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ABSTRACT
The synthesis of 3,3-disubstituted N-methyloxindoles, starting from 3-acetyl-2-hydroxy-1-methyloxindole 
employing a sequential one-pot synthesis, is studied. The process involves a first alkylation in the presence 
of 1 equiv. of both organic halide and Triton B and the second one employs another 1.5 equiv. of each in 
moderate to high yields. This procedure is compared with the results obtained from the direct dialkylation 
of N-methyloxindole. The metathesis of one of the corresponding diallylated product was also studied 
obtaining the spiranic oxindole. All these methodologies are directed towards the access to anticancer 
agents and natural biologically active products.
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INTRODUCTION

Sophisticated (Zhang et al. 2017, Nadege et al. 2016) 
or simple (Trost and Zhang 2006) natural compounds 
incorporating a 3,3-disubstituted 2-oxindole are 
frequently found (Kaur et al. 2016, Saraswat et al. 
2016, Fonseca and Cook 2016, Ziarani et al. 2013). 
In fact, the generation of this quaternary carbon as 
a consequence of this 3,3-disubstitution is a key 
point, based in the Ingold-Thorpe effect, for the 

construction of very complex natural skeletons or 
drugs (Cao et al. 2014, Shen et al. 2012, Singh and 
Desta 2012, Dalpozzo et al. 2012, Zhou et al. 2010, 
Galliford et al. 2007). For example, 3,3-disubstituted 
2-oxindoles are important class of heterocyclic 
compounds occurring in natural alkaloids such as the 
alkaloid horsfiline (Trost et al. 2006), esermethole 
(Trost et al. 2006), acetylcholinesterase inhibitors 
physostigmine and phenserine (Huang et al. 2004), 
and muscle relaxant agents flustramides A and B 
(Trost et al. 2011) (Figure 1). Besides synthetic 
spiroxindoles, with a rigid heterocyclic ring fused 
at the 3-position of the oxindole core (Figure 1), 
become the most effective compounds as inhibitors 
of the tumor cells proliferation inducing apoptosis 
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on them without affecting activities of normal cells 
(Gupta et al. 2017, Dondas et al. 2017, Saraswat et 
al. 2016, Yu et al. 2015, David et al. 2016). 

Although an unsymmetrical 3,3-substitution 
is more attractive from the synthetic point of 
view (Ashimori et al. 1993, Matsuura et al. 1998, 
Shaughnessy et al. 1998, Kundig et al. 2007, 
Marsden et al. 2008, Altman et al. 2008, Ruck et 
al. 2008, Jia and Kundig 2009, Perry and Taylor 
2009, Ghosh et al. 2012, Tian et al. 2008, He et 
al. 2009, Cheng et al. 2009, Weaver et al. 2011, 
Linton and Kozlowski 2008, Kumar et al. 2017), 
symmetrically 3,3-disubsitution can be very useful 
in particular examples. In this sense, there are 
two main approaches for achieving this last task 
(compounds 3); one of them is the cyclization of 
acylated anilides 1 (Figure 2, eq. a) and, the second 
(the most frequently used), the direct double 
alkylation onto 2, which is currently performed 

employing alkoxides or stronger bases (Figure 2, 
eq. b) (Scriven and Ramsden 2015).

In this context, deacylative alkylation (DaA) 
reaction emerged as an alternative to obtain this 
type of substitution (Mei et al. 2015, Kumar et 
al. 2017, Xie et al. 2016). The strategy of this 
transformation consists in the employment of the 
acetyl group as protecting, activating and leaving 
group for the alkylation sequence. It was recently 

Figure 1 - Natural and synthetic biologically active compounds containing the 2-oxindole unit.

Figure 2 - Approaches to obtain 3,3-disubstituted 2-oxindoles.
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demonstrated by our group than the monoalkylation 
of 3-acetyl-2-oxindoles 4 (Ortega-Martínez et 
al. 2017) could be performed using alkyl halides 
and benzyltrimethylammonium hydroxide (Triton 
B) as base at room temperature in good yields. 
This methodology was applied to the synthesis 
of 1,3-dimethyl-2-oxindoles (Ortega-Martínez et 
al. 2017). Next, a deacylative alkylation (DaA) 
of the corresponding 3-acetyl-2-oxindole (5) with 
activated alkyl halides took place efficiently using 
LiOEt (Figure 3). In addition, conjugate addition 
with electron-deficient alkenes also was produced 
in the presence of Triton B. In both cases, the 
corresponding unsymmetrically 3,3-disubstituted 
2-oxindoles 6 or 7 were isolated respectively 
(Figure 3) (Ortega-Martínez et al. 2017). 

Continuing with our research looking for 
applications of this DaA for the synthesis of 
3,3-dialkyloxindoles we describe here the synthesis 
of symmetrical 3,3-disubstituted analogues. We 
also have compared the results obtained through 
this DaA methodology versus the direct double 
alkylation of oxindole.

EXPERIMENTAL SECTION

GENERAL

Melting points were determined with a Marienfeld 
melting-point meter (MPM-H2) apparatus and are 
uncorrected. For flash chromatography, silica gel 

60 (40–60 μm) was employed. The structurally 
most important peaks of the IR spectra (recorded 
using a Nicolet Avatar 320 FT-IR Spectrometer and 
JASCO FT/IR-4100 Fourier Transform Infrared 
Spectrometer) are listed and wave numbers are 
given in cm-1. 1H NMR (300, or 400 MHz) and 13C 
NMR (75 or 101 MHz) spectra were recorded with 
Bruker AV300 and Bruker AV400, respectively, 
with CDCl3  as solvent and TMS as internal 
standard for 1H NMR spectra, and the chloroform 
signal for  13C NMR spectra; chemical shifts are 
given in ppm. Low-resolution electron impact (GC-
EI) mass spectra were obtained at 70 eV with an 
Agilent 6890N Network GC system and an Agilent 
5973Network Mass Selective Detector. High-
resolution mass spectra (GC-EI) were recorded 
with a QTOF Agilent 7200 instrument for the exact 
mass and Agilent 7890B for the GC. Analytical 
TLC was performed using ALUGRAM® Xtra 
SIL G/UV254 silica gel plates, and the spots were 
detected under UV light (λ=254 nm). The synthesis 
of N-methyl-3-acetyl-2-oxindole was reproduced 
from the reported procedure (Ortega-Martínez et 
al. 2017).

SYNTHESIS OF 3,3-DISUBSTITUTED OXINDOLES 
USING DAA. GENERAL PROCEDURE 

To a solution of N-methyl-3-acetyl-2-oxindole 4a 
(57 mg, 0.3 mmol) and alkyl halide (0.3 mmol) in 
THF (3 mL) was added benzyltrimethylammonium 

Figure 3 - Synthesis of unsimmetrically 3,3-disubstituted 2-oxindoles by our group.
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hydroxide (Triton B) in MeOH (40wt%, 136 µL, 
0.3 mmol) dropwise. The reaction was stirred at 
rt during 4-6 h. The reaction was controlled by 
gas chromatography until the conversion of 4a to 
3-acetyl-3-alkyl-2-oxindole was ≥90%. Then, alkyl 
halide (0.45 mmol) and base (0.45 mmol) was added 
to complete the double alkylation, allowing the 
reaction to proceed at room temperature overnight. 
H2O (10 mL) was added, the mixture was extracted 
with EtOAc (3 × 10 mL) and the combined organic 
layers were evaporated and dried over MgSO4. 
After evaporation of the solvents the residue was 
purified by flash chromatography (EtOAc/hexane).

1,3,3-Trimethylindolin-2-one (3a): colorless 
oil; RF 0.3 (hexane/EtOAc 8.5:1.5); IR (neat) νmax 
3053, 2970, 2924, 1704, 1613 cm-1; 1H NMR (300 
MHz) δ 7.27 (1H, td, J = 7.7, 1.3 Hz, ArH), 7.21 
(1H, d, J = 7.4 Hz, ArH), 7.07 (1H, td, J = 7.5, 
0.9 Hz, ArH), 6.85 (1H, d, J = 7.8 Hz, ArH), 3.22 
(3H, s, NCH3), 1.37 (6H, s, 2 x CH3);

 13C NMR 
(101 MHz) δ 181.5 (CO), 142.7 (CH), 135.9 (CH), 
127.8 (CH), 122.6 (CH), 122.4 (CH), 108.1 (CH), 
44.3 (C), 26.3 (CH3), 24.5 (2 x CH3); LRMS (EI) 
m/z 175 (M+, 66%), 161 (11), 160 (100), 132 (20), 
117 (14), 77(6); HRMS (ESI): calcd. for C11H13NO 
[M]+ 175.0997; found 175.0998.

3,3-Diethyl-1-methylindolin-2-one (3b): 
colorless oil; RF 0.3 (hexane/EtOAc 9:1); IR (neat) ν 
2963, 2924, 2878, 2852, 1706, 1612 cm-1; 1H NMR 
(300 MHz) δ 7.31–7.23 (1H, m, ArH), 7.17–7.04 
(2H, m, ArH), 6.84 (1H, d, J = 7.7 Hz, ArH), 3.22 
(3H, s, NCH3), 2.01–1.68 (4H, m, 2 x CH2), 0.56 
(6H, t, J = 7.4 Hz, 2 x CH3); 

13C NMR (101 MHz) 
δ 180.2 (CO), 144.5 (C), 132.1 (C), 127.7 (CH), 
122.8 (CH), 122.5 (CH), 107.8 (CH), 54.5 (C), 30.8 
(2 x CH2), 26.1 (CH3), 8.8 (2 x CH3); LRMS (EI) 
m/z 203 (M+, 72%), 204 (10), 175 (51), 174 (100), 
160 (20), 159 (12), 146 (66), 131 (19), 130 (25); 
HRMS (ESI): calcd. for C13H17NO [M]+ 203.131; 
found 203.1313.

3,3-Dibenzyl-1-methylindolin-2-one (3c): (Shi 
et al. 2014)

1-Methyl-3,3-bis(2-methylbenzyl)indolin-
2-one (3d): pale yellow solid; mp 102-104 °C 
(hexane/EtOAc) ; RF 0.3 (hexane/EtOAc 9:1); IR 
(neat) ν 3058, 2963, 2923, 2857, 1709, 1611 cm-1; 
1H NMR (400 MHz) δ 7.11 (1H, td, J = 7.6, 1.5 Hz, 
ArH), 7.02–6.94 (4H, m, ArH), 6.92-6.80 (6H, m, 
ArH), 6.51 (1H, d, J = 7.8 Hz, ArH), 3.31 (4H, s, 2 
x CH2), 2.93 (3H, s, NCH3), 2.11 (6H, s, 2 x CH3); 
13C NMR (101 MHz) δ 179.5 (CO), 143.8 (C), 
137.19(C), 134.9 (C), 130.4 (C), 130.3 (2 x CH), 
130.1 (2 x CH), 128.0 (CH), 126.6 (2 x CH), 125.2 
(2 x CH), 124.8 (CH), 121.6 (CH), 107.7 (CH), 
55.2 (2 x C), 39.2 (2 x CH2), 26.0 (CH3), 20.3 (2 
x CH3); LRMS (EI) m/z 355 (M+, 55%), 356 (15), 
251 (22), 250 (100), 222 (44), 207 (14), 159 (17), 
105 (47); HRMS (ESI): calcd. for C25H25NO [M]+ 
355.1936; found 355.1943.

1’-Methyl-1,3-dihydrospiro[indene-2,3’-
indolin]-2’-one (3e): (Frost et al. 2015)

3,3-Diallyl-1-methylindolin-2-one (3f): 
(Ortega-Martínez et al. 2017)

3,3-Dicinnamyl-1-methylindolin-2-one (3g): 
yellow oil; RF 0.3 (hexane/EtOAc 9:1); IR (neat) ν 
3053, 3024, 2926, 1701, 1614 cm-1; 1H NMR (400 
MHz) δ 7.32–7.12 (12H, m, ArH), 7.08 (1H, t, J = 
7.0 Hz, ArH), 6.78 (1H, d, J = 7.7 Hz, ArH), 6.36 
(2H, d, J = 15.8 Hz, 2 x CH), 5.86 (2H, dt, J = 15.5, 
7.5 Hz, 2 x CH), 3.13 (1H, s, NCH3), 2.75 (4H, d, 
J = 7.4 Hz, 2 x CH2); 

13C NMR (101 MHz) δ 179.0 
(CO), 143.8 (C), 137.4 (2 x C), 133.9 (2 x CH), 
131.4 (C), 128.5 (4 x CH), 128.1 (CH), 127.3 (2 x 
CH), 126.3 (4 x CH), 124.1 (2 x CH), 123.6 (CH), 
122.5 (CH), 108.1 (CH), 53.4 (C), 40.4 (2 x CH2), 
26.3 (CH3); LRMS (EI) m/z 379 (M+, 32%) 380 
(12), 288 (12), 281 (17), 262 (43), 261 (14), 234 
(11), 208 (11), 207 (54), 147 (45), 146 (23), 118 
(23), 117 (100), 116 (10), 115 (34), 91 (14); HRMS 
(ESI): calcd. for C27H25NO [M]+ 379.1936; found 
379.1939.

3,3-Bis((E)-3,7-dimethylocta-2,6-dien-1-yl)-
1-methylindolin-2-one (3h): yellow oil; RF 0.2 
(hexane/EtOAc 9.5:0.5); IR (neat) ν 2965, 2921, 
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2855, 1717, 1612 cm-1; 1H NMR (300 MHz) δ 
7.26–7.18 (2H, m, ArH), 7.01 (1H, td, J = 7.5, 0.9 
Hz, ArH), 6.77 (1H, d, J = 7.7 Hz, ArH), 4.99–4.88 
(2H, m, 2 x CH), 4.80 (2H, t, J = 7.0 Hz, 2 x CH), 
3.16 (3H, s, NCH3), 2.53 (4H, d, J = 7.5 Hz, 2 x 
CH2), 1.90-1.65 (8H, m, 4 x CH2), 1.63 (6H, s, 2 x 
CH3), 1.53 (6H, s, 2 x CH3), 1.51 (6H, s, 2 x CH3); 
13C NMR (75 MHz) δ 180.0 (CO), 144.0 (C), 138.6 
(2 x C), 132.3 (C), 131.4 (2 x C), 127.6 (CH), 124.3 
(2 x CH), 123.5 (CH), 122.0 (CH), 118.3 (2 x CH), 
107.5 (CH), 53.4 (C), 39.9 (2 x CH2), 35.3 (2 x 
CH2), 26.8 (2 x CH2), 26.1 (CH3), 25.8 (2 x CH3), 
17.7 (2 x CH3), 16.5 (2 x CH3); LRMS (EI) m/z 419 
(M+, 3%), 283 (35), 214 (10), 198 (18), 161 (11), 
160 (91), 159 (100), 147 (24), 146 (14), 81 (12), 
69 (39); HRMS (ESI): calcd. for C29H41NO [M]+ 
419.3188; found 419.3191.

Dimethyl 4,4’-(1-methyl-2-oxoindoline-
3,3-diyl)bis(but-2-enoate) (3i): pale oil; RF 0.25 
(hexane/EtOAc 7:3); IR (neat) ν 2950, 1707, 1611 
cm-1; 1H NMR (300 MHz) δ 7.30 (1H, td, J = 
7.7, 1.3 Hz, ArH), 7.21–7.17 (1H, m, ArH), 7.09 
(1H, td, J = 7.5, 0.9 Hz, ArH), 6.85 (1H, d, J = 
7.8 Hz, ArH), 6.54 (2H, dt, J = 15.4, 7.6 Hz, 2 x 
CH), 5.79 (2H, d, J = 15.6 Hz, 2 x CH), 3.65 (6H, 
s, 2 x OCH3), 3.19 (3H, s, NCH3), 2.70 (4H, dd, 
J = 7.7, 1.3 Hz, 2 x CH2); 

13C NMR (75 MHz) δ 
177.55 (CO), 166.3 (2 x CO), 143.4 (C), 142.1 (2 x 
CH), 129.6 (C), 128.9 (CH), 124.9 (2 x CH), 123.3 
(CH), 123.0 (CH), 108.7 (CH), 51.7 (C), 51.6 (2 x 
CH3), 39.5 (2 x CH2), 26.4 (CH3); LRMS (EI) m/z 
343 (M+, 30%) 312 (14), 245 (14), 244 (88), 212 
(46), 185 (23), 184 (100); HRMS (ESI): calcd. for 
C19H21NO5 [M]+ 343.142; found 343.1424.

Diethyl 4,4’-(1-methyl-2-oxoindoline-3,3-diyl)
(2E,2’E)-bis(but-2-enoate) (3j): brown oil; RF 0.3 
(hexane/EtOAc); IR (neat) ν 2981, 2937, 1716, 
1655 cm-1; 1H NMR (300 MHz) δ 7.30 (1H, t, J = 
7.7 Hz, ArH), 7.16–7.07 (2H, m, ArH), 6.84 (1H, d, 
J = 7.8 Hz, ArH), 6.53 (2H, dt, J = 15.4, 7.6 Hz, 2 x 
CH), 5.78 (2H, d, J = 15.5 Hz, 2 x CH), 4.34–3.95 
(4H, m, 2 x CH2), 3.19 (3H, s, NCH3), 2.70 (4H, dd, 

J = 7.7, 1.3 Hz, 2 x CH2), 1.26 (6H, dt, J = 22.4, 7.1 
Hz, 2 x CH3); 

13C NMR (101 MHz) δ 177.6 (CO), 
165.9 (2 x CO), 143.4 (C), 141.7 (2 x CH), 129.6 
(CH), 128.8 (C), 125.3 (2 x CH), 123.3 (CH), 123.0 
(CH), 108.6 (CH), 60.4 (2 x CH2), 51.7 (C), 39.4 (2 
x CH2), 26.3 (CH3), 14.2 (2 x CH3); LRMS (EI) m/z 
371 (M+, 13%), 258 (54), 230 (10), 212 (24), 186 
(14), 185 (27), 184 (100), 158 (11), 156 (14), 147 
(11), 144 (12), 130 (10), 128 (13), 77 (13); HRMS 
(ESI): calcd. for C21H25NO5 [M]+ 371.1733; found 
371.1728.

1-Methyl-3,3-di(prop-2-yn-1-yl)indolin-2-one 
(3k): (Zhou et al. 2013).

Dimethyl 2,2’-(1-methyl-2-oxoindoline-3,3-
diyl)diacetate (3l): yellow wax; RF 0.3 (hexane/
EtOAc 6.5:3.5); IR (neat) ν 2997, 2950, 1711, 1612 
cm-1; 1H NMR (300 MHz) δ 7.30 (2H, t, J = 7.0 Hz, 
ArH), 7.03 (1H, t, J = 7.6 Hz, ArH), 6.87 (1H, d, J 
= 8.0 Hz, ArH), 3.50 (6H, s, 2 x OCH3), 3.28 (3H, 
s, NCH3), 3.06 (2H, d, J = 16.2 Hz, 2 x CHH), 2.87 
(2H, d, J = 16.2 Hz, 2 x CHH); 13C NMR (75 MHz) 
δ 178.3 (CO), 170.0 (2 x CO), 144.4 (C), 130.0 
(C), 128.8 (CH), 123.4 (CH), 122.5 (CH), 108.3 
(CH), 51.8 (2 x CH3), 46.9 (C), 40.5 (2 x CH2), 
26.6 (CH3); LRMS (EI) m/z 291 (M+, 100%), 292 
(17), 232 (29), 218 (13), 200 (13), 186 (21), 176 
(51), 174 (21), 159 (43), 144 (16), 130 (25); HRMS 
(ESI): calcd. for C15H17NO5 [M]+ 291.1107; found 
291.1103.

2,2’-(1-Methyl-2-oxoindoline-3,3-diyl)
diacetonitrile (3m): orange solid; mp 104-106 °C; 
RF 0.3 (hexane/EtOAc 6.5:3.5); IR (neat) ν 2964, 
2932, 1705, 1615 cm-1; 1H NMR (400 MHz) δ 7.58 
(1H, d, J = 8.0 Hz, ArH), 7.46 (1H, td, J = 7.8, 1.2 
Hz, ArH), 7.22 (1H, td, J = 7.7, 0.9 Hz, ArH), 6.98 
(1H, d, J = 7.9 Hz, ArH), 3.29 (3H, s, NCH3), 3.02 
(2H, d, J = 16.7 Hz, 2 x CHH), 2.82 (2H, d, J = 
16.7 Hz, 2 x CHH); 13C NMR (101 MHz) δ 173.9 
(CO), 143.2 (C), 130.8 (CH), 124.0 (CH), 126.4 
(C), 123.6 (CH), 115.1 (2 x CN), 109.5 (CH), 45.8 
(C), 26.9 (CH3), 24.8 (2 x CH2); LRMS (EI) m/z 
225 (M+, 33%), 186 (13), 185 (100), 155 (5), 142 
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(6), 128 (7); HRMS (ESI): calcd. for C13H11N3O 
[M]+ 225.0902; found 225.0907

SYNTHESIS OF SPIROOXINDOLE 9 THROUGH A 
RUTHENIUM CATALYZED METATHESIS REACTION

To a solution of 2nd generation Grubbs catalyst 
(0.002 mmol, 1.7 mg) in dry dichloromethane (20 
mL) compound 3f (0.2 mmol, 45 mg) was added. 
The mixture was stirred during 1.5 h at 42°C 
under Ar atmosphere. The solution was filtered off 
through a short plug of celite. Finally, the solution 
was concentrated (15 Torr) and the residue was 
purified by column chromatography (hexane/
EtOAc) obtaining 1’-Methylspiro[cyclopentane-
1,3’-indolin]-3-en-2’-one (9) (Kattela et al. 2017).

RESULTS AND DISCUSSION

The reaction was initially optimized using 
different bases (Ortega-Martínez et al. 2017) 

concluding that the most appropriate base was 
benzyltrimethylammonium hydroxide (Triton B) 
in THF as solvent at room temperature. The direct 
transformation employing 2.5 equiv. of both organic 
halide and base was not useful due to the formation 
of monoalkylated deacylated 2-oxindoles. For this 
reason, the double alkylation was performed in a one 
pot sequential process. On it, the first step consisted 
in the addition of the electrophile and the base (1 
equiv. each reagent) in this order. After 4 h another 
addition of the same electrophile and base (1.5 
equiv. each reagent) took place in order to complete 
the double alkylation mediated by the deacylative 
process, allowing the reaction to proceed at room 
temperature overnight. Compounds 3 were finally 
purified and isolated after column chromatography 
(flash silica gel) in very good to moderate yields 
(Figure 4, and Table I). When alkyl iodides were 
employed the chemical yields of products 3a 
and 3b were 51 and 33%, respectively (Table I, 
entries 1 and 2). This low conversion was caused 
by the relative low reactivity towards these alkyl 

halides, and with the competition with the easy 
oxidation at the benzylic position. Thus, a 88:12 
mixture of 3a:3-hydroxy-1,3-dimethyloxindole 
and a 61:39 mixture of 3b:3-hydroxy-3-ethyl-1-
methyloxindole was observed by 1H NMR (crude 
product). More activated halides such as benzylic 
bromides appearing in the three next entries of Table 
I furnished higher chemical yields in a range of 69-
85%. Bisbenzylic unit was efficiently introduced 
providing spiranic oxindole derivative 3e, whose 
skeleton is present in antitumor agents (Yang et al. 
2016) and aldose reductase inhibitors (Howard et 
al. 1992). Allylic bromides such as allyl bromide 
and cinnamyl bromide also gave good conversions 
and yields 65 and 84%, respectively and no other 
byproduct was identified by 1H NMR of the crude 
product (Table I, entries 6 and 7). The employment 
of geranyl bromide furnished a complex reaction 
mixture, which, after flash chromatography, 
allowed to isolate an inseparable 65:35 mixture 
of 3h together with its corresponding deacylated 
3-monoalkylated compound (Table I, entry 8). 
Technical methyl bromocrotonate and ethyl 
E-bromocrotonate gave similar results of 3i and 3j 
after this transformation, the crude compound 3i 
being much more complex due to the presence of 
Z- and E-steroisomers (Table I, entries 9 and 10). 
Another three halides with π-extended conjugation 
were tested. Propargyl bromide gave a 58% yield 
of the disubstituted product 3k (Table I, entry 11), 
methyl bromoacetate afforded a similar 61% yield 
(Table I, entry 12) and finally, bromoacetonitrile 
furnished the best chemical 82% yield of this 

Figure 4 - DaA in the generation of 3,3-disubstituted oxindole 
3.
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TABLE I 
Synthesis of 3,3-disubstituted-2-oxindoles 3 using a DaA of 4a.

Entry R-Hal Compound No. Yield (%)a,b

1 MeIc

N
O 3a 51 (65)

2 EtId

N
O 3b 33

3 PhCH2Br

N
O
Ph

Ph

3c 83 

4 Br

N
O

3d 85 (58)

5 Br
Br

N
O

3e 69 (65)

6 H2C=CHCH2Br

N
O

3f 65 (59)

7
Br

N
O

Ph
Ph

3g 84

8 Geranyl bromidee

N
O

3h 48
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Entry R-Hal Compound No. Yield (%)a,b

9 MeO2C Br f,g

N
O

CO2Me

CO2Me
3i 58

10 EtO2C Br h

N
O

CO2Et

CO2Et
3j 62

11 HCΞCCH2Br

N
O

3k 58

12 BrCH2CO2Meg

N
O
CO2Me

CO2Me

3l 61

13 BrCH2CN

N
O
CN

CN

3m 82 

a Isolated yield after column chromatography (flash silica).
b In brackets, yields obtained from a direct dialkylation of N-methyloxindole.
c A 88:12 mixture of 3a:3-hydroxy-1,3-dimethyloxindole was observed by NMR (crude product).
d A 61:39 mixture of 3b:3-hydroxy-3-ethyl-1-methyloxindole was observed by NMR (crude product).
e This compound was obtained as an inseparable 65:35 mixture of 3h and its corresponding deacylated 3-monoalkylated compound.
f This compound was obtained as 81:19 mixture of 3i and its corresponding deacylated 3-monoalkylated compound, but 3i could 
be finally separated.
g  In this example, the sequential process was performed using: 1. RHal (1 equiv.) and Triton B (1 equiv.) at rt for 4 h; 2. RHal (1 
equiv.) and Triton B (1 equiv.) at rt for 19 h; 3. RHal (0.5 equiv.) and Triton B (0.5 equiv.) at rt for 19 h.
h This compound was obtained as an inseparable 65:35 mixture of 3j and its corresponding deacylated 3-monoalkylated compound.

TABLE I (continuation)
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series (Table I, entry 13). In entries 9 and 12 of 
the Table I a different protocol was employed in 
order to achieve higher yields. Thus, the addition of 
the total amount of reagents was performed adding 
RHal (1 equiv.) and Triton B (1 equiv.) at rt for 4 
h, followed by de addition of RHal (1 equiv.) and 
Triton B (1 equiv.) at rt for 19 h and, finally RHal 
(0.5 equiv.) and Triton B (0.5 equiv.) at rt for 19 h 
completed the sequence. 

In some examples depicted in Table I, a 
comparison of this deacylative route with the 
direct dialkylation of oxindole 8 with excess of 
both Triton B and the corresponding halide (Figure 
5) was made. The direct alkylation was much 
more efficient when methyl iodide was tested 
(65% versus 51%, see Table I, entry 1). However, 
the yield of compound 3d, using the DaA route, 
increased manifold (85% versus 58%, Table I, 
entry 4). 2-(Bromomethyl)benzyl bromide and 
allyl bromide gave very similar results using both 
reaction sequences such as it was depicted in Table 
I (entries 5 and 6) but the crude of the DaA mediated 
reactions were cleaner than the corresponding ones 
for the direct dialkylation way.

al. 2014) as well as the preparation of families of 
mentioned antitumor spiroxindole derivatives (see 
above).

Figure 5 - Synthesis of 3,3-disubstituted oxindole 3 from 
N-methyloxindole (8).

Figure 6 - Synthesis of spirooxindole 9 through a ruthenium-
catalyzed metathesis reaction.

The application of 3f for the synthesis of other 
structurally complex containing this oxindole unit 
was envisaged. The metathesis reaction employing 
the 2nd generation Grubbs’ catalyst produced 
spirocompound 9 in quantitative yield after 1.5 h 
under refluxing dichloromethane (Figure 6). The 
presence of the residual carbon-carbon double 
bond would allow the access to core framework 
of natural compounds citrinadins A and B (Bian et 

CONCLUSIONS

The sequential one-pot monoalkylation of 
3-acetyl-1-methyl-2-oxindole, followed by a DaA-
second alkylation is an alternative way to obtain 
symmetrical 3,3-disubstituted oxindole derivatives. 
The process competes with the direct dialkylation 
of N-methyloxindole because, in many cases, 
yields are higher and the crude materials cleaner, 
which are two very strong points in favor of this 
strategy. Some compounds obtained in this work 
(specifically 3e and 9) were suitable candidates 
to access interesting antitumor agents and natural 
compounds.
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