarajah et al. (2013b). The EF of distributions is also known as Lehmann alternatives (LAs) 
(Lehmann 1953) or proportional reversed hazard rate model (PHRM) (see Gupta et al. 1998, Gupta and Gupta 
2007, Martínez-Florez et al. 2013), while other authors referred to the EF of distributions as max-stable family 
(Sarabia and Castillo 2005) and F α- distributions (Gupta et al. 1998, Al-Hussaini, 2010a, b, 2012, Shakil 
and Ahsanullah 2012, Hamedani 2013 and Ghitany et al. 2013).

In literature there exist four different ways for obtaining the EF of distributions.

LEHMANN ALTERNATIVE 1 (LA1)

The method of Lehmann alternative 1 (LA1) (due to Lehmann (1953)) has received a great deal of attention 
in developing the EF of distributions.

If G(z) is the cdf of the baseline distribution, then an EF of distributions is defined by taking the 
αth-power of G(z) as

F(z) = G(z)α, (2.1)

where α > 0 is a positive real parameter. The variable z can take any of the form z = x or z = x − µ or z = x‒µ
σ  

or z = k 
³ x‒µ´

σ  or z = k
³ x‒µ´

σ
1
δ. The probability density function (pdf) corresponding to (2.1) is

f(z) = αg(z) G(z)α‒1, (2.2)

where g(z) = dG(z)/dz denotes the pdf of G. For any lifetime random variable t, the survival (reliability) 
function (sf), F (t), the hazard (failure) rate function (hrf), h(t), the reversed hazard rate function (rhrf), r(t), 
and the cumulative hazard rate function (chrf), H(t), associated with (2.1) and (2.2) are

F(t) = 1 − G(t)α, 
h(t) = αg(t) G(t)α−1 [1 − G(t)α]−1, 

r(t) = αg(t) G(t)−1,

and

H(t) = −log [1 − G(t)α].

LEHMANN ALTERNATIVE 2 (LA2)

The method of Lehmann alternative 2 (LA2) (due to Lehmann (1953)) has received less attention.
If G(z) is the cdf and G(z) = 1 − G(z) is the sf of the baseline distribution, then an EF of distributions 

is defined by taking one minus the αth-power of G(z) as

F(z) = 1 − [G(z)]α,

where α is a positive real parameter. The LA2 cdf may also be written as

F(z) = 1 − [1 − G(z)]α. (2.3)
The pdf corresponding to (2.3) is

f(z) = αg(z) [1 − G(z)]α−1. (2.4)
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For any lifetime random variable t, the sf, hrf, rhrf and chrf associated with (2.3) and (2.4) are

F(t) = [1 − G(t)]α, 
h(t) = αg(t) [1 − G(t)]−1, 

r(t) = αg(t) [1 − G(t)] α−1 {1 − [1 − G(t)] α}−1,
and

H(t) = −αlog [1 − G(t)].

Nadarajah and Kotz (2003, 2006a), Nadarajah (2006) and Rao et al. (2013) used the LA2 approach for 
introducing exponentiated Fréchet, exponentiated Gumbel and exponen- tiated log-logistic distributions. 
For more applications of the LA2 approach, the reader is referred to Abd-Elfattah and Omima (2009), Abd-
Elfattah et al. (2010), Rao et al. (2012, 2013), and Al-Nasser and Al-Omari (2013).

USING TRANSFORMATION z = log(x), x > 0

Nadarajah (2005a) developed exponentiated distributions by applying the transformation z = log(x) to (2.3). 
The cdf, pdf and the hrf of the exponentiated distribution are

F(x) = 1 − [1 − G(ex)]α, 
f(x) = aexg (ex) [1 − G(ex)]α−1

and
h(x) = aexg (ex) [1 − G(ex)]−1.

USING TRANSFORMATION z = − log(x), x > 0

Nadarajah (2005b) developed exponentiated distributions by applying the transformation z = − log(x) to (2.3). 
The cdf, pdf and the hrf of the exponentiated distribution are

F(x) = [1 − G (e−x)]α, 
f(x) = ae−xg (e−x) [1 − G(e−x)]α−1

and
h(x) = ae−xg (e−x) [1 − G(e−x)]α−1{1 − [1 − G (e−x)]α}−1.

A list of papers on the EF of distributions is presented in Table I.

S.No. Pioneer year Distribution Author(s)
1 1967 Exponentiated exponential distribution Ahuja and Nash (1967)

Gupta et al. (1998)
Gupta and Kundu (1999, 2001a, b, 2007)
Nadarajah (2011)
Venkatesan and Sundaram (2011)

2 1993 Exponential Weibull distribution Mudholkar and Srivastava (1993)
Mudholkar et al. (1995)
Mudholkar and Hutson (1996)
Gupta et al. (1998)
Jiang and Murthy (1999)

TABLE I
Contributed work on the EF of distributions.
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TABLE I (continuation)

S.No. Pioneer year Distribution Author(s)
Nassar and Eissa (2003)
Choudhury (2005)
Nadarajah and Gupta (2005)
Singh et al. (2005)
Pal et al. (2006)
Ahmed et al. (2008)
Saleem and Abo-Kasem (2011)
Mazucheli et al. (2012)
Qian (2012)
Barrios and Dios (2012)
Nadarajah et al. (2013b)

3 1998 Exponentiated gamma distribution Gupta et al. (1998)
Nadarajah and Kotz (2006a)
Nadarajah and Gupta (2007)
Shawky and Bakoban (2008, 2009, 2012)

4 1998 Exponentiated Pareto distribution Gupta et al. (1998)
Nadarajah (2005a)
Shawky and Abu-Zinadah (2009)
Afify (2010)

5 2001 Exponentiated Rayleigh distribution Surles and Padgett (1998, 2001, 2005)
Raqab (1998)
Kundu and Raqab (2005)
Raqab and Kundu (2006)
Raqab and Madi (2009, 2011)
Abd-Elfattah (2011)

6 2003 Exponentiated Fréchet distribution Nadarajah and Kotz (2003)
Nadarajah and Kotz (2006a)
Abd-Elfattah and Omima (2009)
Abd-Elfattah et al. (2010)
Jamjoom and Al-Saiary (2012)
Al-Nasser and Al-Omari (2013)
Marwa et al. (2013)

7 2004 Exponentiated generalized Pareto distribution Adeyemi and Adebanji (2004)
8 2005 Exponentiated beta distribution Nadarajah (2005b)
9 2006 Exponentiated generalized extreme value distribution Adeyemi and Adebanji (2006)
10 2006 Exponentiated log-logistic distribution Rosaiah et al. (2006)

Aslam and Jun (2010)
Rao et al. (2012, 2013)

11 2006 Exponentiated Gumbel distribution Nadarajah (2006)
Nadarajah and Kotz (2006a)
Shirke and Kakade (2007)
Kakade et al. (2008)
Persson and Rydén (2010)

12 2006 Exponentiated log-normal distribution Shirke and Kakade (2006)
Raja and Mir (2011)

13 2008 Exponential modified Weibull distribution Carrasco et al. (2008)
Elbatal (2011)

14 2009 Exponentiated extreme value distribution Cho et al. (2009)
15 2011 Exponentiated Lindley distribution Nadarajah et al. (2011)
16 2011 Extended generalized exponential distribution Kundu and Gupta (2011)
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TABLE I (continuation)

S.No. Pioneer year Distribution Author(s)
17 2011 Exponentiated Burr XII distribution Al-Hussaini and Hussein (2011a, b)

Maswadah (2013)
18 2011 Exponentiated generalized gamma distribution Cordeiro et al. (2011a)
19 2011 Exponentiated generalized inverse Gaussian distribution Lemonte and Cordeiro (2011)
20 2012 Exponentiated inverted Weibull distribution Flaih et al. (2012)

Kim et al. (2012)
Hassan (2013)
Aljuaid (2013)

21 2012 Exponentiated Kumaraswamy distribution Kumar (2012)
22 2012 Exponentiated Lomax distribution Abdul-Moniem and Abdel-Hameed (2012)
23 2012 Exponentiated Gompertz distribution El-Gohary (2012)
24 2013 Exponentiated modified Weibull extension distribution Sarhan and Apaloo (2013)
25 2013 Exponentiated generalized linear exponential distribution Sarhan et al. (2013)
26 2013 Exponentiated Dagum distribution Khan (2013)
27 2013 Exponentiated sinh Cauchy distribution Cooray (2013)
28 2015 Exponentiated geometric distribution Chakraborty and Gupta (2015)

MARSHALL-OLKIN EXTENDED (MOE) FAMILY OF DISTRIBUTIONS

Marshall and Olkin (1997) proposed a flexible semi-parametric family of distributions and defined a new sf 
F MO (x) by introducing an additional parameter α > 0. Marshall and Olkin (1997) called α a tilt parameter 
and interpreted α in terms of the behavior of the hrfs of F MO and G. Their ratio is increasing in t for α ≥ 
1 and decreasing in t for 0 < α < 1. Nanda and Das (2012) reinterpreted α as a tilt parameter since the 
hrf of the new family is shifted below (α ≥ 1) or above (0 < α ≤ 1) the hrf of the underlying distribution. 
Specifically, for all t ≥ 0, hMO (t) ≤ h(t) when α ≥ 1, and hMO (t) ≥ h(t) when 0 < α ≤ 1, where hMO (t) and h(t) 
are the hrfs of the MOE and baseline distributions.

For any baseline pdf g(t), cdf G(t) = P (T ≤ t) and sf G(t) = P (T > t) of the baseline distribution, the sf 
F MO (t) of the MOE family of distributions is defined by

F 
MO (t) = aG(t)

1 − aG(t)
 = aG(t)

G(t) + aG(t)
    or    a[1 − G(t)]

a + aG(t)
, (3.1)

where −∞ < t < ∞, α > 0 and a = 1 − α. The cdf and pdf associated with (3.1) are

F 
MO (t) = G(t)

1 − aG(t)
 = G(t)

G(t) + aG(t)    or    1 − G(t)
a + aG(t) ,

and
f MO (t) = ag(t)

[1 − aG(t)]2    or    ag(t)
[a + aG(t)]2  ,

where −∞ < t < ∞, α > 0 and a = 1 − α. If α = 1, then we have F 
MO (t) = G(t). Other reliability measures like 

the hrf, rhrf and chrf associated with (3.1) are

h MO (t) = f MO(t)
F MO (t)

 = 
g(t)
G(t) 1

[1 − aG(t)]
 = h(t)

1 − aG(t)
    or    h(t)

a + aG(t)
 ,
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r MO (t) = f MO(t)
F MO (t) = a g(t)

G(t)
 1
[1 − aG(t)]

 = ah(t)
1 − aG(t)

    or    ah(t)
a + aG(t) ,

and

H MO (t) = −log aG(t)
1 − aG(t)

    or    −log 

(
a [1 − G(t)]

)

a + aG(t)  ,

where h(t) is the hrf of the baseline distribution.
Note that if we define

F 
MO (t) = 

G(t)
1 − aG(t)

then
F 

MO (t) = 
aG(t)

1 − aG(t)    and    f MO (t) = 
g(t)

[1 − aG(t)]2 ,

For more general results on the MOE family of distributions, the reader is referred to Barakat et al. 
(2009), Jose (2011), Krishna (2011), Barreto-Souza et al. (2013) and Cordeiro et al. (2014c).

EXISTING GENERALIZED MOE FAMILY OF DISTRIBUTIONS

In this section, we describe existing generalized Marshall-Olkin families of distributions.
Jayakumar and Mathew (2008) proposed a generalization of the Marshall and Olkin (1997) family 

of distributions (by using the LA1 approach) as

F 
GMO (t) = aG(t)

1 − aG(t)
 
θ
 , (3.2)

where −∞ < t < ∞, α > 0, and θ > 0 is an additional shape parameter. When θ = 1, FGMO (t) = F 
MO (t). 

The cdf and the pdf associated with (3.2) are

F 
GMO (t) = 1 − aG(t)

1 − aG(t)
 
θ
 ,

and

f GMO (t) = θ aG(t)
1 − aG(t)

 
θ − 1

 

(
ag(t)]

)

[1 − aG(t)]2 .

Other reliability measures like the hrf, rhrf and chrf associated with (3.2) are

h 
GMO (t) = θ g(t)

G(t)
 1
1 − aG(t)

 = θh(t) 1
1 − aG(t)

 ,    or    θh(t)
a + aG(t) ,

r 
GMO (t) = θ aθg(t)G(t)θ −1

[1 − aG(t)]θ − aθG(t)θ ,

and

H 
GMO (t) = −log 

(

1 − aG(t)] θ
)

[1 − aG(t)]
,

where h(t) is the hrf of the baseline distribution.
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A NEW GENERALIZED MOE FAMILY OF DISTRIBUTIONS

Here, we propose another generalization of the Marshall and Olkin (1997) family of distributions. 
Using the LA2 approach to the sf of the MOE family of distributions, we obtain

F 
G2MO (t) = 1 − 1 − aG(t) θ

1 − aG(t)
 , (3.3)

where −∞ < t < ∞, α > 0, and θ > 0 is the additional shape parameter. When θ = 1, F 
G2MO (t) = F 

MO (t). 
The cdf and the pdf associated with (3.3) are

F 
G2MO (t) = 1 − aG(t) θ

1 − aG(t)
 ,

and

f 
G2MO (t) = θ 1 − aG(t) θ − 1

1 − aG(t)

(
ag(x)

)

[1 − aG(t)]2 .

After simplification, the above pdf can be rewritten as

f 
G2MO (t) = θ ag(t)G(t)θ −1

1 − aG(t)
    or    θ ag(t)G(t)θ −1

a + aG(t)  .

Other reliability measures like the hrf, rhrf and chrf associated with (3.3) are

h 
G2MO (t) = θ ag(t)G(t)θ −1

[a + aG(t)]θ +1  

(

1 − 1 − aG(t) θ
)

−1

[1 − aG(t)]
 ,

r 
G2MO (t) = θ a g(t)

G(t) 
1

a + aG(t) = θ a r(t)
a + aG(t) ,

and
H 

G2MO (t) = − log 

(

1 − 1 − aG(t) θ
)

[1 − aG(t)]
 ,

where r(t) is the rhrf of the baseline distribution.
The construction in (3.3) is similar to that due to Jayakumar and Mathew (2008). But there is 

an important distinction. Suppose that a system consists of θ independent components. Suppose too 
that each component has a lifetime with the sf given by αG(t) / [ 1 − aG(t)]. Then (3.2) is the sf of the 
minimum of the lifetimes and (3.3) is the sf of the maximum of the lifetimes. So, (3.2) can be used 
to model the minimum of the lifetimes and (3.3) can be used to model the maximum of the lifetimes.

SEMI-TYPE PROCESSES BASED ON CHARACTERISTIC FUNCTION

In this section, we briefly discuss semi-Pareto, semi-Burr, semi-Laplace, semi-logistic and semi-Weibull 
distributions based on the characteristic function (cf) ψ(t) of the baseline distribution. The concept of semi-
type distributions arose from the minification process. Tavares (1980) defined a minification process as 
observations in a process generated by

Xn = k min (Xn−1, ²n) , (3.4)

where n ≥ 1, k > 1 is a constant and {²n} is an innovation process of independent and identically 
distributed random variables. Here, {Xn} is called the first order autoregressive AR(1) minification process. 
There exists many modified minification processes.
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Linnik (1963) introduced the α-Laplace distribution, a symmetric distribution defined on (−∞, ∞). For α = 2, 
the Linnik distribution reduces to the Laplace distribution. Pillai (1985) generalized the Linnik distribution 
and introduced the semi-α-Laplace distribution.

Yeh et al. (1988) modified (3.4) and introduced the first auto-regressive Pareto minification process 
having Pareto marginals. Arnold and Robertson (1989) introduced minification processes with logistic 
marginals. Pillai (1991) and Pillai et al. (1995) introduced semi-Pareto minification processes. Balakrishna 
(1998) investigated some properties and estimated the unknown parameters of Pillai’s semi-Pareto 
minification process.

Pillai (1985) proposed the semi-α Laplace distribution. Its sf is

F 
S Lap

 (t) = 1
1 + ψ(t) ,

where ψ(t) satisfies the functional equation

ψ(t) = 1
p  ψ 

³
tp1/a

´
, (3.5)

where α > 0 and 0 < p < 1. The solution of (3.5) is ψ(t) = |t|α η(t), where η(t) is periodic in log |t|. In the 
particular case η(t) = c, the semi-α-Laplace distribution reduces to the Linnik distribution.

A random variable T is said to have the semi-Pareto distribution if its sf is

F 
S P

 (t) = 1
1 + ψ(t) ,

where t > 0 and ψ(t) satisfies the functional equation

ψ(t) = 1
p  ψ 

³
p1/° (t)

´
, (3.6)

where 0 < p < 1, t > 0 and ° > 0. The solution of (3.6) is ψ(t) = t° η(t), where η(t) is periodic in log t with 
period 

³
− 2π°
log p

´
. Further details are in Pillai (1991) and Pillai et al. (1995).

If ψ(t) = t° (that is for η(t) = 1), we obtain the semi-Pareto distribution of type III having the sf

F 
S P3

 (t) = 1
1 + t° ,

where t > 0 and ° > 0. For details, see Chrapek et al. (1996), Balakrishna (1998) and Cifarelli et al. (2010).
A random variable T is said to have the semi-Burr distribution if its sf is

F 
S B

 (t) = 1
1 + ψ(t)  

β
,

where t > 0, β > 0 and ψ(t) satisfies the same functional as (3.6).
Cifarelli et al. (2010) expressed the sf of the semi-Burr distribution as

F 
S B

 (t) = 1
[1 + ψ(t)]b+1

 
,

where ψ(t) satisfies the same functional as (3.6) and b > 0.
According to Arnold (1992) and Jayakumar and Mathew (2005), a random variable T is said to have 

the semi-logistic distribution if its sf is
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F 
SL

 (t) = 1
1 + ψ(t)

 
,

where ψ(t) is a nondecreasing and right-continuous function satisfying

ψ(t) = 1p ψ 
³

t+ 1
σ  log p

´
, (3.7)

where 0 < p < 1, t > 0, and σ > 0.
According to Jose (1994) and Thomas and Jose (2005), a random variable T is said to have the 

semi-Weibull distribution if its sf is

F 
SW

 (t) = exp [− ψ(t)],

where ψ(t) satisfies the functional equation

(3.8)pψ (t) = ψ 
³

p1/° (t)
´

,

where ° > 0 and 0 < p < 1. Note that (3.8) yields the iterative solution

pn ψ (t) = ψ 
³

pn/° (t)
´

.

Solving (3.8), we have ψ(t) = t° h(t), where h(t) is periodic in log t with period 
³

− 2π°
log p

´
.

More details are in Thomas and Jose (2005).

SEMI-TYPE MARSHALL-OLKIN DISTRIBUTIONS BASED ON CHARACTERISTIC FUNCTION

Using (3.1), various authors have proposed Marshall-Olkin semi-type distributions from the baseline cf ψ(t).
Alice and Jose (2003) introduced the Marshall-Olkin semi-Pareto (MOSP) distribution with sf

F 
MOSP3 (t) = 1

1 + 1
a ψ(t)

 ,

and established geometric extreme stability. Thomas and Jose (2005) and Alice and Jose (2005b) introduced 
the Marshall-Olkin semi-Weibull distribution with sf

F 
MOSW (t) = a

eψ(t) − (1 − a) ,

where t > 0 and α > 0. Jayakumar and Mathew (2008) proposed the Marshall-Olkin semi-Burr (GMOSB) 
distribution as that defined by the sf

F 
GMOSB

 (t) = a
a + ψ(t)  

β
= 1

1 + 1
a ψ(t)

 
β
= [F 

MOSP3
 (t)]β,

where α > 0, β > 0 and ψ(t) satisfies the same functional as (3.7).
If 0 < α < 1 and φ(t) is a valid cf then

ψ (φ(t)) = a φ(t)
1 − (1 − a) φ(t)

is also a valid cf. Using this fact, Krishna and Jose (2011) defined the Marshall-Olkin generalized 
asymmetric Laplace distribution as that having the cf
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ψ(t) = a¡
1 − it

λ1

¢ β1 ¡1 + it
λ2

¢ β2 + a − 1
 ,

where i = √−1, 0 < α < 1, λ1 > 0, λ2 > 0, β1 > 0 and β2 > 0. George and George (2013) defined the 
Marshall-Olkin Esscher transformed Laplace distribution as that having the cf

ψ(t) = 1 + 1
µ

t2
a 1 − θ2 − 2itθ

¶

1 − θ2

 −1
 = 
½

1 + 1
λ2  [t2 − 2itθ]

¾−1
,

where 0 < α ≤ 1, |θ| < 1, λ = √a(1 − θ2), k = λ
θ + √λ+ θ2  , λ > 0 and k > 0. Jose and Uma (2009) defined the 

Marshall-Olkin Linnik and Mittag-Leffler distributions as those having the cfs

ψ (t) = β
(1 + |t|a)v + β − 1

and

ψ (t) = β
β − sa

respectively, where ν > 0, 0 < α ≤ 2, and β > 0.
A list of papers on the MOE family is presented in Table II.

TABLE II
Contributed work on the MOE family of distributions.

S.No. Pioneer year Distribution Author(s)
1 1997 MOE exponential distribution Marshall and Olkin (1997)

Alice and Jose (2004b)
Parikh et al. (2008)
Salah et al. (2009)
Bdair (2011)
Gopal and Damodaran (2011)
Krishna (2011)
Rao et al. (2011)
Salah (2012)
Pushkarna et al. (2013)

2 1997 MOE Weibull distribution Marshall and Olkin (1997)
Jose and Alice (2001)
Hirose (2002)
Ghitany et al. (2005)
Zhang and Xie (2007)
Caroni (2010)
Srivastava and Kumar (2011)
Athar et al. (2012)
Cordeiro and Lemonte (2013)

3 2003 MOE Pareto-III distribution Alice and Jose (2003)
4 2003 MOE Pareto-III distribution Alice and Jose (2003)
5 2004 MOE Pareto-I distribution Alice and Jose (2004a)

Ghitany (2005)
6 2005 MOE logistic distribution Alice and Jose (2005a)

Kumar (2013)
7 2005 MO semi-logistic distribution Alice and Jose (2005a)
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S.No. Pioneer year Distribution Author(s)
8 2005 MO semi-Weibull distribution Alice and Jose (2005b)

Thomas and Jose (2005)
9 2005 MOE Fréchet distribution Jose and Alice (2005)

Krishna (2011)
Krishna et al. (2013)

10 2007 MOE Lomax distribution Ghitany et al. (2007)
Gupta et al. (2010)

11 2007 MOE linear failure rate distribution Ghitany and Kotz (2007)
12 2007 MOE gamma distribution Ristić et al. (2007)

Jose (2009)
13 2008 MOE q-Weibull distribution Naik et al. (2008)

Jose et al. (2010)
14 2008 MOE Burr distribution Jayakumar and Mathew (2008)

El-Bassiouny and Abdo (2010)
15 2008 MOE semi-Burr distribution† Jayakumar and Mathew (2008)
16 2008 MOE semi-Pareto III distribution† Jayakumar and Mathew (2008)
17 2009 MOE Linnik distribution† Jose and Uma (2009)
18 2009 MOE Mittag-Leffler distribution† Jose and Uma (2009)
19 2009 MOE beta distribution Jose et al. (2009)
20 2011 MOE uniform distribution Krishna (2011)

Jose and Krishna (2011)
21 2011 MOE Gumbel distribution Jose (2011)

22 2011 MOE generalized asymmetric Laplace 
distribution† Krishna (2011)

Krishna and Jose (2011)
24 2013 MOE Zipf distribution P´erez-Casany and Casellas (2013)
25 2013 MOE power log-normal distribution Gui (2013a)
26 2013 MOE log-logistic distribution Gui (2013b)
27 2013 MOE quasi-Lindley distribution Gui (2013c)

28 2013 MOE Esscher transformed Laplace 
distribution† George and George (2013)
† MO extension based on cf.

TABLE II (continuation)

BETA DISTRIBUTIONS AND EXISTING BETA G FAMILIES OF DISTRIBUTIONS

Consider the cdf of a beta random variable of type 1 with two shape parameters a and b given by

(4.1)F 
B1(x) = P(X ≤ x) = Ix (a, b) = Bx (a, b) = 1

Z

0

x

xa − 1 (1 − x)b − 1 dx,B (a, b) B (a, b)

where a > 0, b > 0, x 2 (0, 1), Bt (a, b) =
Z

0

t

 t 
a − 1 (1 − t)b − 1 dt is the incomplete beta function, It(a, b) is the 

incomplete beta function ratio and B(a, b) =
Z

0

1

t 
a − 1 (1 − t)b − 1 dt = Γ (a) Γ (b)

Γ (a + b)  is the beta function. 
The pdf corresponding to (4.1) is

f 
B1(x) = 1 x 

a − 1 (1 − x) 
b − 1,B (a, b)

where a > 0, b > 0, x 2 (0, 1).
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Similarly, the cdf of a beta random variable of type 2 with parameters a and b is

(4.2)F 
B2 (y) = P (Y ≤ y = I 2y (a, b) = B2y (a, b) = 1

Z

0

y
y 

a − 1
dy,B2 (a, b) B2 (a, b) (1 + y) a + b

where a > 0, b > 0, y > 0, B2t (a, b)
Z

0

t

t 
a − 1 (1 + t) − (a + b) dt  is the incomplete beta function, I 2t (a, b) is the 

incomplete beta function ratio and B2 (a, b) =
Z

0

∞

t 
a − 1 (1 + t) − (a + b) dt = Γ (a) Γ (b)

Γ (a + b)
 is the beta function. 

The pdf corresponding to (4.2) is
f 

B2(y), = 1 y 
a − 1

,B2 (a, b) (1 + y) 
(a + b)

where a > 0, b > 0, and y > 0. The beta type 2 distribution is also known as inverted beta distribution as it 

can be obtained from (4.1) by the transformation Y = X
1 − X  .

Cardeño et al. (2005) introduced the beta type 3 distribution by transforming Z = Y
2 − Y  in (4.1). 

The cdf of a beta random variable of type 3 with parameters a and b is

(4.3)FB3 (z) = P (Z ≤ z) = 13z (a, b) = B3z (a, b) = 1
Z

0

z za − 1 (1 − z)b − 1
dz,B3 (a, b) B3 (a, b) (1 + z) 

(a + b)

where a > 0, b > 0, z 2 (0, 1), B3t(a, b) = 
Z

0

t

 t a − 1 (1− t)b − 1 (1+ t)− (a + b) dt is the incomplete beta function, 

I3t(a, b) is the incomplete beta function ratio and B3(a, b) = 
Z

0

1

t a − 1 (1− t)b − 1 (1+ t)− (a + b) dt = Γ(a) Γ(b)
Γ(a + b)  

is the beta function. The pdf corresponding to (4.3) is

f 
B3(z) = 2a z 

a − 1 (1 − z)b − 1
,B3 (a, b) (1 + z) 

(a + b)

where a > 0, b > 0, and z 2 (0, 1).
Eugene et al. (2002) and Jones (2004a) replaced the upper limit x of the integral in (4.1) with G(x). 

The resulting cdf of beta G family of distributions is

F 
BG(x) = IG(x) (a, b) = BG(x)(a, b)

B(a, b)  = 1
B(a, b) 

Z

0

G(x)

! a − 1 (1− !) b − 1 d!. (4.4)

The pdf corresponding to (4.4) is

(4.5)f 
BG(x) = 1

B(a, b)g(x) G(x)a − 1 [1− G(x)]b − 1,

where g(x) = dG(x)/dx denotes the pdf. The beta G family of distributions is also known as the beta logit 
family. For any lifetime random variable t, the sf, hrf, rhrf and chrf associated with (4.4) and (4.5) are

F(t) = 1 − IG(x) (a, b) = B(a, b) − BG(t)(a, b)
B(a, b)  ,

h(t) = g(t)G(t)a −1 [1 − G(t)]b −1

B(a, b) [IG(t)(a, b)]  = g(t)G(t)a −1 [1 − G(t)]b −1

BG(t)(a, b)  ,
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r(t) = g(t)G(t)a −1 [1 − G(t)]b −1

B(a, b) [1 − IG(t)(a, b)]  = g(t)G(t)a −1 [1 − G(t)]b −1

[B(a, b) − BG(t)(a, b)]  ,

and

H(t) = −log B(a, b) − BG(t)(a, b)
B(a, b)  .

A list of papers on the beta G family of distributions is given in Table III.

TABLE III 
Contributed work on the beta G family of distributions.

S.No. Pioneer year Distribution Author(s)
1 2002 Beta normal distribution Eugene et al. (2002)

Famoye et al. (2002)
Eugene (2004)

Famoye et al. (2004)
Gupta and Nadarajah (2004)

Jones (2004b)
Rěgo et al. (2012)

2 2003 Beta exponential distribution Maynard (2003)
Nadarajah and Kotz (2006b)

3 2004 Beta gamma distribution Kong (2004), Kong et al. (2007)
4 2004 Beta Gumbel distribution Nadarajah and Kotz (2004)
5 2004 Beta Fréchet distribution Nadarajah and Gupta (2004)

Barreto-Souza et al. (2011)
6 2005 Beta Weibull distribution Famoye et al. (2005)

Lee et al. (2007)
Zografos (2008)

Cordeiro et al. (2011b, c)
Sun (2011), Mdziniso (2012)

Mahmoud and Mandouh (2012a, b, c)
7 2006 Beta Bessel distribution Gupta and Nadarajah (2006)
8 2008 Beta Pareto distribution Akinsete et al. (2008)
9 2008 Beta Rayleigh distribution Akinsete and Lowe (2009)
10 2008 Beta Laplace distribution Kozubowski and Nadarajah (2008)

Cordeiro and Lemonte (2011a)
11 2009 Beta generalized logistic-IV distribution Morais (2009)

Morais et al. (2013)
12 2010 Beta modified Weibull distribution Silva et al. (2010)

Nadarajah et al. (2012b)
13 2010 Beta generalized half-normal distribution Pescim et al. (2010)
14 2010 Beta generalized exponential distribution Barreto-Souza et al. (2010)
15 2010 Beta Maxwell distribution Amusan (2010)
16 2010 Beta hyperbolic secant distribution Fischer and Vaughan (2010)
17 2010 Beta inverse Weibull distribution Kersey (2010)

Hanook et al. (2013)
18 2011 Beta Cauchy distribution Alshawarbeh (2011)

Alshawarbeh et al. (2012)
19 2011 Beta half-Cauchy distribution Cordeiro and Lemonte (2011b)
20 2011 Beta Burr XII distribution Paranáıba et al. (2011)
21 2011 Beta generalized Pareto distribution Mahmoudi (2011)
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MCDONALD DISTRIBUTIONS AND MCDONALD G FAMILIES OF DISTRIBUTIONS

MCDONALD TYPE DISTRIBUTIONS

McDonald (1984) replaced the upper limit x of the integral in (4.1) with xc, where c is an additional (third) 
shape parameter. The resulting cdf of the McDonald type (Mc) distribution is

(5.1)F(x) = Ixc (a, b) = Bxc (a, b) = 1
Z

0

xc

xa − 1 (1 − x)b − 1 dx,B (a, b) B (a, b)

where a > 0, b > 0 and c > 0 are the three shape parameters. The Mc distribution includes as special cases the 
beta type 1 distribution (c = 1) and the Kumaraswamy distribution (a = 1). The pdf corresponding to (5.1) is

f (x) = c x 
ac − 1 (1 − x 

c
 ) 

b − 1,B (a, b)
where 0 < x < 1.

EXISTING MCDONALD G FAMILY OF DISTRIBUTIONS

For any baseline cdf G(x), Alexander et al. (2012) replaced the upper limit xc of the integral in (5.1) with 
G(x)c. Lemonte and Cordeiro (2013) stated that this simple transformation facilitates the computation 
of several properties of the G family of distributions.

TABLE III (continuation)

S.No. Pioneer year Distribution Author(s)
Nassar and Nada (2011)

22 2011 Beta Birnbaum-Sanders distribution Cordeiro and Lemonte (2011c)
23 2012 Beta skew-normal distribution Mameli (2012)
24 2012 Beta exponential-geometric distribution Bidram (2012)
25 2012 Beta Moyal distribution Cordeiro et al. (2012d)
26 2012 Beta generalized Weibull distribution Singla et al. (2012)
27 2012 Beta exponentiated Pareto distribution Zea et al. (2012)
28 2012 Beta power distribution Cordeiro and Brito (2012)
29 2012 Beta linear failure rate distribution Jafari and Mahmoudi (2012)
30 2012 Beta extended Weibull distribution Cordeiro et al. (2012f)
31 2012 Beta truncated Pareto distribution Lourenzutti et al. (2012)
32 2013 Beta Weibull-geometric distribution Cordeiro et al. (2013f)

Bidram et al. (2013)
33 2013 Beta generalized gamma distribution Cordeiro et al. (2013a)
34 2013 Beta log-normal distribution Castellars et al. (2013)
35 2013 Beta generalized Rayleigh distribution Cordeiro et al. (2013b)
36 2013 Beta generalized logistic distribution Morais et al. (2013)
37 2013 Beta exponentiated Weibull distribution Cordeiro et al. (2013c)
38 2013 Beta Nakagami distribution Shittu and Adepoju (2013)
39 2013 Beta Burr III distribution Gomes et al. (2013)
40 2013 Beta Dagum distribution Domma and Condino (2013)
41 2013 Beta Stoppa distribution Mansoor (2013)
42 2013 Beta inverse Rayleigh distribution Le˜ao et al. (2013)
43 2014 Beta generalized inverse Weibull distribution Baharith et al. (2014)
44 2014 Beta extended half-normal distribution Cordeiro et al. (2014f)
45 2014 Beta log-logistic distribution Lemonte (2014)
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The resulting cdf F(x) of the Mc-generalized family of distributions (Mc G) is

F(x) = IG(x)c (a, b) = BG(x)c (a, b) = 1
Z

0

G(x)c

ωa − 1 (1 − ω)b − 1 dω,B (a, b) B (a, b)
(5.2)

where IG(x)c (a, b) denotes the incomplete beta function ratio. The pdf corresponding to (5.2) is

(5.3)f (x) = c g(x) G(x)ac − 1 [1 − G(x) 
c

 ] 
b − 1,B (a, b)

where a > 0, b > 0 and c > 0 are the three shape parameters. For a lifetime random variable t, the sf, hrf, rhrf 
and chrf associated with (5.2) and (5.3) are

F (t) = 1 − IG(t)c (a, b) = B (a, b) − BG(t)c (a, b) ,B (a, b)

h(t) = c g(t) G(t)ac − 1 [1 − G(x) 
c

 ] 
b − 1

= c g(t) G(t)ac − 1 [1 − G(t) 
c

 ] 
b − 1

,B (a, b) [IG(t)c (a, b)] BG(t)c (a, b)

r(t) = c g(t) G(t)ac − 1 [1 − G(t) 
c

 ] 
b − 1

= c g(t) G(t)ac − 1 [1 − G(t) 
c

 ] 
b − 1

,B (a, b) [1 − IG(t)c (a, b)] [B (a, b) − BG(t)c (a, b)]

and

H(t) = − log B (a, b) − BG(t)c (a, b) .B (a, b)

NOTES ON EXISTING MC G FAMILIES OF DISTRIBUTIONS

The three shape parameters a, b and c introduce skewness, kurtosis, and vary tail weights. The parameters 
control skewness and kurtosis through altering the tail entropy (Alexander et al. 2012). They also control 
skewness and kurtosis through adding entropy to the center of the baseline distribution (Alexander et al. 2012). 
Cordeiro et al. (2014b) mentioned that a and b are skewness parameters that control relative tail weights but 
not the peak, but c provides the control over the peak.

Alexander et al. (2012), Marciano et al. (2012), Cordeiro and Lemonte (2012, 2014), Cordeiro et al. 
(2012a, b, 2013d, 2014b), Lemonte and Cordeiro (2013) and Gomes et al. (2013a) used Mc G distributions 
for developing McDonald normal, McDonald (extended) exponential, McDonald gamma, McDonald 
inverted beta, McDonald arcsine, McDonald Weibull, McDonald Birnbaum-Sanders (fatigue life), 
McDonald Lomax, McDonald Burr XII and McDonald Burr III distributions. These authors believe that 
the Mc G family of distributions can fit skew data better than existing distributions. The Mc G family of 
distributions is most applicable when G(x) and g(x) take simple analytical forms.

The Mc G family of distributions reduces to the beta G family of distribution for c = 1 and to the Kw G 
family of distribution for a = c. Further, the Mc G family of distributions for G(x) = x contains as particular 
cases the beta type 1 distribution (c = 1) and the Kumaraswamy distribution (a = c).

Zografos (2011) studied a family of distributions based on McDonald and Xu (1995)’s generalized beta 
distribution. This family was called the family of generalized beta generated (GBG) distributions.

A list of papers on the Mc G family of distributions is given in Table IV.
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KUMARASWAMY DISTRIBUTIONS AND KUMARASWAMY G FAMILIES OF DISTRIBUTIONS

Kumaraswamy (1980) argued that the beta distribution does not fairly fit hydrological random variables 
like rainfall, daily stream flow, etc. Jones (2009) commented that “beta distribution is fairly tractable, 
but in some ways not fabulously so. In particular its distribution function is an incomplete beta 
function ratio and its quantile function the inverse thereof”. The Kumaraswamy (Kw) distribution is 
relatively much appreciated in comparison to the beta distribution, and has a simple form which can 
be unimodal, increasing, decreasing or constant, depending on the parameter values.

In this section, we give functional forms of Kw distributions. We also propose Kumaraswamy 
generalized families of distributions.

EXISTING KUMARASWAMY DISTRIBUTIONS

The Kw distribution has the cdf and the pdf specified by

F(x) = 1 − (1 − xa)b, (6.1)

and

f(x) = a b xa − 1 (1 − xa)b − 1, (6.2)

respectively, where 0 < x < 1 and a > 0, b > 0 are both shape parameters.

EXISTING KUMARASWAMY G FAMILY OF DISTRIBUTIONS

For a baseline cdf G(x) with pdf g(x), Cordeiro and de Castro (2011) defined the Kw G distribution 
specified by the cdf and the pdf

F(x) = 1 − [1 − G(x)a]b, (6.3)
and

S.No. Pioneer year Distribution Author(s)
1 2010 McDonald Kumaraswamy distribution Carrasco et al. (2010)
2 2012 McDonald exponential distribution Cordeiro et al. (2012f)
3 2012 McDonald gamma distribution Marciano et al. (2012)
4 2012 McDonald inverted beta distribution Cordeiro and Lemonte (2012)
5 2012 McDonald normal distribution Cordeiro et al. (2012a)
6 2012 McDonald extended exponential distribution Cordeiro et al. (2012b)
7 2013 McDonald Burr XII distribution Gomes et al. (2015)
8 2013 McDonald Burr III distribution Gomes et al. (2015)
9 2013 McDonald Lomax distribution Lemonte and Cordeiro (2013)

10 2013 McDonald Birnbaum-Sanders distribution Cordeiro et al. (2013d)
11 2013 McDonald Fisk (log-logistic) distribution Zubair (2013)
12 2013 McDonald Dagum distribution Rajasooriya (2013)

Oluyede and Rajasooriya (2013)
13 2013 McDonald modified Weibull distribution Merovci and Elbatal (2013)
14 2014 McDonald arcsine distribution Cordeiro and Lemonte (2014)
15 2014 McDonald Weibull distribution Cordeiro et al. (2014b)
16 2015 McDonlad Burr distribution Cordeiro et al. (In press)

TABLE IV 
Contributed work on the Mc G family of distributions.
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f(x) = a b g(x) G(x)a − 1 [1 − G(x)a]b − 1, (6.4)

where x > 0, g(x) = dG(x) = dx and a > 0, b > 0 are shape parameters in addition to those in the baseline 
distribution. They partly govern skewness and vary tail weights. For a lifetime random variable t, the sf, hrf, 
rhrf and chrf associated with (6.3) and (6.4) are

F(t) = [1 − G(x)a]b, 
h(t) = a b g(t) G(t) a − 1 [1 − G(t)a]− 1 

r(t) = a b g(t) G(t)a − 1 [1 − G(t)a]b − 1 
©

1 − [1 − G(x)a]bª−1,
and

H(t) = −b log [1 − G(x)a].

NOTES ON KUMARASWAMY G FAMILIES OF DISTRIBUTIONS

Equations (6.3) and (6.4) do not involve any special function like the beta function, incomplete beta 
function, incomplete beta ratio, gamma function, incomplete gamma func- tion or the incomplete gamma 
ratio. Therefore, the generalization in (6.3) and (6.4) is computationally more efficient compared to beta 
G and Mc G families of distributions.

The Kw G families of distributions are more flexible than the baseline distribution in the sense that the 
families allow for greater flexibility of tail properties. Their second benefit is their ability to fit skew data that 
cannot be properly fitted by existing distributions.

NOTES ON KUMARASWAMY G FAMILIES OF DISTRIBUTIONS

Equations (6.3) and (6.4) do not involve any special function like the beta function, incomplete beta 
function, incomplete beta ratio, gamma function, incomplete gamma func- tion or the incomplete gamma 
ratio. Therefore, the generalization in (6.3) and (6.4) is computationally more efficient compared to beta 
G and Mc G families of distributions.

The Kw G families of distributions are more flexible than the baseline distribution in the sense that the 
families allow for greater flexibility of tail properties. Their second benefit is their ability to fit skew data that 
cannot be properly fitted by existing distributions.

A list of papers on the Kw G family of distributions is given in Table V.

S.No. Pioneer year Distribution Author(s)
1 2010 Kumaraswamy Weibull distribution Cordeiro et al. (2010)
2 2011 Kumaraswamy generalized gamma distribution de Pascoa et al. (2011)
3 2011 Kumaraswamy skew-normal distribution Kazemi et al. (2011)

Mameli (2012)
Mameli and Musio (2013)

4 2011 Kumaraswamy Gumbel minimum distribution El-Sherpieny and Ahmed (2011)
5 2012 Kumaraswamy log-logistic distribution de Santana et al. (2012)

Muthulakshmi and Selvi (2013)
6 2012 Kumaraswamy Gumbel distribution Cordeiro et al. (2012c)
7 2012 Kumaraswamy Birnbaum-Sanders distribution Saulo et al. (2012)

TABLE V
Contributed work on Kumaraswamy G family of distributions.
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NEW KUMARASWAMY TYPE DISTRIBUTION

Setting X = 1 − Y in (6.1) and (6.2), we obtain a distribution specified by the cdf and the pdf

F(x) = 1 − [1 − (1 − x) a]b (6.5)

and

f(x) = a b (1 − x) a − 1 [1 − (1 − x) a ]b− 1,

where 0 < x < 1 and a > 0, b > 0 are the shape parameters.

OTHER KW G FAMILIES OF DISTRIBUTIONS

Replacing x with G(x) in (6.5), we obtain a Kw G distribution specified by the cdf

F(x) = 1 − {1 − [1 − G(x)]a}b, (6.6)

where a > 0 and b > 0 are both shape parameters. The pdf corresponding to (6.7) is

f(x) = a b g (x) [1 − G(x)]a − 1 {1 − [1 − G(x)] a}b − 1. (6.7)

Equations (6.6) and (6.7) are the cdf and the pdf of the Exp G family of distributions recently proposed 
by Cordeiro et al. (2013e). For a lifetime random variable t, the sf, hrf, rhrf and chrf associated with (6.6) 
and (6.7) are

F(t) = {1 − [1 − G(t)]a}b, 
h(t) = a b g(t) [1 − G(t)]a − 1

 {1 − [1 − G(t)]a} − 1,
r(t) = a b g(t) [1 − G(t)]a − 1 {1 − [1 − G(t)]a} b− 1 1 − {1 − [1 − G(t)]a}b − 1,

and

H(t) = − b log {1 − [1 − G (t)]a}.

TABLE V (continuation)

S.No. Pioneer year Distribution Author(s)
8 2012 Kumaraswamy generalized half-normal distribution Cordeiro et al. (2012e)
9 2012 Kumaraswamy inverse Weibull distribution Shahbaz et al. (2012)
10 2012 Kumaraswamy normal distribution Correa et al. (2012)
11 2012 Kumaraswamy generalized inverse Weibull distribution Yang (2012)
12 2013 Kumaraswamy Pareto distribution Bourguignion et al. (2013)
13 2013 Kumaraswamy generalized Pareto distribution Nadarajah and Eljabri (2013)
14 2013 Kumaraswamy Burr XII distribution Paranáıba et al. (2013)
15 2013 Kumaraswamy generalized extreme value distribution Eljabri (2013)
16 2013 Kumaraswamy linear exponential distribution Elbatal (2013a)
17 2013 Kumaraswamy generalized linear failure rate distribution Elbatal (2013b)
18 2013 Kumaraswamy exponentiated Pareto distribution Elbatal (2013c)
19 2013 Kumaraswamy Lomax distribution Shams (2013)
20 2013 Exponentiated Fisk (log-logistic) distribution Zubair (2013)
21 2014 Exponentiated generalized Burr III distribution Zubair (2013)
22 2014 Kumaraswamy modified Weibull distribution Cordeiro et al. (2014d)
23 2014 Kumaraswamy generalized Rayleigh distribution Gomes et al. (2014)
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CONCLUSIONS

We first refer to some important surveys on the developments of continuous univariate distributions: Kotz 
and Vicari (2005) surveyed the developments in the theory of skewed continuous distributions; Gupta and 
Kundu (2009) described six different methods for the induction of shape and/or skewness parameter(s) in 
univariate probability distributions; Chakraborty and Hazarika (2011) surveyed the theoretical developments 
of the univariate skew-normal distribution, its extensions and generalizations; Lee et al. (2013) surveyed recent 
methods for generating families of univariate continuous distributions. They discussed five general methods 
for generating G families of distributions: (1) method for generating skewed distributions, (2) method for adding 
parameters (e.g., exponentiation), (3) beta G, (4) transformed-transformer (T-X) family, and (5) composite 
method. Recently, Nadarajah (2015a, 2015b) introduced the R package Newdistns which computes the pdf, cdf, 
quantiles and random numbers for nineteen general families of distributions.

In this paper, we have discussed the well-established and widely used G families of distributions: the EF 
of distributions, the MOE distributions, the beta G distributions, the Mc G distributions, the Kw G distributions 
and the Exp G distributions. We have provided exhaustive lists of papers on these families of distributions. We 
have cited 28 papers on the EF of distributions, 28 papers on the MOE distributions, 45 papers on the beta G 
distributions, 16 papers on the Mc G distributions, 21 papers on the Kw G distributions and 2 papers on the Exp 
G distributions. The literature review in Lee et al. (2013) appears less detailed.

We have introduced several new families of distributions relating to the MOE distribu- tions and the 
Kw G distributions. Of course, this is not an attempt to increase the frequency of articles on new families of 
distributions but rather to effectively explore real life phenom- ena through data sets available from different 
fields. We have noted that contributors (practitioners) have used different model selection criteria: the maximized 
log-likelihood ℓ (θb), the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the 
Consistent Akaike Information Criterion (CAIC), the Hannan-Quinn Information Cri- terion (HQIC), the 
Cramer-von-Mises (W*), the Anderson-Darling (A*), the Wald (W ) statistic, the Kolmogorov-Smirnov (K-S) 
test and graphical inspection of the proximity of histograms to the fitted pdfs.

Tractability and effectiveness for modeling censored data require, among other things, closed form 
expressions for the cdf. So, the Kw G distributions can be tractable and effective models for censored data. 
The EF and MOE distributions can also be tractable and effective models for censored data, provided G is in 
closed form. However, beta G and Mc G distributions may not be tractable or effective models for censored 
data since their cdfs involve the incomplete beta function.

It is very appreciating that the contributors have expanded the horizon of applications with efficient 
statistical modeling. In this regard, the acknowledgements and appreciation go to Professors M. C. Jones, 
Narayanaswamy Balakrishnan, Kostas Zografos, Felix Famoye, Carl M. -S. Lee, Ramesh C. Gupta, Arjun 
Kumar Gupta, Rameshwar D. Gupta, Debasis Kundu, Mohamad E. Ghitany, and K. K. Jose. Special 
acknowledgements and apprecia- tion go to the Brazilian Statisticians Group headed by Professor Gauss 
M. Cordeiro for introducing the Mc G, Kw G, Exp G, beta extended G, Weibull G families and exploring 
their properties. We note that 58 of the listed papers in the References section belong to Professor Cordeiro.
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RESUMO

O método de adicionar parâmetros a uma distribuição especificada tem sido bastante adotado nos últimos anos. 
A adição de um ou mais parâmetros de forma torna a distribuição gerada mais flexível especialmente no estudo de 
suas propriedades. Esse método tem se mostrado eficaz, também, na melhoraria das estatísticas de adequação do 
ajuste da nova distribuição. Desde 1985, muitas famílias de distribuições contínuas geradas por esse método têm sido 
investigadas. Neste artigo, as famílias geradoras mais conhecidas de distribuições como a família estendida de Marshall-
Olkin, a família beta, as famílias generalizadas de McDonald e Kumaraswamy e as famílias exponencializadas são 
discutidas. Apresentam-se as referências mais importantes dessas famílias. Algumas formas mais amplas da família 
estendida de Marshall-Olkin e da família generalizada de Kumaraswamy são propostas.

Palavras-chave: Distribuição beta, família exponencializada, distribuição de Kumaraswamy, família de Marshall-
Olkin, distribuição de McDonald, propriedades da confiabilidade.
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