
Anais da Academia Brasileira de Ciências (2018) 90(3): 2643-2661

(Annals of the Brazilian Academy of Sciences)

Printed version ISSN 0001-3765 / Online version ISSN 1678-2690

http://dx.doi.org/10.1590/0001-3765201820171040

www.scielo.br/aabc | www.fb.com/aabcjournal

Objective and subjective prior distributions for the Gompertz distribution

FERNANDOA. MOALA1 and SANKU DEY2

1Departamento de Estatística, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista/UNESP, Rua Roberto

Simonsen, 305, Centro Educacional, 19060-900 Presidente Prudente, SP, Brazil
2Department of Statistics, St. Anthony’s College, Bomfyle road, East Khasi Hills, 793001 Shillong, Meghalaya, India

Manuscript received on December 29, 2017; accepted for publication on March 26, 2018

ABSTRACT

This paper takes into account the estimation for the unknown parameters of the Gompertz distribution from

the frequentist and Bayesian view points by using both objective and subjective prior distributions. We first

derive non-informative priors using formal rules, such as Jefreys prior and maximal data information prior

(MDIP), based on Fisher information and entropy, respectively. We also propose a prior distribution that

incorporate the expert’s knowledge about the issue under study. In this regard, we assume two independent

gamma distributions for the parameters of the Gompertz distribution and it is employed for an elicitation

process based on the predictive prior distribution by using Laplace approximation for integrals. We sup-

pose that an expert can summarize his/her knowledge about the reliability of an item through statements

of percentiles. We also present a set of priors proposed by Singpurwala assuming a truncated normal prior

distribution for the median of distribution and a gamma prior for the scale parameter. Next, we investigate

the effects of these priors in the posterior estimates of the parameters of the Gompertz distribution. The

Bayes estimates are computed using Markov Chain Monte Carlo (MCMC) algorithm.An extensive numer-

ical simulation is carried out to evaluate the performance of the maximum likelihood estimates and Bayes

estimates based on bias, mean-squared error and coverage probabilities. Finally, a real data set have been

analyzed for illustrative purposes.

Key words: Gompertz distribution, objective prior, Jeffreys prior, subjective prior, maximal data

information prior, elicitation.

INTRODUCTION

Gompertz distribution was introduced in connection with human mortality and actuarial sciences by Ben-

zamin Gompertz (1825). Right from the time of its introduction, this distribution has been receiving great

attention from demographers and actuarist. This distribution is a generalization of the exponential distri-

bution and is applied in various fields especially in reliability and life testing studies, actuarial science,

epidemiological and biomedical studies. Gompertz distribution has some interesting relations with some
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of the well-known distributions such as exponential, double exponential, Weibull, extreme value (Gumbel

Distribution) or generalized logistic distribution (Willekens 2002). An important characteristic of the Gom-

pertz distribution is that it has an exponentially increasing failure rate for the life of the systems and is often

used to model highly negatively skewed data in survival analysis (Elandt-Johnson and Johnson 1979). In

recent past, many authors have contributed to the studies of statistical methodology and characterization of

this distribution; for example, Garg et al. (1970), Read (1983), Makany (1991), Rao and Damaraju (1992),

Franses (1994), Chen (1997) and Wu and Lee (1999). Jaheen (2003a, b) studied this distribution based on

progressive type-II censoring and record values using Bayesian approach.Wu et al. (2003) derived the point

and interval estimators for the parameters of the Gompertz distribution based on progressive type II censored

samples.Wu et al. (2004) used least squared method to estimate the parameters of the Gompertz distribution.

Wu et al. (2006) also studied this distribution under progressive censoring with binomial removals. Ismail

(2010) obtained Bayes estimators under partially accelerated life tests with type-I censoring. Ismail (2011)

also discussed the point and interval estimations of a two-parameter Gompertz distribution under partially

accelerated life tests with Type-II censoring. Asgharzadeh and Abdi (2011) studied different types of exact

confidence intervals and exact joint confidence regions for the parameters of the two-parameter Gompertz

distribution based on record values. Kiani et al. (2012) studied the performance of the Gompertz model with

time-dependent covariate in the presence of right censored data. Moreover, they compared the performance

of the model under different censoring proportions (CP) and sample sizes. Shanubhogue and Jain (2013)

studied uniformly minimum variance unbiased estimation for the parameter of the Gompertz distribution

based on progressively Type II censored data with binomial removals. Lenart (2014) obtained moments of

the Gompertz distribution and maximum likelihood estimators of its parameters. Lenart and Missov (2016)

studied Goodness-of-fit tests for the Gompertz distribution. Recently, Singh et al. (2016) studied different

methods of estimation for the parameters of Gompertz distribution when the available data are in the form

of fuzzy numbers. They also obtained Bayes estimators of the parameters under different symmetric and

asymmetric loss functions.

In this paper, we present a Bayesian analysis when there is a limited prior knowledge about the parameter

of interest. In this regard, it is important to use noninformative priors, however, it can be difficult to choose a

prior distribution that represents this situation, because there is hardly any precise definition of the concept

of noninformative prior. Nevertheless, we have many noninformative priors, for instance, Jeffreys prior

(Jeffreys 1967), MDIP prior (Zellner 1977, 1984, 1990), Tibshirani prior (Tibshirani 1989), reference prior

(Bernardo 1979) and many others which seemingly appropriate for a number of inference problems. It is to

be noted that lack of enough information on the part of analysts often forces them to choose noninformative

priors and this consideration ensures that the inferences are mostly data driven. In Bayesian analysis, many

authors consider independent gamma priors for the estimation of parameters of the model, representing weak

information as the use of a priori independence assumption simplifies the computations. Our main interest

in the Bayesian analysis is to select a prior distribution that represents better dependence structure of the

parameters in which the information regarding the parameters is not considered substantial as compared

with information from the data. The focus is on the comparison of independent gamma prior, Jeffreys prior,

maximal data information prior (MDIP), Singpurwalla’s prior and elicited prior. Jeffreys (1967) proposed

a noninformative prior resulting from an argument based on the Fisher Information Measure and Zellner

(1977, 1984) proposed an alternative prior, named maximal data information prior (MDIP) based on the
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Entropy Measure. The prior proposed by Singpurwalla (1988) for estimation of the parameters of Weibull

distribution is also considered in this paper to estimate the parameters of Gompertz distribution.

There are many methods for eliciting parameters of prior distributions. In this paper, we also consider

an elicitation method to specify the values of hyperparameters of the two gamma priors assigned to the

parameters of the Gompertz distribution. The method requires the derivation of predictive prior distribution

and it is assumed that the expert is able to provide some percentiles values. Thus, the main aim of this paper

is to propose noninformative and informative prior distributions for the parameters c and λ of the Gompertz

distribution and to study the effects of these different priors in the resulting posterior distributions, especially

in situations of small sample sizes, a common situation in applications.

The paper is organized as follows. Some probability properties of the Gompertz distribution such as

quantiles, moments, moment generating function are reviewed in Section 2. Section 3 describes the maxi-

mum likelihood estimation method. The Bayesian approach with proposed informative and noninformative

priors is presented in section 4. In Section 5, simulation study is carried out to evaluate the performance

of several estimation procedures along with coverage percentages is provided. The methodology developed

in this paper and the usefulness of the Gompertz distribution is illustrated by using a real data example in

Section 6. Finally, concluding remarks are provided in Section 7.

MODELAND ITS BASIC PROPERTIES

A random variable X has the Gompertz distribution with parameters c and λ , say GM(c,λ ), if its density
function is

f (x) = λecxe−
λ
c (e

cx−1); x > 0 ,c,λ > 0, (1)

and the corresponding c.d.f is given by

F(x) = 1− e−
λ
c (e

cx−1); x > 0 ,c,λ > 0. (2)

The basic tools for studying the ageing and reliability characteristics of the system are the hazard rate

h(x). The hazard function gives the rate of failure of the system immediately after time x. Thus the hazard

rate function of the Gompertz distribution is given by

h(x) =
f (x)

1−F(x)
= λecx. (3)

Note that the hazard rate function is increasing function if c > 0 or constant if c = 0. Figure 1b shows
the shapes of the hazard function for different selected values of the parameters c and λ . From the plot, it is

quite evident that the Gompertz distribution has increasing hazard rate function.

Figure 1a shows the shapes of the pdf of the Gompertz distribution for different values of the parameters

c and λ and from the plot, it is quite evident that the Gompertz distribution is positively skewed distribution.

The quantile function xp = Q(p) = F−1(p), for 0 < p < 1, of the Gompertz distribution is obtained

from (2), thus the quantile function xp is

xp =
1
c

ln
(

1− c
λ

ln(1− p)
)
. (4)
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Figure 1 - Pdf function (a) and hazard function (b).

In particular, the median of the Gompertz distribution can be written as

Md(X) = Md =
1
c

ln
(

1− c
λ

ln(1−0.5)
)
. (5)

If the random variable X is distributed GM(c,λ ), then its nth moment around zero can be expressed as

E(Xn) =
λe

λ
c

c

∫
∞

1

1
cn e−

λ
c x[ln(x)]n dx. (6)

On simplification, we get

E(Xn) =
n!
cn e

λ
c En−1

1 (
λ

c
), (7)

where

En
s (z) =

1
n!

∫
∞

1
(ln(x))nx−se−zxdx,

En(x) =
∫

∞

1

e−xt

tn dt,

and

E0
s (z) = Es(z),

is the generalized integro-exponential function (Milgram 1985).

The mean and variance of the random variable X of the Gompertz distribution are respectively, given

by

E(X) =
1
c

e
λ
c E1(

λ

c
) (8)

and

var(X) =
2
c2 e

λ
c E1

1 (
λ

c
)−

(1
c

e
λ
c E1(

λ

c
)
)2

. (9)
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Many of the interesting characteristics and features of a distribution can be obtained via its moment

generating function and moments. Let X denote a random variable with the probability density function (1).

By definition of moment generating function of X and using (1), we have

Mx(t) = E(etx) =
∫

∞

0
etx f (x)dx =

λ

c

∞

∑
p=0

(−1)p


t
λ

p

 Γ(p+1)(
λ

c

)p+1 . (10)

MAXIMUM LIKELIHOOD ESTIMATION

The method of maximum likelihood is the most frequently used method of parameter estimation (Casella

and Berger 2001). The success of the method stems no doubt from its many desirable properties including

consistency, asymptotic efficiency, invariance property as well as its intuitive appeal. Let x1, · · · ,xn be a

random sample of size n from (1), then the log-likelihood function of (1) without constant terms is given by

`(c,λ ;x) = logL(c,λ ;x)

= n logλ + c
n

∑
i=1

xi −
λ

c

n

∑
i=1

(ecxi −1).

For ease of notation, we denote the first partial derivatives of any function f (x,y) by fx and fy. Now

setting

`c = 0 and `λ = 0 ,

we have

`λ =
n
λ
− 1

c

n

∑
i=1

(ecxi −1) = 0, (11)

and

`c =
n

∑
i=1

xi −
λ

c

n

∑
i=1

xiecxi +
λ

c2

n

∑
i=1

ecxi − nλ

c2 = 0. (12)

From (11) and (12), we find the MLE for λ given by,

λ̂ =
nĉ

∑
n
i=1(eĉxi −1)

The MLE for ”c” is obtained by solving the non-linear equation,
n

∑
i=1

xi −
n∑

n
i=1 xiecxi

∑
n
i=1(ecxi −1)

+
n
c
= 0

The asymptotic distribution of the MLE θ̂ is

(θ̂ −θ)→ N2(0, I−1(θ))

(Lawless 2003), where I−1(θ) is the inverse of the observed information matrix of the unknown parameters

θ = (c,λ ).

I−1(θ) =

 −∂ 2 logL
∂c2 −∂ 2 logL

∂c∂λ

−∂ 2 logL
∂λ∂c −∂ 2 logL

∂λ 2


∣∣∣∣∣∣∣∣∣
−1

(c,λ )=(ĉ,λ̂ )

(13)
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=

 var(ĉMLE) cov(ĉMLE , λ̂ MLE)

cov(λ̂ MLE , ĉMLE) var(λ̂ MLE)

=

 σcc σcλ

σλc σλλ

 .

The derivatives in I(θ) are given as follows

∂ 2 logL
∂c2

∣∣∣∣
c=ĉMLE

=
λ

c2 [−c
n

∑
i=1

x2
i ecxi +2

n

∑
i=1

xiecxi − 2
c

n

∑
i=1

ecxi +
2n
c
], (14)

∂ 2 logL
∂λ 2

∣∣∣∣
λ=λ̂MLE

=− n
λ 2 , (15)

∂ 2 logL
∂c∂λ

∣∣∣∣
c=ĉMLE ,λ=λ̂MLE

= [
1
c2

n

∑
i=1

(ecxi −1)− 1
c

n

∑
i=1

xiecxi ]. (16)

Therefore, the above approach is used to derive the approximate 100(1− τ)% confidence intervals of

the parameters θ = (c,λ ) as in the following forms

ĉMLE ± z τ

2

√
Var(ĉMLE), λ̂MLE ± z τ

2

√
Var(λ̂MLE).

Here, Z τ
2
is the upper ( τ

2 )th percentile of the standard normal distribution.

BAYESIANANALYSIS

In this section, we consider Bayesian inference of the unknown parameters of theGM(c,λ ). First, we assume

that c and λ has the independent gamma prior distributions with probability density functions

π(c) ∝ ca1−1e−b1c c > 0 (17)

and

π(λ ) ∝ λ
a2−1e−b2λ

λ > 0. (18)

The hyperparameters a1, a2, b1 and b2 are known and positives. If both parameters c and λ are unknown,

we cannot see an easy way to work with conjugation, since the expression of the likelihood function does not

suggest any known form for the joint density of (c,λ ). It is not unreasonable to assume independent gamma

priors on the shape and scale parameters for a two-parameter GM(c,λ ), because gamma distributions are

very flexible. The joint prior distribution for both parameters in this case is given by

π(c,λ ) ∝ ca1−1 exp(−b1c)λ a2−1 exp(−b2λ ). (19)

Thus, the joint posterior distribution is given by

p(c,λ |x) ∝ λ
n+a2−1ca1−1 e

c(
n
∑

i=1
xi−b1)

e
−λ [ 1

c

n
∑

i=1
(ecxi−1)+b2]

. (20)

The conditional distribution of c given λ and data is given by

p(c|λ ,x) ∝ ca1−1 e
c(

n
∑

i=1
xi−b1)

e
− λ

c

n
∑

i=1
(ecxi−1)

. (21)
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Similarly, the conditional distribution of λ given c and data is given by

p(λ |c,x) ∝ λ
n+a2−1 e

−λ [ 1
c

n
∑

i=1
(ecxi−1)+b2]

. (22)

Note that the although the conditional p(λ |c,x) is a gamma distribution, the conditional distributions

p(c |λ , x) is not identified as known distributions that are easy to simulate. In this way, Bayesian inference

for the parameters cand λ can be performed byMetropolis-Hastings (MH) algorithm considering the gamma

distribution as the target density for λ , and c can be generated from the conditional p(c |λ , x) by using the
rejection method.

JEFFREYS PRIOR

A well known non-informative prior, which represents a situation with little a priori information on the pa-

rameters was introduced by Jeffreys (1967), also known as the Jeffreys rule. The Jeffreys prior has been

widely used due to the invariance property for one to one transformations of the parameters. Since then Jef-

freys prior has played an important role in Bayesian inference. This prior is derived from Fisher Information

matrix I(c, λ ) as

π(c,λ ) ∝
√

det(I(c,λ )). (23)

However, I(c, λ ) can not be analytically obtained for the parameters of Gompertz distribution. A

possible simplification is to consider a noninformative prior given by π(c,λ ) = π(λ |c)π(c). Using the

Jeffreys’rule, we have,

π(c,λ ) =
[
E
(
− ∂ 2

∂λ 2 logL(c,λ )
)] 1

2
π(c) (24)

where E
(
− ∂ 2

∂λ 2 logL(c,λ )
)
is given by (15) and π(c) is a noninformative prior, for instance, a gamma

distribution with hyper-parameters equal to 0.01.

In this way, from (15) and (24) the non-informative prior for (c, λ ) parameters is given by:

π(c,λ ) =
1
λ

π(c). (25)

Let us denote the prior (25) as ”Jeffreys prior”.

Thus, the corresponding posterior distribution is given by

p(λ ,c |x) = λ
n−1exp

(
c

n

∑
i=1

xi −
λ

c

n

∑
i=1

ecxi +
nλ

c

)
π(c) (26)

Proposition 1: For the parameters of the Gompertz distribution, the posterior distribution given in (26)

under Jeffreys prior π(λ , c) given in (25) is proper.

Proof. We need to prove that
∫

∞

0
∫

∞

0 p(λ , c |x)dλdc is finite.

Indeed, ∫
∞

0

∫
∞

0
p(λ ,c |x)dλdc = Γ(n)

∫
∞

0

cnexp
(

c∑
n
i=1 xi

)
(

∑
n
i=1(ecxi −1)

)n π(c)dc. (27)

An Acad Bras Cienc (2018) 90 (3)



2650 FERNANDOA. MOALA and SANKU DEY

The function h(c) =
cnexp

(
c∑

n
i=1 xi

)
(

∑
n
i=1(e

cxi−1)
)n is unimodal with maximum point ĉ as the solution of the nonlinear

equation given by

c∑
n
i=1 xiecxi −∑

n
i=1 ecxi +n

c ∑
n
i=1(ecxi −1)

= X

Therefore, from (27) we have∫
∞

0

∫
∞

0
p(λ ,c |x)dλdc ≤ Γ(n)h(ĉ)

∫
∞

0
π(c)dc < ∞,

where
∫

∞

0 π(c)dc = 1. This completes the proof.

MAXIMAL DATA INFORMATION PRIOR (MDIP)

It is interesting to note that the data gives more information about the parameter than the information from

the prior density, otherwise, there would not be justification for the realization of the experiment. Let X
be a random variable with density f (x|φ), x ∈ RX (RX ⊆ ℜ), parameter φ ∈[a, b]. Thus, we wish a prior

distribution π(φ) that provides the gain in the information supplied by the data as much as possible relative

to the prior information of the parameter, that is, maximizes the information on the data. With this idea,

Zellner (1977, 1984, 1990) and Zellner and Min (1993) derived a prior distribution which maximize the

information from the data in relation to the prior information on the parameters. Let

H(φ) =
∫

RX

f (x |φ)ln f (x |φ)dx (28)

be a negative entropy of f (x |φ ), the measure of the information in f (x |φ ). Thus, the following functional
form is employed in the MDIP approach:

G[π(φ)] =
∫ b

a
H(φ)π(φ)dφ −

∫ b

a
π(φ)lnπ(φ)dφ (29)

which is the prior average information in the data density minus the information in the prior density. G[π(φ )]

is maximized by selection of π(φ ) subject to
∫ b
a π(φ )dφ = 1.

The following theorem proposed by Zellner provides the formula for the MDIP prior.

Theorem: The MDIP prior is given by:

π(φ) = kexp
(

H(φ)
)

a ≤ φ ≤ b, (30)

where k−1 =
∫ b
a exp

(
H(φ)

)
dφ is the normalizing constant.

Proof. We have to maximize the function U = G[π(φ )]− λ

(∫ b
a π(φ )dφ − 1

)
where λ is the Lagrange

multiplier.

Thus, ∂U
∂π

= 0 ⇔ H(X) =−ln(π(φ ))−1−λ = 0 and the solution is given by π(φ )= k exp
(

H(X)
)
.

An Acad Bras Cienc (2018) 90 (3)



OBJECTIVEAND SUBJECTIVE PRIOR DISTRIBUTIONS FOR THE GOMPERTZ DISTRIBUTION 2651

Therefore, the MDIP is a prior that leads to an emphasis on the information in the data density or

likelihood function, that is, its information is weak in comparison with data information.

Zellner (1984) shows several interesting properties of MDIP and additional conditions that can also be

imposed to the approach refleting given initial information.

Suppose that we do not have much prior information available about c and λ . Under this condition, the

prior distributionMDIP for the parameters (c, λ ) of Gompertz distribution (1) is obtained as follows. Firstly,

we have to evaluate the measure of information H(c,λ )= E
(

log f (x)
)
, that is

E
(

log f (x)
)
= log(λ )+ cE(X)− λ

c

(
E(ecX)−1

)
, (31)

where E(X) is obtained from (8) given by E(X) = 1
c e

λ
c E1

(
λ

c

)
and E1(x) =

∫
∞

1
e−xu

u du is the Exponential

Integral. After some algebra, we also obtain E(ecX) = c
λ
+1. Therefore,

H(c, λ ) = log(λ )+ e
λ
c E1(

λ

c
)− λ

c

( c
λ
+1

)
+

λ

c
. (32)

Hence the MDIP prior is given by

πZ(c,λ ) ∝ λexp
(

e
λ
c E1(

λ

c
)
)
. (33)

Now combining the likelihood function given by

L(λ ,c |x) = λ
nexp

(
c

n

∑
i=1

xi −
λ

c

n

∑
i=1

ecxi +
nλ

c

)
(34)

and the MDIP prior in (33), the posterior densitiy for the parameters c and λ is given by

p(λ ,c |x) = λ
n+1exp

(
c

n

∑
i=1

xi + e
λ
c E1(

λ

c
)− λ

c

n

∑
i=1

(ecxi −1)
)
. (35)

Proposition 2: For the parameters of the Gompertz distribution, the posterior distribution given in (35)

under the corresponding MDIP prior π(λ , c) given in (33) is proper.

Proof. Indeed,∫
∞

0

∫
∞

0
p(λ ,c |x)dλdc =

∫
∞

0

∫
∞

0
λ

n+1exp
(

c
n

∑
i=1

xi + e
λ
c E1(

λ

c
)− λ

c

n

∑
i=1

(ecxi −1)
)

dλdc

Now, we consider a substituition of variables in the integral above as

{
w = λ

c

u = c
⇒ J =

∣∣∣∣∣∣∣∣∣
w u

1 0

∣∣∣∣∣∣∣∣∣=−u

resulting in ∫
∞

0

∫
∞

0
p(λ ,c |x)dλdc =

∫
∞

0

[∫
∞

0
un+2exp

(
u

n

∑
i=1

xi −w
n

∑
i=1

euxi
)

du
]

h(w)dw.
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where h(w) = wn+1exp
(
nw+ ewE1(w)

)
.

Let us denote x(n) = max(x1,x2, . . ., xn) then ∑
n
i=1 euxi < neux(n) . Hence,∫

∞

0

∫
∞

0
p(λ , c |x)dλdc <

∫
∞

0

[∫
∞

0
un+2exp

(
nxu−nweux(n)

)
du

]
h(w)dw.

where x = ∑
n
i=1 xi
n . As x < x(n)we have∫

∞

0
un+2exp

(
nxu−nweux(n)

)
du <

∫
∞

0
un+2exp

(
nx(n)u−nweux(n)

)
du <

<
∫

∞

0
un+2exp

(
nx(n)u−weux(n)

)
du.

Now consider eux(n) = z then by substitution process the integral above becomes∫
∞

0
un+2exp

(
nx(n)u−weux(n)

)
du =

1
xn+3
(n)

∫
∞

1
(logz)n+2zn−1exp(−wz)dz =

=
1

xn+3
(n)

Γ (n+2)G0,0
n+3,n+4

(-(n−1), . . ., -(n−1)

-n, . . ., -n, 0

∣∣∣w
)

(36)

where Gm,n
p,q

(a1, . . ., ap

b1, . . ., bq

∣∣∣w
)
is the Meijer G-function introduced by Meijer (1936) and given by

Gm,n
p,q

(a1, . . ., ap

b1, . . ., bq

∣∣∣w
)
=

1
2πi

∫
L

∏
m
j=1 Γ(b j − s)∏

n
j=1 Γ(1− a j + s)

∏
q
j=m+1 Γ(1−b j + s)∏

p
j=n+1 Γ(a j − s)

zsds

for 0≤ m ≤ q and 0≤ n ≤ p, where m, n, p and q are integer numbers.

From (36) we have

∫
∞

0

∫
∞

0
p(λ ,c |x)dλdc <

1
xn+3
(n)

Γ (n+2)
∫

∞

0
G0,0

n+3,n+4

(-(n−1), . . ., -(n−1)

-n, . . ., -n, 0

∣∣∣w)h(w)dw,

which is not possible to obtain an analytical expression for this integral. However, the softwareMathematica

gives a convergence result of the integral.

PRIORS PROPOSED BY SINGPURWALLA

Singpurwalla (1988) presented a procedure for the construction of the prior distribution with the use of

expert opinion in order to estimate the parameters α and β of Weibull distribution. Expert’s opinion about
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measures of central tendency such as the median can be easily found, since most people are accustomed

to this term. Singpurwalla introduces the median life M and elicit expert opinion on M and β through the

priors π(M) and π(β ). He focuses attention on β and on M = αexp
(

k
β

)
where k = ln(ln2). Since M is

restricted to being nonnegative, it is assumed a Gaussian distribution truncated at 0 with parameters µ and

σ . A gamma prior distribution with parameters a and b is chosen to model the uncertainty about β . After

this reparametrization, the prior π(α,β ) is derived by transformation of variables.

Our aim is to derive the prior π(c, λ ) applying a similar procedure proposed by Singpurwalla in or-

der to estimate the parameters c and λ of Gompertz distribution. Differently of Singpurwalla’s priors who

considered elicitation from expert for the parameters, we assume absence of information, hence the hyper-

parameters of the priors are chosen to provide noninformative prior and we use the information from the

data to the parameter µ through the median of the data.

Consider the median of X is given by M = 1
c log

(
1 + 0.6931 c

λ

)
. Thus, it is assumed a Gaussian

distribution truncated at 0 for the parameter M, making the density as

π(M |µ, σ) ∝ exp
(
−1

2
(
M−µ

σ
)2
)
, (37)

where 0 ≤ M < ∞ with parameter µ equal to median of the data and standard deviation σ = 100.
A gamma prior distribution is chosen to model the uncertainty about λ with density

π(λ |a,b) ∝ λ
a−1exp(−bλ ) , (38)

with the parameters a and b specified as 0.01 representing a noninformative prior for λ .

Thus, we can determine the conditional prior distribution π(c |λ , µ , σ ) for the parameter c given λ

through the reparametrization M = 1
c log

(
1+0.6931 c

λ

)
with the Jacobian given by

∣∣∣dM
dc

∣∣∣ = ∣∣∣ 0.6931
cλ+0.6931c2 −

1
c2 log

(
1+0.6931 c

λ

)∣∣∣. Therefore, the conditional prior π(c |λ , µ , σ ) is given by

π(c |λ , µ, σ) ∝ exp
(
−1

2

( 1
c log

(
1+0.6931 c

λ

)
−µ

σ

)2)∣∣∣ 0.6931
cλ +0.6931c2 −

1
c2 log

(
1+0.6931

c
λ

)∣∣∣ (39)

Finally, the joint prior for c and λ , obtained as π(c, λ )= π(c |λ )π(λ ), that is, by the product of (38) and
(39), is given by

π(c,λ |Θ) ∝ λ
a−1exp

(
−1

2

( 1
c log

(
1+0.6931 c

λ

)
−µ

σ

)2
−bλ

)∣∣∣ 0.6931
cλ +0.6931c2 −

1
c2 log

(
1+0.6931

c
λ

)∣∣∣,
(40)

where the vector of parameters Θ = (a,b, µ, σ) is known.

ELICITED PRIOR

In this Section, we provide a methodology that permits the experts to use their knowledges about the re-

liability of an item through statements of percentiles. This method requires the derivation of prior predic-

tive distribution for elicitation. Suppose that joint prior π(c,λ ) is given, then the reliability based on the

predictive prior distribution is given by:

R(tp) = P{T ≥ tp}=
∫

∞

0

∫
∞

0

∫
∞

tp

f (t |c, λ )π(c,λ )dt dcdλ , (41)
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for a fixed mission time tp.

In order to elicit the four hyperparameters (a1,a2,b1,b2) of the prior π(c,λ
∣∣

a1,a2,b1,b2) the integral have been considered as follows

p =
∫

∞

0

∫
∞

0
R(tp

∣∣c,λ )π(c,λ
∣∣a1,a2,b1,b2)dcdλ , (42)

for a given p-th percentile elicited from the expert where p = R(tp).

By considering Gompertz distribution, the reliability function R(tp
∣∣c, λ ) is given by

R(tp
∣∣c,λ ) = exp

(
−λ

c
(ectp −1)

)
, (43)

and assuming a joint prior π(c, λ
∣∣ a1,a2,b1,b2) given by the product of gamma priors, we have

π(c,λ
∣∣a1,a2,b1,b2) = k ca1−1

λ
a2−1exp

(
−(b1c+b2λ )

)
(44)

wherek =
ba1

1 ba2
2

Γ(a1)Γ(a2)
.

Using (42), (43) and (44), the probability in (42) becomes

p = k
∫

∞

0

∫
∞

0
ca1−1

λ
a2−1exp

(
−λ

c
(ectp −1)− (b1c+λb2)

)
dcdλ (45)

Let d = 1
c (e

ctp −1), then the integral for λ in equation (45) takes the gamma shape resulting in

p = k
∫

∞

0

[∫ ∞

0
λ

a2−1exp
(
−λ (b2 +d)

)
dλ

]
ca1−1eb1cdc (46)

that is,

p =
ba1

1 ba2
2

Γ(a1)

∫
∞

0

ca1−1eb1c(
b2 +

1
c (e

ctp −1)
)a2 dc. (47)

Since it is not possible to obtain a closed form for the integral (47), one possibility to work around this

problem is to use the Laplace approximation.

Assuming h is a smooth function of an one-dimensional parameter φ with −h having a maximum at φ̂ ,

the Laplace approach asymptotically approximates an integral of the form,

I =
∫ +∞

−∞

exp(−nh(φ))dφ (48)

by expanding h in a Taylor series about φ̂ (Tierney and Kadane 1986). The Laplace’s method gives the

approximation ∫ +∞

−∞

exp(−nh(φ))dφ ≈
√

2πσ2

n
exp(−nh(φ̂))(1+O(n−1)) (49)

where φ̂ is the root of equation h(1)(φ) = 0 and σ̂ = 1√
h(2)(φ̂ )

.

We can write (47) as∫
∞

0

ca1−1eb1−1(
b2 +

1
c (e

ctp −1)
)a2 dc =

∫
∞

0
exp

(
−a2log

(
b2 +

1
c
(ectp −1)

)
+(a1 −1)log(c)−b1c

)
dc (50)
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Thus, the function h(c) in (50) is given by

h(c) =−a2log
(

b2 +
1
c
(ectp −1)

)
+(a1 −1)log(c)−b1c (51)

By applying Laplace approximation to the integral in (47) we have

p =
ba1

1 ba2
2

Γ(a1)
σ̂
√

2π exp(−h(ĉ)) (52)

where ĉ is the root of the equation h(1)(c) = 0 and σ̂ = 1
h(2)(ĉ) .

We suppose that an expert can summarize his/her knowledge about the reliability of an item through

statements of percentiles. Thus, we ask for expert’s information in the form of four distinct percentiles tp

for given p be provided to generate four equations in (52). In particular, the expert needs to specify tp for

p = 0.25,0.50,0.75,0.90.
The nonlinear system composed by the equation (52) under the four pair of values (tp, p) is solved

numerically to obtain the required values of the hyperparameter a1,a2,b1 and b2 of the joint prior π(c, λ
∣∣

a1,a2,b1,b2). A program has been developed in R package to solve the system.

SIMULATIONS

In this section, we perform a simulation study to examine the behavior of the proposed methods under dif-

ferent conditions. We considered three different sample sizes; n = 10, 50, 100, and used several values of

(c,λ ). We computed MLEs of the unknown parameters of the Gompertz distribution along with the con-

fidence intervals using the method described in Section 3. All results of the simulation study are based

on 1,000 samples. The performance of the estimates is compared with respect to the average biases and

the mean squared errors (MSE). To obtain the Bayes estimates and credible intervals, we need to appeal

MCMC algorithm in order to obtain a sample of values of c and λ from the joint posterior distribution. To

conduct the MCMC procedure, Markov chains of size 20,000 are generated from both conditional distri-

butions p(c |λ , x) and p(c |λ , x) corresponding to the joint posteriors obtained under each proposed prior
distribution in this paper, using MH algorithm and the first 5,000 of the observations are removed to elim-

inate the efect of the starting distribution. Then, in order to reduce the dependence among the generated

samples, we take every 5th sampled value which result in final chains of size 10,000, and subsequently ob-

tained Bayes estimates based on mean of the chain, and credible intervals. The rejection rate for is around

43 and 41 over 5,000 iterations. This ensures that the choice of proposal distribution works reasonably well

in sampling posterior. subsequently obtained Bayes estimates, and credible intervals.

To investigate the convergence of the MCMC sampling via MH algorithm, we have used the Gelman-

Rubin multiple sequence diagnostics. For computation, we have used R package coda. For each case of “c”
and λ , we ran two different chains with two distinct starting values of the Monte Carlo samples. Then we

get two potential scale reduction factor (psrf ) values for “c” and λ . If psrf values are close to 1, we say that

samples converge to the stationary distribution. For both the cases, using 10,000 samples, we get psrf value

equal to 1, which suffices the convergence of the MCMC sampling procedure.

For the informative gamma priors, the elicited percentiles provided by the expert and the correspond-

ing elicited values of the hyperparameters have been found to be: for Table I, we have t25 = 1.2625, t50 =

1.5512, t75 = 1.7806 and t90 = 1.9491 resulting (a1,a2,b1,b2) = (38.5645,1.615,11.6416,78.2737),
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TABLE I

Average bias of the estimates of c and λ and their associated MSEs (in parenthesis) for the different

methods with c = 3c = 3c = 3 and λ = 0.02λ = 0.02λ = 0.02.

Method
c = 3 λ = 0.02

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 0.8476 0.3080 0.2077 0.0196 0.0088 0.0060

(1.4217) (0.1556) (0.0685) (0.0009) (0.0001) (6.0e-05)

Gamma prior 0.6607 0.2935 0.1997 0.0363 0.0097 0.0062

(0.6696) (0.1378) (0.0649) (0.0042) (0.0002) (6.9e-05)

Jeffrey’s prior 0.5204 0.2907 0.1978 0.0360 0.0096 0.0061

(0.4204) (0.1341) (0.0613) (0.0037) (0.0001) (6.8e-05)

MDIP 0.5639 0.2749 0.1913 0.0573 0.0114 0.0068

(0.4732) (0.1178) (0.0570) (0.0063) (0.0002) (8.4e-05)

Singpurwalla’s prior 0.4687 0.2898 0.1780 0.0248 0.0091 0.0058

(0.3387) (0.1327) (0.0494) (0.0015) (0.0001) (6.2e-05)

Elicited prior 0.2146 0.1822 0.1528 0.0040 0.0045 0.0040

(0.0680) (0.0538) (0.0367) (2.5e-05) (3.2e-05) (2.5e-05)

for Table II, t25 = 0.1083, t50 = 0.2010, t75 = 0.2992 and t90 = 0.3820 resulting (a1,a2,b1,b2) =

(23.3800,4.2410,23.3795,11.9681) and for Table III with t25 = 0.2272, t50 = 0.4348, t75 = 0.6638 and

t90 = 0.8618 provides (a1,a2,b1,b2) = (38.7505,17.2753,13.2237,13.5219). Frequentist property of cov-
erage probabilities for the parameters c and λ have also been obtained to compare the Bayes estimators

with different priors and MLE. Tables IV, V and VI summarize the simulated coverage probabilities of 95%

confidence/ credible intervals.

From the simulation results, we reach to the following conclusions:

1. With increase in sample size, biases and MSEs of the estimators decrease for given values of n, c and λ .

2. The performance of the MLEs are quite satisfactory. The Bayes’ estimates using noninformative prior

works quite well, and in most of the cases it performs better, in terms of MSE than the MLE when the value

of λ is very small.

3. Bayes estimates based on elicited prior produces much smaller bias andMSE than using the other assumed

priors.

4. For the three sample sizes considered here, the elicited prior produces an over-coverage probability for

small sample sizes while MLE and independent gamma priors seem to have an under-coverage for some

cases. Coverage probabilities are very close to the nominal value when n increases.

AN EXAMPLEWITH LITERATURE DATA

In this section, we use a real data set to illustrate the proposed estimation methods discussed in the previous

sections.
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TABLE II

Average bias of the estimates of c and λ and their associated MSEs (in parenthesis) for the different

methods with c = 5c = 5c = 5 and λ = 2λ = 2λ = 2.

Method
c = 5 λ = 2

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 2.8437 0.9839 0.6354 1.0200 0.4439 0.3116

(15.2918) (1.5513) (0.6406) (1.8551) (0.3017) (0.1536)

Gamma prior 2.5298 1.0271 0.6519 1.2956 0.5039 0.3304

(10.2579) (1.6401) (0.6689) (2.8684) (0.4233) (0.1806)

Jeffrey’s prior 2.2830 1.0219 0.6508 1.1710 0.5007 0.3308

(8.5106) (1.6199) (0.6672) (2.4183) (0.4134) (0.1805)

MDIP 1.7570 0.8304 0.6015 0.6181 0.4049 0.3135

(6.6596) (1.1011) (0.5643) (0.6339) (0.2464) (0.1575)

Singpurwalla’s prior 2.5279 0.9786 0.6323 0.7457 0.4248 0.3042

(12.1530) (1.5391) (0.6358) (0.8266) (0.2741) (0.1458)

Elicited prior 0.5518 0.4103 0.3436 0.1301 0.1467 0.1445

(0.4509) (0.2713) (0.1920) (0.0255) (0.0326) (0.0324)

Let us consider the following data set provided in King et al. (1979):

112, 68, 84, 109, 153, 143, 60, 70, 98, 164, 63, 63, 77, 91, 91, 66, 70, 77, 63, 66, 66, 94, 101, 105, 108,

112, 115, 126, 161, 178.

These data represent the numbers of tumor-days of 30 rats fed with unsaturated diet. Chen (1997) and

Asgharzadeh and Abdi (2011) used the Gompertz distribution for these data set in order to obtain exact

confidence intervals and joint confidence regions for the parameters based on two different statistical anal-

ysis. Let us also assume the Gompertz distribution with density (1) fitted to the data and to compare the

performance of the methods discussed in this paper.

For a Bayesian analysis, we assume independent Gamma prior distributions for the parameters c and λ ,

with the hyper parameter values a = b = α = β = 0.01. The Bayes estimates cannot be obtained in closed

form therefore we use MCMC procedure to compute the Bayes estimates and also to construct credible

intervals. Using the software R, we simulated 50,000 MCMC samples (5,000 “burn-in-samples”) for the

joint posterior distribution. The convergence of the chains was monitored from trace plots of the simulated

samples. The estimates and 95% confidence intervals under classical method and Bayesian estimates with

95% credible intervals for the parameters c and λ of the Gompertz distribution are given in Table VII. The

results show that among the Bayes estimators, Bayes estimate based on Singpurwalla’s prior performs the

best in terms of credible intervals for both the parameters.

The marginal posterior distributions for the parameters c and λ considering the proposed prior

distributions are shown in Figures 2 and 3, respectively.

An Acad Bras Cienc (2018) 90 (3)



2658 FERNANDOA. MOALA and SANKU DEY

TABLE III

Average bias of the estimates of c and λ and their associated MSEs (in parenthesis) for the different

methods with c = 2c = 2c = 2 and λ = 1λ = 1λ = 1.

Method
c = 2 λ = 1

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 1.2171 0.4331 0.2967 0.4908 0.2139 0.1575

(2.9378) (0.3166) (0.1414) (0.4166) (0.0720) (0.0393)

Gamma prior 1.0368 0.4557 0.3030 0.5919 0.24807 0.1659

(1.8688) (0.3422) (0.1449) (0.5873) (0.1055) (0.0460)

Jeffrey’s prior 0.9578 0.4536 0.3020 0.5465 0.2466 0.1661

(1.6174) (0.3380) (0.1443) (0.5124) (0.1039) (0.0461)

MDIP 0.7924 0.3410 0.2636 0.2828 0.1757 0.1454

(1.3917) (0.2110) (0.1102) (0.1328) (0.0482) (0.0331)

Singpurwalla’s prior 1.0689 0.4324 0.2965 0.3593 0.2054 0.1543

(2.2494) (0.3157) (0.1415) (0.1916) (0.0653) (0.0374)

Elicited prior 0.2306 0.1922 0.1674 0.1071 0.0932 0.0858

(0.0664) (0.0539) (0.0432) (0.0171) (0.0130) (0.0112)

TABLE IV

Coverage probabilities for the parameters ccc and λλλ .

Method
c = 3 λ = 0.02

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 0.95 0.95 0.95 0.73 0.87 0.91

Gamma prior 0.91 0.92 0.92 0.91 0.92 0.92

Jeffrey’s prior 0.97 0.96 0.96 0.97 0.96 0.96

MDIP 0.94 0.95 0.96 0.93 0.95 0.96

Singpurwalla’s prior 0.97 0.96 0.98 0.98 0.96 0.98

Elicited prior 1.00 0.98 0.98 1.00 0.99 0.98

CONCLUSIONS

In this paper, we have considered estimation of the parameters of the Gompertz distribution using frequentist

and Bayesianmethods. In Bayesianmethods, we have consider objective priors (Jeffreys andMDIP), gamma

prior, Singpurwalla’s prior and Elicited prior. We have performed an extensive simulation study to compare

these methods. From the simulation study regarding the bias, MSE and CP we observe that in general the

MDIP provides best results for both parameters and in some cases, with MDIP and Jeffreys priors the results

are quite similar. The real data application shows the same situation. It is worth remembering that both forms
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TABLE V

Coverage probabilities for the parameters ccc and λλλ .

Method
c = 5 λ = 2

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 0.90 0.97 0.96 0.82 0.92 0.95

Gamma prior 0.89 0.96 0.95 0.89 0.96 0.94

Jeffrey’s prior 0.95 0.95 0.95 0.95 0.95 0.95

MDIP 0.97 0.97 0.96 0.98 0.97 0.95

Singpurwalla’s prior 0.94 0.95 0.96 0.92 0.93 0.95

Elicited prior 1.00 0.99 0.99 1.00 1.00 0.99

TABLE VI

Coverage probabilities for the parameters ccc and λλλ .

Method
c = 2 λ = 1

n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

MLE 0.92 0.96 0.95 0.84 0.93 0.94

Gamma prior 0.90 0.95 0.94 0.92 0.93 0.94

Jeffrey’s prior 0.96 0.94 0.94 0.95 0.94 0.94

MDIP 0.97 0.96 0.95 0.98 0.96 0.95

Singpurwalla’s prior 0.94 0.94 0.94 0.92 0.94 0.94

Elicited prior 1.00 0.99 0.99 1.00 0.99 0.98

TABLE VII

Estimators and 95% confidence/credible intervals of ccc and λλλ of the Gompertz distribution

for different estimation methods.

Method ĉ 95% CI λ̂ 95% CI

MLE 0.0241 (0.0160, 0.0322) 0.0016 (0.0002, 0.0031)

Gamma Prior 0.0232 (0.0150, 0.0312) 0.0019 (0.0007, 0.0038)

Jeffrey’s prior 0.0234 (0.0152, 0.0318) 0.0018 (0.0007, 0.0038)

MDIP 0.0226 (0.0147, 0.0304) 0.0020 (0.0008, 0.0045)

Singpurwalla’s Prior 0.0242 (0.0165, 0.0317) 0.0016 (0.0006, 0.0033)

result from formal procedures for representing absence of information, that is, they are noninformative. The

commonly assumption used of independent gamma priors and the priors proposed by Singpurwalla do not

present as good results as the objective priors. The independent gamma priors are generally used in situations

where no objective priors are possible to obtain or provide improper posterior distributions and mainly due

to computational ease. Elicited prior produces much smaller bias and MSE than using the other assumed
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Figure 2 - The posterior densities for the parameter c of the Gompertz distribution fitted by the data.
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Figure 3 - The posterior densities for the parameter λ of the Gompertz distribution fitted by the data.

priors and also provides an over-coverage probability than their counterparts. Hence, we can conclude that,

in the situation of the absence of information, the MDIP prior is more indicate for a Bayesian estimation

of the two-parameter Gompertz distribution. On the other hand, in the situation where we have available

expert’s information, the Elicited prior will perform the best estimators.
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