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ABSTRACT  
This study presents the bioreduction of six β-ketoesters by whole cells of Kluyveromyces marxianus 
and molecular investigation of a series of 13 β-ketoesters by hologram quantitative structure-activity 
relationship (HQSAR) in order to relate with conversion and enantiomeric excess of β-stereogenic-
hydroxyesters obtained by the same methodology. Four of these were obtained as (R)-configuration and 
two (S)-configuration, among them four compounds exhibited >99% enantiomeric excess. The β-ketoesters 
series LUMO maps showed that the β-carbon of the ketoester scaffold are exposed to undergo nucleophilic 
attack, suggesting a more favorable β-carbon side to enzymatic reduction based on adopted molecular 
conformation at the reaction moment. The HQSAR method was performed on the β-ketoesters derivatives 
separating them into those provided predominantly (R)- or (S)-β-hydroxyesters. The HQSAR models for 
both (R)- and (S)-configuration showed high predictive capacity. The HQSAR contribution maps suggest 
the importance of β-ketoesters scaffold as well as the substituents attached therein to asymmetric reduction, 
showing a possible influence of the ester group carbonyl position on the molecular conformation in the 
enzyme catalytic site, exposing a β-carbon side to the bioconversion to (S)- and (R)-enantiomers.
Key words: biocatalysis, β-ketoesters, β-hydroxyesters, HQSAR, whole cell bioreduction.
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INTRODUCTION

Chiral β-hydroxyesters are widely used in 
the chemical-pharmaceutical industry as 
intermediates of organic synthesis and some 
of them have been used for the synthesis of 

biologically active compounds. For example, 
the ethyl 3-hydroxybutanoate plays an important 
role in the synthesis of (+)-decarestrictine L, an 
inhibitor of cholesterol biosynthesis (Wang et al. 
2013), and the methyl 3-hydroxypentanoate is 
the key chiral building block in the synthesis of 
(-)-serricornine, the sex pheromone from cigarette 
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beetle, Lasioderma serricorne (Pilli and Riatto 
1998). In the same way, ethyl 3-hydroxyhexanoate 
is an important intermediate for the synthesis of 
(+)-neopeltolide, a potent in vitro antiproliferative 
agent against the growth of several cancer cell 
lines and also antifungal activity against Candida 
albicans (Ramos et al. 2011, Ghosh et al. 2013). 
And also both enantiomeric forms of methyl 
3-aryl-3-hydroxypropionates are important 
building blocks in the synthesis of several chiral 
drugs, fine chemicals and pesticides (Borowiecki 
and Bretner 2013, Liu and Liu 2015). 

Chiral β-hydroxyesters from β-ketoesters may 
be obtained by chemical or microbial asymmetric 
reduction. The chemical asymmetric methods 
involve metal catalysts that may leave residues in 
products and should be avoided for pharmaceuticals. 
Aside from that it generally requires additional steps 
for protection/deprotection of functional groups 
and extreme reaction conditions (Hagemann et al. 
2005, Ng and Jaenicke 2009, Floris et al. 2009, 
Sheldon 2016). Alternatively the bioreduction 
occurs under nontoxic and mild reaction conditions 
(ambient temperature, atmospheric pressure, 
and aqueous medium) with little impact on the 
environmental and avoids the burden of group-
protecting procedures (Milner and Maguire 2012, 
Oliveira et al. 2013, Regil and Sandoval 2013, 
Sheldon 2016).

Despite the bioreduction approaches require 
special precautions, such as sterile conditions 
to obtain the biomass and a biphasic system or 
substrate/product reservoir in order to get around the 
low water solubility of the substrates, this method 
is attractive because of its advantages and has been 
widely used for asymmetric reductions (Zeror et 
al. 2010, Regil and Sandoval 2013, Sheldon 2016, 
Wachtmeister and Rother 2016). 

Asymmetric bioreductions can be performed 
using both enzymes and whole cells. The use 
of whole cells has the additional advantage of 
containing the required cofactors and regenerates 

them during the reaction (Milner and Maguire 
2012, Nakamura et al. 2003, Illanes et al. 2012, 
Venkataraman and Chadha 2015, Wei et al. 2016).

Several microorganisms have been used to 
reduce different β-ketoesters and most of them 
catalyze the reaction to the (S)-configuration 
(Ramos et al. 2009a). Saccharomyces cerevisiae 
(baker’s yeast) is the most used microorganism to 
obtain some chiral β-hydroxyesters (Zeror et al. 
2010, Fow et al. 2008) due to its ease of handling 
and commercial availability. However, this method 
gives predominantly (S)-configuration products, 
with wide range of enantiomeric excess (Zeror et 
al. 2010, Dahl and Madsen 1998, Mahmoodi et al. 
2006).

The yeast Kluyveromyces marxianus has 
several characteristics that make it an excellent 
choice for commercial processes. These includes 
low pH tolerance, high resistance to furfural 
and alcohols, a broad range of fermentation 
temperatures (thermotolerance), and the ability 
to grow fast and on a wide variety of inexpensive 
carbon source (Moreno et al. 2012, Chang 
et al. 2014, Galindo-Leva et al. 2016). Some 
biotechnological applications have been reported 
using this yeast, such as food, beverages, enzymes, 
and fine chemicals production (Foukis et al. 2012, 
Lane et al. 2011). 

In the present work six β-ketoesters 
(compounds 1-6) were submitted to asymmetric 
bioreduction by whole cells of K. marxianus. The 
bioconversion result of these compounds were 
added to seven others β-ketoesters (compounds 
7-13) from the literature to study the structural 
influence of β-ketoesters substrate on the activity 
of this yeast (Table I). In an attempt to understand 
which structural properties are crucial for the 
enantiomers biosynthesis, the two-dimensional 
molecular features of the β-ketoesters series were 
explored using the hologram quantitative structure-
activity relationship (HQSAR) (Rodrigues et al. 
2002, Magalhães et al. 2013). 
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MATERIALS AND METHODS

CHEMICALS 

The following β-ketoesters were used as substrates: 
ethyl 3-oxobutanoate (1), methyl 3-oxopentanoate 
(2), ethyl 3-oxopentanoate (3), ethyl 3-oxohexanoate 
(4), methyl 4-chloro-3-oxobutanoate (5), methyl 
3-(4-chlorophenyl)-3-oxopropanoate (6). All 
chemicals were obtained from Sigma-Aldrich. 

MICROORGANISM AND GROWTH CONDITIONS

The yeast Kluyveromyces marxianus belongs to 
the collection of the Departamento de Engenharia 
Bioquímica of the Escola de Química at the 
Universidade Federal do Rio de Janeiro, Brazil. 

Cells of K. marxianus were allowed to grow at 
30 °C under 150 rpm for 48h in Erlenmeyer flask 
(250 mL) with 50 mL of sterile growth medium 
containing 10 g/L glucose, 5 g/L yeast extract, 5 
g/L peptone, 1 g/L (NH4)2SO4, 1 g/L MgSO4.7H2O 
and pH 6.5. The grown cells were harvested by 
centrifugation at 3500 rpm for 10 min. The cells 
were washed twice with distilled water and used in 
the bioconversion.

BIOCONVERSION CONDITIONS AND ANALYSIS OF 
THE PRODUCTS  

The bioconversion was carried out in a 250 mL 
Erlenmeyer flask with 50 mL medium containing 50 
g/L glucose and 1 g/L MgCl2 and pH 6.5 (Ramos et 
al. 2009a). The K. marxianus cells were inoculated 
to the bioconversion’s medium (5 g/L, dry weight). 
After 30 min of inoculation under agitation (150 
rpm) at 30 ºC, each Erlenmeyer flask received 
appropriate β-ketoester (0.5%) in aqueous-ethanol. 
After 24h of incubation at the same conditions, 
the cells were harvested by centrifugation and 
the supernatant was extracted with ethyl acetate. 
The organic phase was dried (anhydrous MgSO4), 
filtered and concentrated under vacuum. The 
experiments were performed in triplicate.

The products  were identif ied from 
infrared spectra (IR), optical rotations, and gas 
chromatography (GC). The IR spectra were 
recorded on a Perkin–Elmer 1420 spectrometer in 
potassium bromide pellets. Optical rotations were 
measured with a ACATEC PDA 9300 polarimeter at 
the sodium D line (589 nm) operating at 27 °C using 
CHCl3 as solvent. The chromatographic analyses 
were performed with an HP 5890 instrument 
equipped with a flame ionization detector, H2 was 
used as the carrier gas, retention times (tR) are given 
in minutes under each condition.  

ETHYL 3-HYDROXYBUTANOATE (1’a AND 1’b)

Colorless oil; conversion 99%; ee 81%; IR (KBr, 
cm-1): 3455 (C-OH), 1732 (C=O). [α]D27 -16.3 (c 
1.0 CHCl3), lit.:{+43.7 (S) (c 1.0 CHCl3)}(Dahl 
and Madsen 1998). GC on chiral column BGB-
176 (25 m x 0.25 mm x 0.25 µm); isotherm 90 
°C; hydrogen carrier gas flow was 3.82mL min-1, 
the inlet and flame ionization detector temperature 
was set to 250 °C; split ratio, 1:100; injection 
volume, 1 µL. The elution order was: ethyl (S)-3-
hydroxybutanoate (1’a), tR = 3.9 min, followed by 
ethyl (R)-3-hydroxybutanoate (1’b), tR = 4.0 min. 
Substrate (1) was eluted at 3.6 min.

METHYL 3-HYDROXYPENTANOATE (2’a AND 2’b)

Colorless oil; conversion 73%; ee 99%; IR (KBr, 
cm-1): 3426 (C-OH), 1637 (C=O). [α]D27 -10.6 (c 
1.0 CHCl3), lit.:{-32.8 (c 1.0 CHCl3)}(Dahl and 
Madsen 1998). GC on chiral column BGB-176 (25 
m x 0.25 mm x 0.25 µm); 40 °C//5 °C/min//150 °C; 
hydrogen carrier gas flow was 1.35 mL min-1, both 
inlet and flame-ionization detector temperatures 
were 250 °C; split ratio, 1:20; injection volume, 
1 µL. The elution order was: methyl (S)-3-
hydroxypentanoate (2’a), tR = 10.8 min, followed 
by methyl (R)-3- hydroxypentanoate (2’b), tR = 
11.2 min. Substrate (2) was eluted at 10.5 min.
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ETHYL 3-HYDROXYPENTANOATE (3’a AND 3’b)

Colorless oil; conversion 85%; ee 99%; IR (KBr, 
cm-1): 3468 (C-OH), 1717 (C=O). [α]D27 -13.6 
(c 1.0 CHCl3), lit.:{+23.3 (S) (c 1.0 CHCl3)}
(Rodriguez et al. 2000). GC on chiral column 
BGB-176 (25 m x 0.25 mm x 0.25 µm); 40 °C//5 
°C/min//150 °C; hydrogen carrier gas flow was 
1.35 mL min-1, both inlet and flame-ionization 
detector temperatures were 250 °C; split ratio, 
1:20; injection volume, 1 µL. The elution order 
was: ethyl (S)-3-hydroxypentanoate (3’a), tR = 12.5 
min, followed by ethyl (R)-3- hydroxypentanoate 
(3’b), tR = 12.8 min. Substrate (3) was eluted at 
12.3 min.

ETHYL 3-HYDROXYHEXANOATE (4’a AND 4’b)

Colorless oil; conversion 96%; ee 99%; IR (KBr, 
cm-1): 3518 (C-OH), 1717 (C=O). [α]D27 -9.4 (c 
1.0 CHCl3), lit.:{-30.8 (c 1.0 CHCl3)}(Ramos et 
al. 2011). GC on chiral column 10B (30 m x 0.25 
mm x 0.25 µm); 90 °C/20 min; hydrogen carrier 
gas flow was 2.39 mL min-1; inlet at 250 °C; flame-
ionization detector at 270 °C; split ratio, 1:20; 
injection volume, 1 µL. The elution order was: 
ethyl (S)-3-hydroxyhexanoate (4’a), tR = 16.2 min, 
followed by ethyl (R)-3- hydroxyhexanoate (4’b), 
tR = 16.5 min. Substrate (4) was eluted at 15.8 min.

METHYL 4-CHLORO-3-HYDROXYBUTANOATE (5’a 
AND 5’b)

Colorless oil; conversion 13%; ee 44%; IR (KBr, 
cm-1): 3500 (C-OH), 1731 (C=O). [α]D27 -6.4 (c 
1.0 CHCl3), lit.:{-8.0 (c 1.5 CHCl3)}(Seebach et 
al. 1984). GC on chiral column Lipodex E (25 m 
x 0.25 mm); 70 °C//5 °C/min//130 °C; hydrogen 
carrier gas flow was 2.57 mL min-1, both inlet 
and flame-ionization detector temperatures were 
250 °C; split ratio, 1:100; injection volume, 1 µL. 
The elution order was: methyl (R)-4-chloro-3-
hydroxybutanoate (5’b), tR = 10.7 min, followed 

by methyl (S)-4-chloro-3-hydroxybutanoate (5’a), 
tR = 10.9 min. Substrate (5) was eluted at 9.7 min.

METHYL 3-(4-CHLOROPHENYL)-3-
HYDROXYPROPANOATE (6’a AND 6’b)

White solid; conversion 28%; ee 99%; IR (KBr, 
cm-1): 3521 (C-OH), 1743 (C=O). [α]D27 -8.7 (c 1.0 
EtOH), lit.:{-18.0 (c 1.0 EtOH)}(Ratovelomanana-
Vidal et al. 2003). GC on chiral column 10B (30 
m x 0.25 mm x 0.25 µm); 150 °C(10min)//1.5 °C/
min//190 °C; hydrogen carrier gas flow was 2.39 
mL min-1; inlet at 250 °C; flame-ionization detector 
at 270 °C; split ratio, 1:20; injection volume, 1 µL. 
The elution order was: methyl 3-(4-chlorophenyl)-
(R)-3-hydroxypropanoate (6’b), tR = 23.4 min, 
followed by methyl 3-(4-chlorophenyl)-(S)-3-
hydroxypropanoate (6’a), tR = 23.7 min. Substrate 
(6) was eluted at 4.3 min.

NaBH4 REDUCTION CONDITIONS

The standards used in the analysis of the 
reactional products were obtained by chemical 
reduction of each one of the six β-ketoesters. The 
chemical reduction was conducted with sodium 
borohydride (NaBH4) using glycerol as solvent 
at room temperature. After total consumption of 
the substrate the medium was acidified with HCl 
10% (v/v) and the product was extracted with ethyl 
acetate (Oliveira et al. 2014).

MOLECULAR MODELING AND DETERMINATION 
OF THREE-DIMENSIONAL FRONTIER ORBITAL 
MAPS

The computations and molecular modeling 
were performed using SPARTAN´10 software 
(Wavefunction, Inc., Irvine, CA, USA). The 
molecular structure of the β-ketoesters series (1-
13) were designed and submitted to the calculations 
simulating the vacuum, in a non-ionized state and 
without any geometric constraint. Conformational 
analysis for the selection of the lowest energy 
conformer was performed by the molecular 



An Acad Bras Cienc (2017) 89 (3)

	 β-KETOESTERS: AN APPROACH FOR ASYMMETRIC BIOREDUCTION	 1407

mechanics method using force field MMFF (Merck 
Molecular Force Field) (Halgren 1996). Thereafter 
the conformers were subjected to geometry 
optimization using the semi-empirical method 
RM1 (Recife Model 1) (Rocha et al. 2006). The 
conformer with the lowest energy was subjected to 
single point calculation by the DFT-B3LYP method 
based on quantum mechanics, with 6-31G* basis 
set (Becke 1993, Lee et al. 1988, Kohn et al. 1996). 
Subsequently, in order to assist the understanding 
of the stereoelectronics aspects involved in the 
asymmetric reduction of the β-ketoesters (1-13) 
by K. marxianus and the favorable points for the 
chemical reaction, the molecular frontier orbital 
LUMO (Lowest Unoccupied Molecular Orbital) 
were evaluated (Oliveira et al. 2013).

HQSAR MODELS

The hologram QSAR method that employs fragment 
fingerprints as predictive variables of the activity 
(Rodrigues et al. 2002) were used to investigate the 
influence of molecular structure of β-ketoesters (1-
13) on the conversion and enantiomeric excess of 
β-hydroxyester produced by K. marxianus activity. 
The asymmetric reduction of all compounds 
was expressed as percentage of (S)- and (R)- 
enantiomers, which were converted to logarithmic 
values before HQSAR models preparation.

The initial set of 1-13 compounds was divided 
into training and test sets. The training set (11 
compounds) represents structurally different 
compounds with diverse results obtained for the 
yeast activity. In order to evaluate the predictive 
capacity of the model the 2 remaining compounds 
were assigned to the test set. To avoid possible 
problems during the external validation, the test 
set containing compounds with low and high 
asymmetric reduction.

The HQSAR studies were performed using 
the SYBYL-X 1.2 software package (Tripos 
International, St. Louis, MO, USA). The structures 

of β-ketoesters were converted into fragments 
initially using the default fragment size of 4-7 
atoms per fragment. All fragments were allocated 
in defined molecular hologram lengths (53, 59, 61, 
71, 83, 97, 151, 199, 257, 307, 353 and 401 bins) 
and fragment distinction analysis was performed 
in terms of atoms, bonds, connectivity, hydrogen 
atoms and hydrogen bond donor/acceptor atoms. 
Since these parameters may affect HQSAR models, 
different combinations of these parameters were 
considered during the HQSAR runs (Magalhães et 
al. 2013). Selection of HQSAR models was done 
on the basis of q2 values, known as leave-one-
out cross-validated r2, the most common statistic 
criteria used for model evaluation. Although the 
prerequisite for a predictive QSAR model is q2 
>0.5, is fundamental an external test validation 
(Golbraikh and Tropsha 2002). 

Several QSAR models were generated for 
each distinguishing fragment based on partial least 
squares (PLS) analysis. All QSAR models were 
obtained using PLS. Moreover, internal validation 
was performed by leave-one-out cross-validation 
and the external validation was performed with 
the test set compounds, which were not considered 
for the HQSAR model development (Shinde et al. 
2012).

RESULTS AND DISCUSSION

BIOCONVERSION OF β-KETOESTERS (1-6)

The yeast Kluyveromyces marxianus was able to 
reduce β-ketoesters (1-4) to (-)-(R)-hydroxyesters 
(1’b-4’b) and (5 and 6) to (-)-(S)-hydroxyesters (5’a 
and 6’a) with different conversions and enantiomeric 
excess (Table I). Among them, four compounds 
(2’b-4’b and 6’a) exhibited enantiopurity (>99% 
ee) and the (R)-products (1’b-4’b) were obtained 
with high conversion levels (higher than 70%). 
The IR spectra shown characteristic absorption 
bands of hydroxyesters compounds, such as in 
the stretching regions of O-H and C=O bonds. 
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The correspondent (R)-enantiomers 1’b-4’b were 
observed in gas chromatograph at 4.0, 11.2, 12.8, 
16.5 minutes respectively, and the correspondent 
(S)-hydroxyesters 5’a and 6’a were observed at 
10.9 and 23.7 minutes respectively (Figure 1). 

It is noteworthy that among the synthetic 
method to obtain the hydroxyesters presented 
here, there are just few reports that use the 
Kluyveromyces genus (Ramos et al. 2011, Xu et al. 
2013), one of which used carbonyl reductase of K. 
thermotolerans (Xu et al. 2013). The asymmetric 
bioreduction by whole cells of K. marxianus 
method was particularly effective in obtaining 
the (R)-hydroxyesters in high conversions and 
ee rate (Table I). Other methods described in the 
literature leading to the (R)-hydroxyesters (1’b, 
3’b, 4’b) requires more laborious and expensive 
approach, that is the complete inhibition of 
enzymatic activity for (S)-enantiomer using 
different microorganisms and growth conditions, 
recombinant microorganisms or enzyme inhibitors 
generally toxic and volatile (Ramos et al. 2011, 
Venkataraman and Chadha 2015, Fow et al. 2008, 
Dahl and Madsen 1998, Dao et al. 1998, Srivastava 
et al. 2015, Chen et al. 2015, Zhang et al. 2015). 

The results demonstrated that yeast K. 
marxianus (Oliveira et al. 2013, Molinari et al. 1999), 
also easy to handle and growth like Saccharomyces 
cerevisiae, led to the (R)-hydroxyesters (1’b-4’b) 
without any other additive and in a greater extent 
than that reported for S. cerevisiae (Zeror et al. 
2010, Mahmoodi et al. 2006). This is probably 
due to the different selectivity of the enzymes 
with specificity for the (R)-configuration in each 
yeast. On the other side, β-ketoesters 5 and 6 were 
reduced to their (S)-hydroxyesters (5’a and 6’a) 
with 44% and >99% ee, respectively (Table I). 
If on the one hand 5’a has also been reported by 
different bioreduction methods (Fow et al. 2008, 
Bisogno et al. 2009, Nakamura et al. 1985, 1989, 
Patel et al. 1992), on the other there are few and 
recent reports about 6’a from biocatalysis of 6 

acetate (Borowiecki and Bretner 2013, Liu and Liu 
2015). Because of the higher ee and the simplicity 
of the synthetic methodology these results showed 
that the bioreduction method using whole cell of K. 
marxianus is an attractive alternative to obtain the 
enantiopure hydroxyesters (2’b- 4’b and 6’a). 

MAPPING OF MOLECULAR STEREOELECTRONICS 
CHARACTERISTICS

In order to evaluate on the influence of chemical 
structures of substrates in the bioreduction using 
whole cell of K. marxianus 13 different β-ketoesters 
compounds (1-13) were analyzed, among which 
the ones presented in this paper (6 compounds) and 
the other seven from previously published work 
(Oliveira et al. 2013, Ramos et al. 2013, 2009a, b, 
Ribeiro et al. 2009, 2014). 

Analysis of the LUMO electron density map 
contribution from 1-13 showed a highlighted 
LUMO area (blue) at keto group region that 
stand out its higher tendency to react with 
nucleophiles leading to β-hydroxyesters (Figure 
S1 - Supplementary Material). Moreover, based 
on their minimal local energy conformation, 
the compounds display different probabilities of 
nucleophilic attack on both sides of keto group, 
with exception of compounds 5 and 10 in which 
both sides of the keto group have been similarly 
exposed. However, these conformations tend to 
modify within the enzyme catalytic site according 
to the local topology, exposing preferably one side 
of the keto group to the amino acid residues.

Whether there is a single type of enzyme for 
these substrates (1-13), it would be able to make 
β-ketoesters conversions to both (S)- and (R)-
enantiomers. In this case, the conformational 
flexibility of the β-ketoester scaffold may acquire 
different molecular arrangements in the catalytic 
site of enzyme, where the functional groups of 
this moiety may interact with different amino 
acids depending on the molecular structure of 
the derivative. Assuming that, the β-ketoesters 
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derivatives should adjust the molecular 
conformation to the topology of catalytic 
site in complementarity with the enzymatic 
conformational motions.

However, in the hypothesis of the existence 
of two or more highly selective enzymes capable 
of catalyzing the asymmetric bioreduction of these 
β-ketoesters derivatives it would consider that the 
molecular structure of their substrates influence for 
the (S)-enantiomer or (R)-enantiomer conversion. 
In this case, the β-ketoesters derivatives should 
adjust the molecular conformation to the topology 
of catalytic site in complementarity with the 
enzymatic conformational motions. 

We assume that the structure of the 
substituents linked to the β-ketoester scaffold is 
directly responsible for the steric effects by the 
influence on the conformation and have influence 
on the electropositive area at carbon atom of 
the keto group. The LUMO maps reinforce that 
bioconversion values are related to the effects of the 
substituents on the molecule conformations directly 
affecting the enzymatic asymmetric reduction of 
β-ketoesters (Oliveira et al. 2013, Dao et al. 1998).

HQSAR MODELS

HQSAR uses an extended form of fingerprint, 
known as molecular hologram which encodes 

TABLE I
Bioconversion of β-ketoesters series (1-13) by Kluyveromyces marxianus to correspondent (S)-(1’a-13’a) or  

(R)-hydroxyesters (1’b-13’b).

R1 O

O O

R2
R1 O

OH O

R2
R1 O

OH O

R2

	 (1-13)					      (1’a-13’a) 			   (1’b-13’b)

Compound R1 R2

R1 volume
(Å3)

R2 volume
(Å3)

C (%) ee 
(%)

S(%) R(%) Enantiomer 
prevalent1’a-13’a 1’b-13’b

1 ~CH3 ~CH2CH3 33.26 51.85 99.2 81.1 9.45 90.55 R
2 ~CH2CH3 ~CH3 51.84 33.29 73.51 99.9 0.05 99.95 R
3 ~CH2CH3 ~CH2CH3 51.84 51.88 85.54 99 0.5 99.5 R
4 ~C3H7 ~CH2CH3 70.20 51.88 96.06 99 0.5 99,5 R
5 ~CH2Cl ~CH3 47.72 33.26 13.25 43.7 71.85 28.15 S
6 p-Cl-Ph~ ~CH3 112.47 33.26 28 99.9 99.95 0.05 S
7 ~CCl3 ~CH2CH3 74.63 51.88 3.6 73 86.5 13.5 Sa

8 ~CF3 ~CH2CH3 47.12 51.88 81 29 64.5 35.5 Sa

9 ~CH3 ~CH3 33.26 33.29 84 5 52.5 47.5 Sb

10 ~CH2Cl ~CH2CH3 47.72 51.88 9.70 80.8 90.4 9.6 Sc

11 phenyl ~CH2CH3 99.10 51.88 59 99.9 99.95 0.05 Sd

12 ~CH3 tert-butyl 33.26 88.20 64.2 51.5 75.75 24.25 Se

13 ~CH3 benzyl 33.26 99.10 80 68 84 16 Sf

Literature data: a7’ and 8’ (Oliveira et al. 2013), b9’ (Ramos et al. 2009b), c10’ (Ribeiro et al. 2009), d11’ (Ramos et al. 2009a), e12’ 
(Ramos et al. 2013), f13’ (Ribeiro et al. 2014).
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information. This requires values to be selected for 
the parameters that specify the hologram length, 
as well as the size and type of fragments to be 
encoded (Flower 1998). The molecular fragments 
were generated using the fragment distinction 
parameters based on atoms, bonds, connections, 
hydrogen atoms and hydrogen bond donor/acceptor 
atoms. The HQSAR models were first generated 
using the default fragment size (4–7 atoms) 
combined with various fragment types and various 
hologram lengths. To identify how the fragment 
size could influence the statistical parameters, 
different fragment sizes were tested (2–5, 3–6, 4–7, 
5–8, 6–9, 7–10, 8–11, and 9–12) on the three best 
fragment distinction parameters of these models 
having the highest statistical indexes for (S)- and 
(R)- β-hydroxyester conversion. Table II shows the 
highlight HQSAR models.

The best HQSAR model for conversion of these 
β-ketoesters derivatives to (S)-β-hydroxyester was 
found to be model 47S, with atoms, connectivity, 
hydrogen atoms and hydrogen bond donor/acceptor 
atoms as the fragment distinction parameters, and 
5–8 atoms as the fragment size, showing good 
predictive capacity (q2 = 0.75), high data fitting (r2 = 
0.97), and low cross-validated standard error (SEcv 
= 0.66) (Table II). The descriptors contributions to 
bioconversion by K. marxianus in the model 47S 
show the most critical parameters. The fragments of 
5–8 atoms may be determinant for (S)-enantiomer 
conversion. 

Regarding the best HQSAR model for 
bioconversion to (R)-β-hydroxyester, 42R was 
the best model. With connectivity and hydrogen 
atoms as the fragment distinction parameter, and 
8–11 atoms as the fragment size, it shows good 

Figure 1 - Chromatograms showing the β-ketoesters and correspondent reduction products: (A1) ethyl 3-oxobutanoate; (A2) 
methyl 3-oxopentanoate; (A3) ethyl 3-oxopentanoate; (A4) ethyl 3-oxohexanoate; (A5) methyl 4-chloro-3-oxobutanoate, (A6) 
methyl 3-(4-chlorophenyl)-3-oxopropanoate; B1–B6 - racemate obtained via NaBH4 reduction; C1–C6 - Kluyveromyces marxianus 
reduction. The retention times are indicated above each chromatogram peak. 
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predictive capacity (q2 = 0.86), high data fitting (r2 = 
0.97), and low cross-validated standard error (SEcv 
= 0.48) (Table II). The descriptors contributions to 
bioconversion by K. marxianus in the model 42R 
show that the critical parameters from β-ketoesters 
to (R)-enantiomer conversion are not the same to 
(S)-enantiomer conversion.  

HQSAR CONTRIBUTION MAPS

The HQSAR contribution map from these models 
can provide valuable insights about relationship 
between molecular fragments and bioconversion 
values in K. marxianus. Hologram QSAR uses 

molecular holograms and PLS to generate 
fragment-based structure-activity relationships. 
According to HQSAR method, it is possible to 
predict the activity value of a molecule by mapping 
its structural fragments (Rodrigues et al. 2002). 
In this sense, HQSAR contribution map analysis 
may be used as a step on the understanding the 
individual atomic contributions to the prevalence 
of (R)- or (S)-enantiomer bioconversion through 
a color code from red to green in a spectrum. The 
colors at the green end (yellow, green blue and 
green) indicate favorable contributions, whereas 
colors at the red end (orange, red orange and red) 
indicate unfavorable contributions. The neutral 
contributions are colored white (Figure 2). 

According to the contribution map, the 
molecular fragment corresponding to the 
substituents linked to β-ketoester scaffold display 
important role to (S)- and (R)-conversion. 
Furthermore the HQSAR contribution maps 
suggest that β-ketoesters scaffold is important to 
asymmetric reduction too. It suggests a possible 
influence from carbonyl of the ester group on the 
stabilizing the conformation in the enzyme catalytic 
site for (S)- and (R)-enantiomers bioconversion. 
This can be seen especially in compounds 2, 3 and 6 
which have had their conversions to hydroxyesters 
influenced by the effect of the alkoxy groups on 
ester carbonyl in both models. 

The β-ketoesters scaffold is the common 
molecular structure among the present compounds 
series, indicating the importance of the conformation 
and the position of the atoms to bioconversion. 
The substituents attached to β-ketoesters scaffold 
clearly have effects on the asymmetric reduction. 
According to both models, hydrogen atoms of 
the substituents attached to β-ketoesters scaffold 
should be replaced by others groups with the aim 
of modifying the asymmetric reduction. A rational 
attempt would be to modify these hydrogen atoms 
by bioisosteres monovalent groups such as fluorine, 
hydroxyl, amino and methyl groups or replace the 

TABLE II
Best models summary of HQSAR statistical indexes of 
β-ketoesters derivatives asymmetric bioreduction for 

the influence of various fragment size (FS), using atoms, 
bonds, connectivity, hydrogen atom and hydrogen bond 
donor/acceptor groups as the fragment distinction (FD) 

parameter.

Model FD FS
Statistical Indexes

q2 r2 SEcv PC HL
16S A/B/H 4-7 0.65 0.92 0.77 3 199
23S A/B/

C/H
4-7 0.65 0.92 0.78 3 401

26S A/C/H/
DA

4-7 0.66 0.96 0.83 4 353

45S A/C/H/
DA

3-6 0.68 0.91 0.74 3 53

46S A/C/H/
DA

4-7 0.66 0.96 0.83 4 353

47S A/C/H/
DA

5-8 0.75 0.97 0.66 3 97

3R C 4-7 0.84 0.96 0.52 5 59
13R C/H 4-7 0.84 0.96 0.52 5 59
31R C 5-8 0.85 0.96 0.50 5 59
34R C 8-11 0.86 0.97 0.48 5 71
39R C/H 5-8 0.85 0.96 0.50 5 59
42R C/H 8-11 0.86 0.97 0.48 5 71

Abbreviations: A, atoms; B, bonds; C, connectivity; DA, 
hydrogen bond donor/acceptor atoms; H, hydrogen atoms; HL, 
hologram length; PC, principal components; q2, leave-one-out 
cross-validated correlation coefficient; r2, non-cross-validated 
correlation coefficient; SEcv, cross-validated standard error; 
HQSAR, hologram quantitative structure-activity relationship.
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methylene bridge by divalent bioisosteres (Patani 
and LaVoie 1996).

EXTERNAL VALIDATION OF THE BEST HQSAR 
MODELS

An external validation was carried in order to 
access its ability to predict the bioconversion 
values in K. marxianus for the test set compounds. 
The experimental, predicted, and residual values 
(log scale converted from percentage data) for both 
training and test set compounds obtained for the 
best HQSAR models are reported in Table III. There 
is no presence of outliers in both models, showing 
the high predictive capacity. The good agreement 
between experimental and predicted values for the 
test set compounds establishes the reliability of 
the constructed HQSAR models:  model 47S (r2 = 

0.9743) and model 42R (r2 = 0.9600). The residual 
values of the bioconversion predicted are very low 
and the model 42R predicted exactly the same 
values to compound 6, 9, 12 and 13. The predictive 
capacity of the HQSAR models was investigated 
by calculating the predictive r2 values from the test 
compounds (4 and 11) which were also predicted 
with low residual values (Table III). 

Both successful models provide important 
information about which molecular fragments 
are directly related to the bioconversion profile 
in K. marxianus. Moreover, these models may be 
used to predict the bioconversion of the untested 
compounds. These data would be useful for 
application of K. marxianus in bioconversion of 
any other β-ketoester derivatives. 

CONCLUSIONS

In the present study, the wild strain Kluyveromyces 
marxianus was able to reduce β-ketoesters (1-6) 
to the corresponding chiral β-hydroxyesters.  Four 
of these were obtained with enantiomeric purity 
(>99%). Molecular investigation emphasized that 
the conversion rate and stereoselectivity of the 
enzymes over the β-ketoesters are related to their 
different electropositive region observed on LUMO 
electron density map. Moreover, the β-ketoesters 
series LUMO maps emphasize the importance of 
substituent effect and reinforce the influence of the 
β-ketoesters molecule conformations on enzymatic 
asymmetric reductions. 

Also, the HQSAR contribution maps suggest a 
possible influence of the ester group carbonyl on the 
molecular conformation fit in the enzyme catalytic 
site for (S)- and (R)-enantiomers bioconversion. 
Thus, it can be suggested that both β-ketoesters 
scaffold and the substituents therein influence the 
asymmetric reduction result. Two HQSAR models 
were established, one for β-ketoesters derivatives 
conversion to (R)-hydroxyesters and the other 
to (S)-hydroxyesters, which provide information 

Figure 2 - Hologram quantitative structure-activity 
relationship (HQSAR) contribution maps of the most and least 
bioconverted to (S)-enantiomer (a) and (R)-enantiomer (b) by 
K. marxianus.
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about the relationship between molecular fragments 
and K. marxianus bioconversion profile. These 
models may be used to predict the bioconversion 
of untested compounds.
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SUPPLEMENTARY MATERIAL

Figure S1 - Lowest Unoccupied Molecular Orbital 
(LUMO) electron density map on both sides of the 
β-ketoesters (1- 13). The electron-deficient area is 
shown in shades of blue ranging from pale to deep 
blue.


