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phenology of a harvestman in a 
tidal freshwater wetland

PATRICIA P. IGLESIAS & MARTÍN O. PEREYRA

Abstract: There is a great amount of ecological information for terrestrial arthropods 
in several types of habitats, but few studies have focused on populations living in tidal 
freshwater wetlands. During a two-year fi eld survey, we studied the temporal dynamics 
of the harvestman Discocyrtus prospicuus inhabiting a freshwater wetland exposed to 
predictable tides and unpredictable fl oods. We also explored the effects of temperature, 
precipitation, and tide level on the population dynamics and reproductive phenology. 
Our fi ndings are markedly different from those reported in other harvestman species 
living in different habitats and also from conspecifi c populations living in the mainland. 
Adults, subadults, and juveniles remain active throughout the year, and a long breeding 
season was observed. However, the number of adults, subadults, juveniles, and egg 
clutches showed clear variations over the year without a consistent seasonal pattern. 
Contrary to the general pattern in harvestmen, no climatic variables were signifi cant 
predictors of abundance fl uctuations. We discuss the potential masking effect of 
unpredictable fl ood events, obscuring the relationship between abundance and abiotic 
factors. In addition, given that climatic conditions seem to favor harvestmen activity 
throughout the year, we also hypothesized that abundance variations could be driven 
mainly by biotic rather than by abiotic interactions.

Key words: Abiotic factors, breeding season, phenology, sex-ratio, unpredictable floods.

INTRODUCTION

Temperature and precipitation are key factors 
infl uencing the spatial and temporal distribution 
of terrestrial arthropods (Chown & Nicolson 2004). 
These two abiotic factors are also considered the 
most critical determinants of the distribution, 
habitat use, and richness of species belonging 
to the order Opiliones, commonly known as 
harvestmen or daddy long-legs. Harvestman 
species are usually absent at the lower ends of 
temperature and precipitation ranges but are 
diverse and abundant in places with moderate 
to high temperature and precipitation (reviewed 
by Curtis & Machado 2007). In a study conducted 
along three elevational gradients in the 

Brazilian Atlantic Forest, both species density 
and specimen abundance of litter-dwelling 
harvestmen were positively correlated with 
temperature and humidity (Almeida-Neto et al. 
2006). Lack of spiracular control, low osmotic 
hemolymph concentration, and a high surface/
volume ratio may explain why harvestmen 
occur mainly in damp and shaded areas 
(Santos 2007). Temperature and precipitation 
are also important determinants of harvestmen 
phenology, influencing embryonic, and post-
embryonic development, as well as adult activity 
(Belozerov 2012). A recent comparative study, 
including more than 100 harvestman species 
belonging to all living suborders and distributed 
worldwide, has shown that the length of the 
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breeding season is primarily influenced by the 
number of warm months. Precipitation plays a 
significant, but secondary role in modulating 
the period devoted to reproduction (Machado 
et al. 2016).

The role of other abiotic factors on the 
ecology and phenology of harvestman species 
is far less studied. For European trogulids 
(Dyspnoi), for instance, species occurrence is 
correlated with soils derived from limestone, 
which are rich in calcium carbonates (Hillyard & 
Sankey 1989). Given that representatives of this 
family feed exclusively on snails, organisms that 
require calcium carbonate to build their shells, 
the distribution of trogulids may actually reflect 
the distribution of their prey (Curtis & Machado 
2007). In central Amazonia, reproduction and 
early development of two species of litter-
dwelling harvestmen (Laniatores) occur on tree 
trunks while the forest is flooded. After the water 
recedes, development to adulthood proceeds 
on the forest floor before the individuals retreat 
once more up into the trees (Friebe & Adis 
1983). Thus, for species living in places subject 
to seasonal flooding, habitat use, population 
dynamics, and reproductive phenology may be 
adjusted to annual hydrological regimes.

The harvestman Discocyrtus prospicuus 
(Holmberg 1876) (Laniatores: Gonyleptidae) is 
found primarily in shady forests of temperate 
environments in central and northern regions 
from Argentina and Uruguay (Acosta & Guerrero 
2011). Some populations inhabit a tidal 
freshwater wetland in Argentina (the Lower 
Delta region), a region without a dry season and 
hot summer (Peel et al. 2007). The hydrological 
regime is mainly affected by lunar tides, but also 
by unpredictable floods produced by south to 
southeastern winds (Kandus & Malvárez 2004). 
When the tide level is high, the Lower Delta 
islands are not flooded. However, the soil is 
drenched, which may have either positive or 

negative effects on ground-dweller arthropods 
(e.g. Anderson & Smith 2000, Antvogel and 
Bonn 2001, Vannier 1983, Verhoef 1977). To 
date, there are no field surveys of harvestmen 
inhabiting tidal freshwater wetlands, and the 
only information available about the phenology 
of D. prospicuus is limited to a few ad libitum 
observations of continental populations from 
Uruguay (Stanley 2011, Toscano-Gadea 2011). 
Therefore, the species is an exciting study system 
to investigate how species adjust the timing 
of life-cycle events when faced with different 
environmental parameters (e.g. hydrological 
regime). Here we describe the temporal 
dynamics of the harvestman D. prospicuus 
inhabiting a Lower Delta island during a two-
year field survey. In addition, we investigate 
whether variation in temperature, precipitation, 
and tide level influence the population 
dynamics and reproductive phenology in this 
island population.

MATERIALS AND METHODS
Study area
We conducted this study in one of the Lower 
Delta islands of the Paraná River (34°22’55”S, 
58°34’38”W; ~8 m above sea level) in the 
northeastern part of the Buenos Aires province, 
Argentina. This region is a tidal freshwater 
wetland with a temperate climate: mean annual 
temperature of 16.7 °C (min.–max. = 6–30 °C) 
and mean annual rainfall of 1,073 mm, without 
marked monthly variation in precipitation levels 
(Kandus & Malvárez 2004; Fig. 1). The island lies 
in the downstream sector of the Lower Delta 
region, which is dominated by predictable tides 
and unpredictable floods produced by south to 
southeastern winds (Kandus & Malvárez 2004). 
Winds can raise the water level up to 2.5 m 
above the average level, and floods may last 
from several hours to a few days (Kandus et 
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al. 2006). The flooding period depends, among 
other things, on the topography because the 
island has an elongated shape with levees 
surrounding their perimeter and a depressed 
central portion that accumulates water (Fig. 2). 
Because the study island shows a high degree 
of anthropization, we selected a slightly tree-
covered area of 2,500 m2 located 40–120 m inland 
from the stream coast as the sampling area. 
This site is only occasionally flooded and has 
moderate draining efficiency (Fig. 2). Moreover, 
the site has numerous fallen logs that can be 
used by individuals of D. prospicuus as diurnal 
shelter and/or oviposition sites.

Fieldwork
As unpredictable floods change the location and 
number of fallen logs that can be inspected, we 
were unable to mark and track marked logs to 
be used as sampling units throughout the entire 
fieldwork. Thus, the sampling method was based 
on examining all fallen logs found within the 
sampling area (2,500 m2). The sampling area was 
inspected each month from August 2012 to July 
2014, totaling two years of samples. The survey 
began regularly at 10:00 AM, and it usually lasted 
from 3 to 3.5 hours, during which we carefully 
inspected all fallen logs in the sampling area. 
From each log, we recorded the number and 
sex of adults and subadults, the number of 
juveniles, and the number of egg clutches. 
We visited the study site once a month, and 
each monthly sampling lasted one day. Given 
that the harvestmen we found each month 
were not collected or individually marked, the 
same individual could be counted in different 
samplings during the study period.

Adult harvestmen can be easily distinguished 
from subadults because the later do not have 
complete tarsal segmentation. Moreover, males 
and females of D. prospicuus can be easily 
distinguished because males have conspicuous 

Figure 2. Schematic representation of the island 
topography showing the study area, the principal 
water inputs, and tide level variations (TLV). Figure 
adapted from Kandus & Malvárez (2004) and Batzer & 
Boix (2016).

Figure 1. Monthly climatic data recorded during 
two years of monthly samples in a tidal freshwater 
wetland from Argentina. Temp: average of the mean 
daily temperature (dotted line); Precip: cumulative 
precipitation (solid line); Tide level: average of the 
daily highest tide (bars).



PATRICIA P. IGLESIAS & MARTÍN O. PEREYRA	 PHENOLOGY OF A HARVESMAN IN A TIDAL WETLAND

An Acad Bras Cienc (2020) 92(1)  e20181123  4 | 12 

spines on the coxa and femur of the fourth pair 
of legs (Ringuelet 1959). Subadult males can be 
distinguished from fifth instar juveniles because 
the former already have incipient armature on 
the coxa and femur of the fourth pair of legs. 
Subadult females can be distinguished from 
fifth instar juveniles by differences in body size. 
According to measures we took from individuals 
collected during preliminary surveys, the dorsal 
scute length of subadult females is always larger 
than 3.4 mm. Thus, all non-adult individuals 
without any signal of leg armature and smaller 
than 3.4 mm were classified as juveniles. Finally, 
females of the population studied here do not 
lay isolated eggs, as previously recorded for D. 
prospicuus populations in the mainland (Canals 
1936). Instead, the eggs are laid in small clutches, 
and females were seen resting over the eggs (P. 
P. Iglesias and M. O. Pereyra, unpublished data). 
Therefore, it was easy to locate and record the 
presence of egg clutches under the fallen logs 
during the study period.

Voucher specimens were deposited in 
the Arachnological collection of the Museo 
Argentino de Ciencias Naturales “Bernardino 
Rivadavia” – CONICET, Buenos Aires, Argentina 
(MACN-Ar 40300).

Climatic data
Temperature and precipitation data were 
obtained from the Meteorological Station “Delta 
del Paraná” (Instituto Nacional de Tecnología 
Agropecuaria, INTA), located 35 km from the 
study site. Tide records for San Fernando Port 
were obtained from Servicio de Hidrografía 
Naval, Ministerio de Defensa de la República, 
Argentina. Monthly data are based on average 
daily temperature, cumulative precipitation, and 
the average of the daily highest tide (Fig. 1).

Statistical analyses
To compare the number of males and females 
(subadults and adults) recorded in the sampling 
area at each month, we used a generalized linear 
model (GLM) with a binomial distribution of 
errors. If mean monthly sex ratio (number males/
number of females) estimated by the model was 
higher than one and the 95% confidence interval 
(CI) did not cross one, we considered the sex 
ratio male-biased. In turn, if the mean monthly 
sex ratio estimated by the model was lower 
than one, and the 95% CI did not cross one, we 
considered the sex ratio female-biased.

To evaluate the effect of temperature, 
precipitation, and tide level (predictor variables) 
on the number of adults, subadults, juveniles, 
and egg clutches (response variables), we 
used generalized least square (GLS) models. 
Although the typical analysis for count data 
is a GLM with Poisson distribution of errors 
and log link function, our response variables 
were temporally auto-correlated, and the 
assumption of independence was not met. 
Therefore, we chose to pursue a more complex 
but appropriate model framework. To account 
for the auto-correlation effect, a temporal 
correlation structure (auto-regressive model 
of order 1:AR-1) was included in GLS analyses. 
The correlation structure considers that the 
farther away two data points are separated in 
time, the lower their correlation is (Zuur et al. 
2009). We assessed multi-collinearity between 
the predictor variables by means of variance 
inflation factors (VIFs) using the vif function 
from the car package (Fox et al. 2007). The VIFs 
of each variable were in the range of 1.00 to 1.05, 
which indicates low levels of multi-collinearity 
(following Dormann et al. 2013 and Esposito Vinzi 
et al. 2010). The predictor variables were fitted 
as residuals obtained from a linear regression 
against day length to remove the seasonal 
trend (Rivrud et al. 2010). They were centered 
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and standardized to make the coefficients of 
the models comparable (Schielzeth 2010). The 
variables number of clutches, subadults, and 
juveniles were square-root transformed to 
meet statistical criteria of normality. The list of 
candidate models included a complete model 
containing only the additive effect of the three 
predictor variables and all combinations of 
simpler models, including the null model. We 
choose the most plausible model selecting the 
one with the lowest AICc, which is the Akaike’s 
information criterion (AIC) for small samples 
(Bolker 2008, Symonds & Moussalli 2011). The 
most parsimonious model was the one with the 
lowest AICc value, & all models with ∆AICc < 2 
were considered as equally parsimonious 
(Burnham & Anderson 2003). Variables were 

considered important if their model-averaged 
95% confidence intervals did not overlap zero.

All the statistical analyses were run in the 
software R version 3.5.1 (R Core Team 2015) using 
the packages nlme (Pinheiro et al. 2014) and 
MuMIn (Barton 2015).

RESULTS
Phenology
Adults of D. prospicuus were recorded 
throughout the year, but we found a decrease 
in the number of individuals during the austral 
late spring-early summer period (Fig. 3a). The 
lowest number of individuals was recorded in 
December 2013. We recorded juveniles during all 
months and subadults during all months except 
August 2012 and November 2013. The number 

Figure 3. Population dynamics 
and reproductive phenology 

of the harvestman Discocyrtus 
prospicuus in a tidal freshwater 

wetland from Argentina. (a) 
Monthly numbers of adults 

(black), subadults (white), and 
juveniles (gray). (b) Monthly 

numbers of egg clutches found in 
each month. (c) Monthly sex-ratio 

of subadults (males = dark grey; 
females = light grey). (d) Monthly 
sex-ratio of adults (males = dark 

grey; females = light grey).
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of juveniles showed a peak in December 2012–
January 2013 and November–December 2013 (Fig. 
3a). The number of subadults, in turn, showed 
a peak in January, both in 2013 and 2014 (Fig. 
3a). Egg clutches were found throughout the 
year, except in January and December 2013, and 
January 2014 (Fig. 3b). There were peaks in the 
number of egg clutches in September–October 
2013 and July 2014 (Fig. 3b). In general, subadult 
sex ratio was male-biased (estimate = 1.34; 
95% CI = 1.07–1.69, Fig. 3c). However, adult sex 
ratio was female-biased (estimate = 0.57; 95% 
CI = 0.49–0.66, Fig. 3d). From the 24 months of 
samplings, in only two we found more adult 
males than adult females (Fig. 3d).

Effects of abiotic factors
The environmental variables included in this 
study had little effect on monthly variations 
in population composition (Table I). The best-
ranked model to describe monthly variations 
in the number of adults included temperature, 
precipitation, and tide level (Table I). In contrast, 
the null model was the best ranked model to 
describe monthly variations in the abundance 
of subadults, juveniles, and egg clutches (Table 
I). Although one or more predictor variables 
were included in the other models with ∆AICc < 2 
for the four response variables (Table I), no 
predictor variables were considered important 
when coefficients were model-averaged, with 
all 95% confidence intervals overlapping zero 
(Table II).

DISCUSSION

Seasonal variations in population size seem to 
be the rule among harvestmen, and this pattern 
has already been described for several species 
living in both temperate and tropical regions 
(Curtis & Machado 2007). The harvestman D. 

prospicuus was no exception, and the number 
of adults, subadults, and juveniles showed clear 
variations throughout the year (Fig. 3a). However, 
contrary to other species, in which the peak in 
the number of adults occurs during spring and 
summer (e.g. Acosta et al. 1995, Gnaspini 1996, 
Mestre & Pinto-da-Rocha 2004), the population 
dynamics of D. prospicuus does not follow a 
consistent seasonal pattern. In 2013, the peak in 
the number of adults occurred in late summer 
(February–March), but the number of adults 
recorded during this same period in 2014 was 
very low when compared with the beginning 
of the winter (July). The lack of clear seasonal 
fluctuation in the abundance of adults may be 
related to the unpredictability of wetlands, which 
are affected by occasional floods. In our study 
site, floods produced by south to southeastern 
winds may disturb the habitat, especially the 
fallen logs used as shelter and oviposition site 
by individuals of D.  prospicuus. Floods may 
also kill some individuals that are unable to 
disperse to a non-flooded area (Klimeš 2002). 
Thus, unpredictable floods may induce equally 
unpredictable variations in population dynamics 
of D. prospicuus living in tidal wetlands. This 
scenario is very different from seasonal flooding 
in the Amazon forest, where both population 
dynamics and reproductive phenology are 
adjusted to predictable variations in the water 
levels (Friebe & Adis 1983).

No seasonal interruption in the 
reproductive activity of D. prospicuus was 
detected (Fig. 3b). The length of the breeding 
season in harvestmen is primarily influenced 
by the number of months with a mean 
temperature above 5 °C; whereas precipitation 
has a secondary, but still important effect 
(Machado et al. 2016). In our study site, the mean 
monthly temperature is always above 5 °C, and 
precipitation is not markedly seasonal.Thus, 
both temperature and precipitation (Fig 1). 
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Table I. Best models to predict the number of adults, subadults, juveniles, and egg clutches of the harvestman 
Discocyrtus prospicuus in a tidal freshwater wetland from Argentina.

Predictor variables K AICc ∆AICc w

Number of adults (males and females)

Temperature + Precipitation + Tide level 6 189.7 0.00 0.241

Temperature + Tide level 5 190.0 0.29 0.208

Precipitation + Tide level 5 190.2 0.56 0.182

Tide level 4 190.9 1.19 0.133

Temperature + Precipitation 5 191.8 2.09 0.085

Temperature 4 192.5 2.78 0.060

Precipitation 4 192.6 2.90 0.057

Null model 3 193.6 3.88 0.035

Number of subadults (males and females)

Null model 3 97.7 0.00 0.382

Precipitation 4 98.8 1.06 0.225

Temperature 4 99.5 1.77 0.157

Tide level 4 100.8 3.07 0.082

Temperature + Precipitation 5 101.2 3.44 0.068

Precipitation + Tide level 5 102.3 4.54 0.040

Temperature + Tide level 5 102.6 4.84 0.034

Temperature + Precipitation + Tide level 6 104.8 7.07 0.011

Number of juveniles

Null model 3 114.6 0.00 0.260

Temperature 4 115.1 0.45 0.207

Precipitation 4 115.6 0.94 0.163

Tide level 4 116.3 1.66 0.113

Temperature + Precipitation 5 116.3 1.72 0.110

Temperature + Tide level 5 117.5 2.85 0.063

Precipitation + Tide level 5 117.6 3.02 0.058

Temperature + Precipitation + Tide level 6 119.2 4.57 0.027

Number of egg clutches

Null model 3 77.4 0.00 0.501

Tide level 4 79.3 1.94 0.190

Precipitation 4 79.9 2.47 0.146

Temperature 4 81.2 3.86 0.073

Precipitation + Tide level 5 82.1 4.71 0.048

Temperature + Tide level 5 83.6 6.22 0.022

Temperature + Precipitation 5 84.2 6.79 0.017

Temperature + Precipitation + Tide level 6 86.8 9.44 0.004

K is the number of parameters in the model, AICc is the Akaike’s information criterion for small samples, ∆AICc is 
the difference between the AICc value of the model and the best-ranked model, and w is the weight of the model. 
When model averaged, 95% confidence intervals overlap with zero for all variables (see Table II).
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conditions seem to favor reproductive activity 
throughout the year. However, in a continental 
population from Uruguay facing similar 
climatic conditions (i.e. seasonal variation in 
temperature and precipitation), the breeding 
season of D. prospicuus is restricted to the 
wettest and warmest months, from October 
to March (Toscano-Gadea 2011). Therefore, 
the interpopulation difference in the length 
of breeding season cannot be explained by 
these two abiotic factors. We argue that high 
soil moisture throughout the year, as occurs 
in coastal wetlands around the world (Tiner 
2018), could explain this difference. Given that 
harvestman eggs are sensitive to dehydration 
(Belozerov 2012), high soil moisture may 
favor no interruption in the reproductive 
activity of D. prospicuus in tidal wetlands. The 
length of the breeding season is important 
because it influences the synchrony of female 
reproduction and the intensity of male-male 
competition for mates (Emlen & Oring 1977). At 
the interspecific level, short breeding seasons 
in harvestmen are associated with scramble 
competition polygyny mating system and low 
sexual dimorphism related to male weaponry 
(Machado et al. 2016). At the intraspecific level, 
however, we have limited data on how the 

type of mating system and the magnitude of 
sexual dimorphism vary between populations 
(e.g. Burns & Tsurusaki 2016). Therefore, D. 
prospicuus may be a good study species to 
explore this question.

Although we do not have quantitative 
data on sexual differences in survival or 
movement during development for any 
harvestman species, the data gathered here 
show that subadult sex ratio was male-biased 
(Fig. 3c). This finding suggests that male 
survival during juvenile stages may be higher 
than female survival or that females tend 
to disperse to other areas before reaching 
adulthood. However, the sex ratio was female-
biased after individuals reach adulthood (Fig. 
3d), which contrasts with other species of 
Laniatores studied (e.g. Ferreira et al. 2009, 
Gnaspini 1996, Mestre & Pinto-da-Rocha 2004, 
Pinto-da-Rocha 1996a,b). Since surrounding 
areas in the island exhibit a high degree of 
landscape anthropization (where we never 
found D. prospicuus individuals) or are 
depressed areas that accumulate water, the 
hypothesis of an active dispersion strategy can 
be rejected. Nevertheless, a passive dispersal 
could take place since this species can survive 

Table II. Coefficients of the predictor variables based on model average. The full list of models for each response 
variable is presented in Table I. When the 95% confidence interval does not cross zero, the coefficient is 
highlighted in bold.

Response variable
Coefficient (95% confidence interval)

Intercept Temperature Precipitation Tide level

Number of adults
31.92

(21.02, 42.82)
0.53

(-5.49, 7.30)
-1.03

(-4.37, 6.44)
-3.84

(-9.86, 2.18)

Number of subadults
3.12

(2.17, 4.07)
0.42

(-0.32, 1.16)
-0.52

(-1.18, 0.13)
—

Number of juveniles
5.93

(3.74, 8.12)
-0.72

(-1.78, 0.32)
-0.61

(-1.54, 0.31)
-0.44

(-1.48, 0.60)

Number of egg clutches
1.86

(0.79, 2.92)
— —

-0.32
(-0.77,0.12)
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long-distance raft dispersal during flooding 
events (Guerrero et al. 2017)

Most harvestmen species belonging to 
the suborder Laniatores occur in a diversity of 
habitats where population dynamics seems 
to be affected mainly by temperature and/
or precipitation (Acosta et al. 1995, Gnaspini 
1996, Mestre & Pinto-da-Rocha 2004). Contrary 
to this general pattern, none of the studied 
variables was a strong predictor of individual 
abundance in this island population. 
Unpredictable variations in population 
density due to flooding events may obscure 
the relationship between abundance 
fluctuations and abiotic factors. However, 
given that fluctuations in temperature and 
soil moisture seems to be small enough to 
favor harvestmen activity throughout the year, 
abundance variations could be also driven 
by biotic rather than by abiotic interactions. 
Harvestmen predators and/or food availability 
may play an important role in the regulation 
of population density (Batzer & Boix 2016). 
As in the case of European trogulids, whose 
distribution reflects the distribution of their 
prey (Curtis & Machado 2007), abundance 
variations of D. prospicuus may be reflecting 
prey abundance fluctuations over the year. 
The match-mismatch hypothesis postulates 
that those individuals that best match their 
phenology with resource phenology have 
the highest fitness (Cushing 1990). Given that 
offspring diets vary throughout ontogeny, 
several prey phenologies must be considered. 
Fluctuations on ground-dwelling invertebrates, 
such as small arthropods and earthworms, 
may decrease or increase food availability 
to adults and subadults (e.g. Vannier 1983, 
Kizilkaya et al. 2011). However, given body size 
constraint, fluctuations in the abundance of 
micro-arthropods may increase or decrease 
food supply to juveniles. Harvestman eggs 

are highly sensitive to fungal infection 
(Cokendolpher & Mitov 2007), and fungi also 
show a well-marked periodicity throughout 
the year (Gulis et al. 2006). Temporal changes 
in vegetation and soil properties may increase 
the availability and diversity of suitable 
microhabitats for both prey and predators (De 
Szalay & Resh 2000). Also, although we focused 
on monthly variations of the daily highest 
tide, changes in water-level fluctuations 
can occur over varying time scales—from 
hourly to decadal (Cooper & Uzarski 2016). It 
has been shown that regular water-mixing 
action helps to distribute nutrients and 
other dissolved materials that could affect 
ground-dwelling invertebrates (Cooper & 
Uzarski 2016). For instance, micro-arthropods 
usually respond to waterlogging performing 
vertical migrations in the soil (Eisenbeis & 
Wichard 2012). Despite their importance for 
management and conservation issues, the 
complex ecology of wetland invertebrates 
is still poorly known (Batzer & Boix 2016). In 
line with this, the predators or the preys of 
D.  prospicuus in natural conditions in this 
area are also unknown.

There is a great amount of ecological 
information for terrestrial arthropods in 
several types of environments, but few studies 
have focused on populations living in tidal 
freshwater wetlands. Our findings indicate that 
the population dynamics and reproductive 
phenology of the harvestman D. prospicuus 
in a tidal freshwater wetland are markedly 
different from other harvestman species living 
in other types of habitats. In forests, grasslands, 
and even caves, water is a limiting factor, so 
that abundance, individual activity, and the 
reproductive period are positively related to 
rainfall (Curtis & Machado 2007). In wetlands, 
constant high moisture coupled with mild 
temperatures probably allows individuals of 
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D. prospicuus to remain active throughout 
the entire year and to have a more extended 
breeding season than conspecific populations 
living in drier habitats in the mainland. In 
the future, it would be interesting to study 
populations of D. prospicuus living in different 
habitat types to better understand how local 
ecological conditions shape interpopulation 
variations in ecological, behavioral, and life-
history traits.
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