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Abstract: The lack of accurate models for estimating residual biomass in wood harvesting operations

results in underutilization of this co-product by forestry companies. Due to the lack of this information,

forestry operations planning, such as chipping and transport logistics, are influenced, with a consequent

increase in costs. Thereby, the aim of this study was to propose and evaluate statistical models to estimate

residual biomass of Eucalyptus sp. in wood harvesting operations by means of tree variables measured

from harvester processing head. Generalized linear models were composed through stepwise procedure for

estimating residual biomass by tree covariates: diameter at breast height, commercial height, commercial

limit diameter, and stem commercial volume, considering also their transformations and combinations.

Residual biomass distributions with positive skew support the application of generalized linear model and

Gamma distribution in random component, since normality assumption in traditional linear regression was

a requirement not satisfied in this study. By stepwise procedure, tree variables associated to forest biomass

were selected, whose linear combinations resulted in models with high statistical efficiency and accuracy.

Thus, models developed in this study are innovative tools to estimate residual biomass in mechanized wood

harvesting, in which can be inserted into harvester’s hardware to provide real-time information.
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INTRODUCTION

Planted forest stands represent relevant importance for economy, with 6.2% participation of the Brazilian

Gross Domestic Product (GDP) and contributing to the environmental preservation and 3.7 million jobs

(IBÁ 2017). Forestry sector is responsible for the supply of various wood products, such as sawlog, veneer
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log, pulpwood, and firewood. In addition, forest biomass for energy purposes has been highlighted in recent

years due to the need to reduce carbon dioxide emissions and other gaseous pollutants (Lauri et al. 2014).

Forest biomass can be obtained in the wood harvesting operations of stands with multiple uses, called

residual biomass (Yemshanov et al. 2014). In the full-tree harvesting method, residual biomass can be

composed by tops, branches, leaves, and barks of harvested trees arranged at the edge of the fields for

cutting (Esteban et al. 2011) and posterior using as electricity cogeneration by the thermoelectric plants in

forest industries (IBÁ 2017).

The lack of accurate models for estimating residual biomass produced by harvesting operations results

in underutilization of this co-product by forest companies. Due to the lack of this information, forest planning

and industrial operations are influenced, as chipping and transport logistics, with a consequent increase in

production costs.

According to Palander et al. (2009) and Vesa and Palander (2010), it is possible to estimate forest

biomass in wood harvesting operations by means of data measured through harvester processing head and

stored in the on-board computer. Thus, these data have potential to be inserted into machine’s hardware to

produce real-time information on the residual biomass produced by forest harvesting.

In the wood harvesting by harvester machine, lengths, diameters, and volumes of the logs are recorded

(Nieuwenhuis and Dooley 2006, Mederski et al. 2018).With these data, reports of harvested trees containing

individual-level variables can be used as covariates for composing regression models. This information can

be useful for estimating forest biomass in real-time by harvester’s on-board computer.

Thereby, the aim of this study was to propose and evaluate statistical models to estimate residual

biomass ofEucalyptus in wood harvesting operations bymeans of tree variablesmeasured from the harvester

processing head. The proposed regression models aiming to assist the planning of chipping and logistics in

Eucalyptus stands, considering the hypothesis that the variables obtained from the processing head enable

accurate estimates of residual biomass.

MATERIALSAND METHODS

STUDYAREA

This study was carried out in wood harvesting Eucalyptus stands located at Paraná State, Brazil, between

the coordinates 24° 26’ S and 50° 45’ W. The predominant region’s climate was subtropical Cfa and Cfb,

according to the Köppen classification, with annual average temperature between 18 ºC and 20 ºC and

average annual rainfall of 1,400 to 1,600 mm, in relief with average slope of 8% at 940 m.a.s.l. (Alvares et

al. 2013).

The forest stands were composed of clones of Eucalyptus saligna Smith and Eucalyptus grandis W.

Hill ex Maiden × Eucalyptus urophylla S. T. Blake interspecific hybrids, both with 7 years-old and initial

density of 1,111 trees per hectare at a spacing of 3.75 m × 2.40 m. The stands characteristics are described

in Table I.

The full-tree harvesting method used by the company was composed of feller buncher, skidder and

harvester. In this method, feller buncher performed the felling and stacking trees in bundles inside the field,

in which the skidder dragged the bundles to the edge of the field. The harvester performed the final wood

process with a processing head (Table II), cutting logs in 7.2 m for pulp with commercial limit diameters
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TABLE I

Mean characteristics of E. saligna and E. grandis × E. urophylla stands.

Variables E. saligna E. grandis x E. urophylla

Age (years) 7 7

Diameter at breast height 1.3 m (cm) 18.6 19.0

Total height (m) 31.3 32.0

Dominant height (m) 34.0 34.2

TABLE II

Harvester machine and processing head specifications

for wood harvesting in E. saligna and E. grandis × E. urophylla stands.

Equipment Brand Model Technical specifications

Doosan DX300

Power rating: 147 kW or 202 hp

Operating weight: 29,300 kg

Maximum crane reach at ground level: 10 m

Continuous track system

Waratah 622B

Operating weight: 2,280 kg

Maximum hydraulic pressure: 32 MPa

Maximum delimbing diameter: 650 mm

Maximum roller opening: 730 mm

Maximum cutting diameter: 750 mm

equal to 8, 10, 12, and 14 cm, aiming for attending to different energy parameters of residual biomass of the

tree canopy.

SAMPLINGAND DATA COLLECT

Before the wood harvesting operations, a forest inventory was carried out to characterize the diameter

distributions of Eucalyptus stands. Thus, thirty trees were randomly selected by stand and proportional to

five diameter classes determined by Sturges’ rule (Table III), resulting in a sample of sixty trees to measure

individual tree variables.

These trees were scaling in logs with a length of 7.2 m, from a height of 0.1 m to the commercial limit

diameters (di) of 8, 10, 12, and 14 cm, aiming for simulating harvester processing head, in which commercial

volumes (v) were determined by Smalian’s formula. Additionally, diameter at breast height at 1.3 m above

ground (d) and stem commercial height (h) were measured to determine the tree variables at individual-level
that can be recorded by the harvester’s on-board computer.

Subsequently, biomass compartments of tops with bark, branches, and leaves were quantified by

destructive method, in which samples were randomly selected for drying in oven with air circulation at
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TABLE III

Diameter tree distribution and sampling in E. saligna and E. grandis × E. urophylla stands.

Diameter class Lower limit (cm) Midpoint (cm) Upper limit (cm) f n Esa n Eug

1 7.0 9.0 10.9 35 2 2

2 11.0 13.0 14.9 186 5 5

3 15.0 17.0 18.9 885 11 11

4 19.0 21.0 22.9 914 10 10

5 23.0 25.0 27.5 51 2 2

Total 2,071 30 30

f is absolute frequency in the forest inventory, n is number of trees sampled for Eucalyptus saligna (Esa)

and Eucalyptus grandis × Eucalyptus urophylla (Eug).

105 ºC until constant mass. By means of wet biomass and humidity for components, residual biomass for

each tree (w) was determined.

MODELING RESIDUAL BIOMASS

Generalized linear models (GLM) were composed for estimating residual biomass (w) by the covariates:

diameter at breast height (d), commercial height (h), commercial limit diameter (di), and commercial volume

(v), considering their transformations in logarithm, inverse, and root-square, as well as the combinations dh,
d2h, dih, and d2

i h. The covariates were selected based on the stepwise procedure through the MASS package

(Venables and Ripley 2002) in R programing (R Core Team 2018).

The use of GLM was motivated by the generalization of ordinary linear regression for dependent

variables with error non-normally distributed. Thus, for residual biomass with non-normal distribution by

the Shapiro-Wilk’s test at 5% of significance level, as well as positive skew, we considered the Gamma

distribution (1) for the random component (error), which is related to the systematic part (linear model) by

means of the canonical link function (2) (Faraway 2016).

f
(
y;μ, /0

)
=

(
/0
μ

) /0

Γ ( /0)
y /0–1 exp

(
–/0y
μ

)
,y > 0 (1)

η =
1
μ

(2)

Where: μ and /0 are Gamma distribution parameters, and η is link function.

In addition, we consider the identification of discrepant values or outliers for the residual biomass

estimates, as well as the possibility to removing them to improve the fits. For this, the studentized residuals

(3) were plotted per leverage values (hii), which correspond to the importance of each observation for fitting

the models, through the car package in R (Fox and Weisberg 2019). Thus, studentized residuals (ti) greater
than -2 or 2 with leverage close to zero were identified as outliers of weak contribution to modeling and

could be removed without loss of phenomenon characteristics.
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ti =
êi√

σ̂2(1 – hii)
(3)

Where: êi is ordinary residuals, σ̂
2 is residual variance, and hii is leverage.

Themodels were evaluated based on significance of regression coefficients (bi) at the 1%of significance

level by t-test; Akaike’s information criterion (AIC), aiming to select the model whose combination of

covariates results in the lowest value (4); coefficient of determination (r2
yŷ), given by the square of correlation

between observed and estimated biomass values; normalized root-mean-square-error (NRMSE) as a measure
of accuracy, where values close to zero indicate low residual variance (5); and graphical analysis of Pearson’s

residuals (rp
i ) to indicate the absence of systematic tendency in the estimates (6).

AIC = –2 ln(L) + 2p (4)

NRMSE =
RMSE

ý
, where: RMSE =

√
∑

n
i=1

(
yi – ŷi

)2

n
(5)

rp
i =

yi – μ̂i√
V̂i

(6)

Where: ln(L) is log-likelihood function, p is number of model parameters, ý is mean value of residual

biomass, yi is observed value of residual biomass, ŷi is estimated residual biomass, n is number of

observations, μ̂i is estimated mean of residual biomass, and V̂i is estimated variance of residual biomass.

Additionally, half-normal plots with confidence envelopes at the 95% of significance level were

performed to indicate if the models were adequately specified. For this, studentized residuals were plotted

by the theoretical quantiles and 99 sample simulations were carried out using the estimates of fitted models

through the hnp package in R (Moral et al. 2017).

RESULTS

The residual biomass of Eucalyptus stands with non-normal distributions, at the 5% of significance by

Shapiro-Wilk’s test, and positive skew (Figure 1) corroborate the use of Gamma distribution for the random

component of generalized linear models in this study. Thus, it was shown that the application of traditional

statistical techniques, whose normality hypothesis is required, are not entirely adequate for the analysis of

residual biomass variable in wood harvesting operations.

By means of the studentized residuals by the leverages (Figure 2), discrepant values were observed in

the modeling of E. saligna (Figure 2a) and E. grandis × E. urophylla stands (Figure 2b), which resulted in

studentized residuals higher than -2 and 2 in the estimations. However, in these observations, five points in

Figure 2a and seven in Figure 2b presented leverage values closer to zero, indicating that they have a low

contribution for modeling and can be removed.

The stepwise procedure resulted on the selection of the covariates: commercial volume (v), diameter
at breast height (d), commercial height (h), commercial limit diameter (di), log d transformation, and the

combinations of dh, d2h, dih, and d2
i h. Thus, the following regression models were composed for E. saligna

(7) and E. grandis × E. urophylla (8) stands for estimating residual biomass (ŵ):
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Figure 1 - Residual biomass distribution (w) of wood harvesting in E. saligna (a) and E. grandis

× E. urophylla (b) stands.

Figure 2 - Studentized residuals by leverage values in the residual biomass estimation of

wood harvesting in E. saligna (a) and E. grandis × E. urophylla (b) stands.

ŵ = β̂0 + β̂1v + β̂2d + β̂3h + β̂4 log(d) + β̂5(dh) + β̂6(d2h) (7)

ŵ = β̂0 + β̂1v + β̂2d + β̂3h + β̂4 log(d) + β̂5(dih) + β̂6(d2
i h) (8)

In Table IV, these models resulted in lowest values of the Akaike information criterion (AIC), whose
regression coefficients (β̂i) were statistically significant at the 1% of significance level, as well as efficient to

explain residual biomass variance by the coefficients of determination (r2
yŷ) greater than 0.9. In addition, the

normalized root-mean square-error (NRMSE) of the models corroborated with their high statistical accuracy,
resulting in values close to zero and indicating low residual variances.

By means of Pearson’s residuals (Figures 3a and 3b), we observed constant distributions of the residuals

that showed the absence of heteroscedasticity and systematic errors for estimating biomass. In addition,
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TABLE IV

Goodness of fits to estimate residual biomass in wood harvesting of E. saligna and E. grandis × E. urophylla stands.

β̂0 β̂1 β̂2 β̂3 β̂4 β̂5 β̂6 AIC r2
yŷ NRMSE

E. saligna

0.4021 -0.2582 0.0129 8.58×10-3 -0.2162 -4.15×10-4 1.57×10-5 706.96 0.924 0.166

** ** ** ** ** ** **

E. grandis × E. urophylla

0.3207 -0.0581 7.72×10-3 1.02×10-3 -0.1591 -1.51×10-4 4.22×10-5 613.08 0.962 0.127

** ** ** ** ** ** **

** significance at the 1% of significance level.

half-normal plots (Figures 3c and 3d) indicated that the fitted models were satisfactory, in which the

studentized residuals were inside in the simulated envelopes at a 95% of significance level.

Figure 3 - Pearson’s residuals in E. saligna (a) and E. grandis × E. urophylla (b) stands and

half-normal plots in the residual biomass estimation of wood harvesting in E. saligna (c) and

E. grandis × E. urophylla (d) stands.
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DISCUSSION

Some studies have been carried out to evaluate regression models to estimate stump biomass (Palander et al.

2009, Vesa and Palander 2010), productivity (Gallis and Spyroglou 2012, Palander et al. 2017, Brewer et al.

2018), and production and costs (Silayo and Migunga 2014) in wood harvesting methods. However, none of

them proposed and evaluated statistical models to estimate residual biomass of Eucalyptus stands or other

forest species by means of tree variables measured from the harvester processing head. This evidences that

the results of this study are important for the development of science and for application in forest sector.

Residual biomass distributions with positive skew (Figure 1) support the application of generalized

linear model and Gamma distribution in the random component, since the normality assumption in

traditional linear regression was a requirement not satisfied in this study. In addition, the use of Gamma

model is plausible for the analysis of non-negative continuous data (Manning et al. 2005, Faraway 2016),

as for the residual biomass of wood harvesting.

Generalized linear models also has the advantage for eliminating the dependent variable transformation

practice, in order to satisfy the classical linear regression assumptions (Cordeiro and Andrade 2009, Lo

and Andrews 2015). Thus, statistical models composed in this study lead to a most explanation of the

phenomenon under investigation. These results are especially feasible for data from forest harvesting

researches.

The stepwise procedure selected variables associated with forest biomass (Table IV), such as the

commercial volume, which has a relationship with wood density and, therefore, with woody components of

residual biomass (Somogyi et al. 2007). Also, the variables diameter, height, and their combinations can be

associated with the tree component mass that constitutes the tree canopy in residual biomass.

The linear combinations of these variables resulted in models with efficiency and statistical accuracy

for estimating residual biomass from tree measurements recorded on the harvester’s on-board computer.

This was evidenced by the highest r2
yŷ and lowest NRMSE values (Table IV), as well as by the uniformly

distributed residuals (Figure 3), although the residuals with symmetrical distribution are not an assumption

required for generalized linear models (Faraway 2016).

Thus,models developed in this study are innovative tools to estimate the residual biomass inmechanized

wood harvesting of Eucalyptus stands, in which can be inserted into the harvester’s hardware to provide

real-time information for operational planning and logistics. In addition, we suggest that other factors that

also influence on the biomass production, such as age, species or genetic material, and forest site productivity

(Palander et al. 2009, Eloy et al. 2018), are investigated to be incorporated in the models.
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