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The Transmuted Marshall-Olkin Extended Lomax
Distribution
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Abstract: The transmuted family of distributions has been receiving increased attention
over the last few years. In this paper, we generalize the Marshall-Olkin extended Lomax
distribution using the quadratic rank transmutation map to obtain the transmuted
Marshall-Olkin extended Lomax distribution. Several properties of the new distribution
are discussed including the hazard rate function, ordinary and incomplete moments,
characteristic function and order statistics. We provide an estimation procedure by the
maximum likelihood method and a simulation study to assess the performance of the
new distribution. We prove empirically the flexibility of the new model by means of an
application to a real data set. It is superior to other three and four parameter lifetime
distributions.

Key words: generalized distribution, lifetime analysis, Lomax distribution, Marshall-Olkin
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INTRODUCTION

Non-negative random variables are used to model a wide variety of applications in survival analysis,
demography, reliability, actuarial study and other areas. For this reason, there is a growing interest
in constructing new distributions with positive real support to model lifetime data in several fields.
One of the most useful methods to generate new distributions is the integral transform of existing
distributions, usually referred to as generalized G classes (Tahir & Nadarajah 2015). The principal
reason for this is the ability of these generalized distributions to be more flexible than the baseline G
distribution and therefore provide better fits to skewed data (Pescim et al. 2010). The second reason
is the powerful computational facilities available in several analytical platforms, which facilitate
handling and computing complex mathematical expressions.

Some of the best known generalized G classes of distributions are: the Marshall-Olkin extended
(MOE) family (Marshall & Olkin 1997), exponentiated-generated (exp-G) families (Cordeiro et al. 2013,
Gupta et al. 1998), beta-generated (beta-G) family (Eugene et al. 2002), Kumaraswamy-generated
(Kw-G) family (Cordeiro & Castro 2011), gamma-generated (gamma-G) families (Nadarajah et al.
2015, Ristić & Balakrishnan 2012, Zografos & Balakrishnan 2009), McDonald-generated (Mc-G) family
(Alexander et al. 2012) and T–X family (Alzaatreh et al. 2013). A detailed compilation of these families
can be found in Tahir & Nadarajah (2015).
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Shaw & Buckley (2009) pioneered an interesting method by adding a new parameter to an
existing distribution that would offer more distributional flexibility. They used the quadratic rank
transmutation map (QRTM) to generate a flexible family. The generated class called the transmuted
extended family includes as a special case the baseline distribution and gives more flexibility to model
various types of data. General results for this family and new models are discussed in Bourguignon
et al. (2016).

In this paper, we adopt the transmuted generated (T-G) family to define a new distribution called
the transmuted Marshall-Olkin extended Lomax (TMOELx) distribution by taking the Marshall-Olkin
extended Lomax distribution (Ghitany et al. 2007) as the baseline G model. We obtain the TMOELx
density function as a linear combination of exponentiated-Lomax (exp-Lx) densities. Given that
the new distribution has positive real support, our objective is to define a flexible distribution for
lifetime applications. Also, we present explicit expressions for the quantile function (qf), moments,
characteristic function and order statistics. In addition, we consider a study of themaximum likelihood
estimates of the model for complete samples and a simulation study to verify the performance of
these estimates. Finally, we consider an application of the TMOELx distribution and compare it with
others distributions based on some goodness-of-fit statistics.

THE NEW DISTRIBUTION

The cumulative distribution function (cdf) of the Lomax distribution, say Lx(β, γ), also known as the
Pareto distribution of the second kind, is

R(x) = 1 – (1 + βx)–γ, x > 0, β, γ > 0, (1)

where β and γ are, respectively, the scale and shape parameters.
TheMarshall-Olkin extended Lomax (MOELx) distribution (Ghitany et al. 2007) is obtained by taking

the Lomax distribution (1) as the baseline model in the MOE family. Its cdf has the form

G(x) = 1 –
α

(1 + βx)γ – ᾱ
, x > 0, α, β, γ > 0, ᾱ = 1 – α. (2)

The cdf and probability density function (pdf) of the T-G family are, respectively,

T(x) = T(x; ξ, λ) = (1 + λ)G(x; ξ) – λG(x; ξ)2, λ ∈ [–1, 1] (3)

and

t(x) = t(x; ξ, λ) = [1 + λ – 2λG(x; ξ)]g(x; ξ), x ∈ D ⊆ R, (4)

where G(x; ξ) and g(x; ξ) are, respectively, the baseline cdf and pdf, and ξ is the parameter vector of
the baseline distribution. For λ = 0, it reduces to the baseline model. In Bourguignon et al. (2016), the
authors proved that the pdf (4) can be expressed as a linear combination of exp-G densities.

Based on the T-G family and theMOELx distribution, we propose a new four-parameter distribution
so-called the TMOELx distribution. By inserting (2) as the baseline distribution in equation (3), the cdf
of the TMOELx distribution (for x > 0) can be expressed as

F(x) =
[(1 + βx)γ – 1][(1 + βx)γ + αλ – ᾱ]

[(1 + βx)γ – ᾱ]2
, (5)
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whereas its pdf is

f (x) =
α β γ (1 + βx)γ–1{[1 – (1 + βx)γ](λ – 1) + α(λ+ 1)}

[(1 + βx)γ – ᾱ]3
, (6)

where α > 0, β > 0, γ > 0 and λ ∈ [–1, 1]. Hereafter, a random variable X having pdf (6) will be denoted
by X ∼ TMOELx(α, β, γ, λ).

In lifetime analysis, a useful function is the hazard rate function (hrf) h(x). So, the hrf of X is given
by

h(x) =
βγ(1 + βx)γ–1{(λ – 1)[(1 + βx)γ – 1] – α(1 + λ)}

[(1 + βx)γ – ᾱ]{(λ – 1)[(1 + βx)γ – 1] – α}
. (7)

For selected values of the parameters α, β, γ and λ, some sub-models of the TMOELx distribution
published in the literature are listed in Table I.

Table I. Some TMOELx sub-models. MOELx: Marshall-Olkin extended Lomax, TLx: Transmuted Lomax, Lx: Lomax.

α β γ λ Model Reference

α β γ 0 MOELx (α, β,γ) Ghitany et al. (2007)

1 β γ λ TLx (β,γ, λ) Ashour & Eltehiwy (2013)

1 β γ 0 Lx (β,γ) Lomax (1954)

SHAPES OF THE DENSITY AND HAZARD RATE FUNCTIONS

The shapes of the pdf (6) can be described analytically by examining the roots of the equation f ′(x) = 0

and analyzing its limits when x → 0 or x → ∞. Since f (x) is the pdf of a continuous random variable,
then limx→∞ f (x) = 0. Further, we have

lim
x→0

f (x) =
β γ (λ+ 1)

α

and, therefore, limx→0 f (x) = 0 if and only if λ = –1. Some plots of the TMOELx pdf, for different
parameter values, are displayed in Figure 1. These plots reveal that the pdf of X can be strictly
decreasing or unimodal with mode x = x0 at

x0 =
1

β

–1 +(–1 + α+ λ+ 2αγλ – {α2λ2 + 4αγλ (–1 + α+ λ) + γ2[2α (λ – 1) + (λ – 1)2 + α2(3λ2 + 1)]}1/2

(1 + γ)(λ – 1)

)1/γ .
Further, we obtain the conditions of the behavior of the TMOELx density in terms of the parameters.

In fact, from (4), the density t(x) is decreasing when t′(x) = g′(x)[1 + λ – 2 λG(x)] – 2 λ g2(x) < 0 for
all x > 0, where G(x) and g(x) are, respectively, the cdf and pdf of the MOELx distribution. So, t(x) is
decreasing when

g′(x)
g(x)

[1 + λ – 2 λG(x)] < 2 λ g(x), ∀x > 0.
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After some algebraic manipulation and considering x → 0+, the above inequality is equivalent to

α+ 2 γ – αγ+ αλ+ 4 γλ – αγλ > 0.

Therefore, t(x) is unimodal if and only if

α+ 2 γ – αγ+ αλ+ 4 γλ – αγλ < 0.

Thus, the parameters α, γ and λ control the shapes of the pdf, while β is the scale parameter. The
shape parameters allow extensive control on the right tail, providing more heavy (light) tails when α
increases (decreases) and γ and λ decrease (increase).

The corresponding hrf can have shapes such as decreasing and unimodal as shown in Figure 2.
Thus, the new distribution can be appropriate for different applications in lifetime analysis. For the
conditions of the behavior of the hrf h(x), note that h′(x) = t′(x)[1–T(x)]+t2(x)

[1–T(x)]2 and, therefore, h(x) is
decreasing if and only if

t′(x)[1 – T(x)] + t2(x) < 0, ∀x.

From (4) and considering x → 0+, the above inequality is equivalent to

α(γ – 1)(λ+ 1) + γ(λ2 – 2 λ – 1) < 0.

Then, h(x) is unimodal if and only if

α(γ – 1)(λ+ 1) + γ(λ2 – 2 λ – 1) > 0.

Thus, the parameters α, γ and λ control the shapes of the hrf of X.

USEFUL EXPANSIONS

We can obtain a power series for the cdf of the TMOEL distribution from eqs. (1), (2) and (3) using the
generalized binomial expansion (see appendix A)

F(x) =
∞∑
k=0

pk Hk+1(x), (8)

where Hk+1(x) = Rk+1(x) is the exp-Lx cdf with power parameter k+ 1. The coefficients are

pk =

 (1 + λ) bk – λ ck, if 0 < α ≤ 1/2,

ak, if α > 1/2,

and

ak =
[(1 + λ)(α – 1) – kλ]

α2

(
α – 1
α

)k–1
, k = 0, 1, 2, . . .

bk =
∞∑
j=k

(
j
k

)
(1 – α)j, k = 0, 1, 2, . . .

c0 = b20 and cm =
1

mb0

m∑
k=1

(3k –m) bk cm–k, m = 1, 2, . . .
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(a) α = 2.0, β = 1.0 and γ = 0.5 (b) β = γ = 1.0 and λ = –0.8

(c) α = γ = 1.0 and λ = –0.9 (d) α = β = 4.0 and λ = 0.9

Figure 1. Plots of the pdf (6) for selected parameters.
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(a) α = 3.0 and λ = –1.0 (b) β = 2.5 and γ = 1.0

(c) α = 3.0, β = 0.5 and λ = 0.7 (d) β = 0.5, γ = 2.0 and λ = –1

Figure 2. Plots of the hrf (7) for selected parameters.
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Differentiating (8) gives

f (x) =
∞∑
k=0

pk hk+1(x), (9)

where hk+1(x) = d
dxHk+1(x) is the exp-Lx density with power parameter k+ 1.

Equation (9) reveals that the pdf of X can be expressed as a linear combination of exp-Lx densities.
Thus, some structural properties of the TMOELx distribution can be determined from those of the
exp-Lx distribution (Salem 2014).

QUANTILE FUNCTION

Since the cdf F(x) given in (5) is continuous and strictly increasing, the qf of X is Q(u) = F–1(u), for
0 < u < 1. From Bourguignon et al. (2016), we obtain the qf of the TMOELx distribution as

Q(u; ξ, λ) =


QG
(
1+λ–

√
(1+λ)2–4λu
2λ ; ξ

)
, if λ 6= 0,

QG(u; ξ), if λ = 0,
(10)

where ξ = (α, β, γ)> is the parameter vector and QG(u; ξ) is the qf of the MOELx distribution

QG(u; ξ) = β–1
[(

1 –
αu
u – 1

)1/γ
– 1

]
.

Using (10), we can generate random numbers from the TMOELx distribution as follows. If U ∼
U(0, 1), then

Q(U; α, β, γ, λ) ∼ TMOELx (α, β, γ, λ).

Another alternative to generate random numbers from the TMOELx distribution can be based
on random extrema in transmuted distributions, which are given in Kozubowski & Podgórski
(2016) (Proposition 2.1). Let X1 and X2 be i.i.d. random variables from the MOELx distribution and let
Np be an integer-valued random variable such as Np – 1 ∼ Bernoulli(p), 0 ≤ p ≤ 1. Further, suppose
that Np and Xi, i = 1, 2, are independent random variables. Then, an observation y from the TMOELx
distribution can be generated in the following way:

1. Generate u1 and u2 independently from the uniform distribution U(0, 1).

2. Calculate xi = QG(ui), i = 1, 2.

3. If λ ∈ [–1, 0], define p = –λ ∈ [0, 1] and generate np – 1 from the Bernoulli(p) distribution.

4. Then, obtain y = ∨npi=1xi.

5. If λ ∈ [0, 1], define p = λ and generate np – 1 from the Bernoulli(p) distribution.

6. Finally, obtain y = ∧npi=1xi.
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For λ = 0 in equation (3), we have np = 1 almost surely and the steps 4 and 6 are satisfied
simultaneously with their right-hand-sides reducing to x1. Further, in the extreme cases λ = ±1, we
have np = 2 almost surely and the steps 4 and 6 are reduced to y = max(x1, x2) and y = min(x1, x2),
respectively.

In Figure 3, we compare the exact TMOELx densities and histograms from two simulated data sets
for selected parameters which show the consistent of the simulated values from the above algorithm
with the TMOELx distribution. We simulate the data using the R software (version 3.2.3).

(a) α = 2.5, β = 0.15, γ = 2.7, λ = –0.7 (b) α = 5.5, β = 0.5,γ = 2.5, λ = 0.2

Figure 3. Plots of the exact TMOELx densities and histograms of the simulated data for some parameter values.

Skewness and kurtosis

Useful skewness and kurtosis measures are given by α3 = μ3/ς3 and α4 = μ4/ς4, respectively, where
μj is the j-th central moment and ς is the standard deviation.

For some distributions in the T-G family, it could be difficult to find the third and fourth
moments. Alternative measures for the skewness and kurtosis based on quantiles are sometimes
more appropriate. The measure of skewness S of Bowley and the measure of kurtosis K of Moors are
given by

S =
Q(6/8) + Q(2/8) – 2Q(4/8)

Q(6/8) – Q(2/8)
(11)

and

K =
Q(7/8) – Q(5/8) + Q(3/8) – Q(1/8)

Q(6/8) – Q(2/8)
, (12)

respectively, where Q(·) is given by (10). These measures exist even for distributions without moments.
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The plots in Figure 4 display the skewness (11) and kurtosis (12) as functions of λ for some
parameter values. They reveal that the skewness and kurtosis of X decrease rapidly when λ converges
to one.

(a) Skewness (b) Kurtosis

Figure 4. Plots of the skewness and kurtosis for selected parameters.

MOMENTS AND CHARACTERISTIC FUNCTION

Moments are important in any statistical analysis. For example, some characteristics of a distribution
can be described using measures such as the mean, variance, skewness and kurtosis, which are
determined from the first four ordinary moments.

For r ∈ N, let μ′r = E(Xr) be the r-th ordinary moment of X. From equation (9), we can express μ′r
as a linear combination of the r-th ordinary moments of exp-Lx random variables. In fact, for r < γ,

μ
′
r =

∞∑
k=0

pk E(Y
r
k), (13)

where Yk ∼ exp–Lx(k+ 1, β, γ).
The r-th ordinary moment of Yk is given by Salem (2014) (for r < γ) as

E(Yrk) =
(k+ 1)

βr

r∑
j=0

(–1)j
(
r
j

)
B
(
1 –

1

γ
(r – j), k+ 1

)
, (14)
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where B(a, b) = Γ(a) Γ(b)/Γ(a+b) is the beta function and Γ(·) is the gamma function. Inserting (14)
in equation (13) gives (for r < γ)

μ
′
r =

∞∑
k=0

r∑
j=0

br(k, j)B
(
1 –

1

γ
(r – j), k+ 1

)
, (15)

where br(k, j) = (–1)j
(
r
j

)
(k+ 1)

βr
pk. From equation (15), we note that μ′r < ∞ for r < γ, a condition

that also holds for the Lomax distribution.

Numerical results

In this section, we use the expansions for the r-th ordinary moment of X to compare the numerical
results (for some parameter values) for the mean, variance, skewness and kurtosis of the TMOELx
distribution obtained by the methods of truncation, numerical integration and Monte Carlo simulation
(50, 000 replications). For reasons of simplicity, we consider α > 1/2 since, in this case, the expansions
for the moments are easier to obtain.

For the truncation method, the r-th truncated ordinary moment of X follows from (15) as

μ
′
r,N =

N∑
k=0

r∑
j=0

br(k, j)B
(
1 –

1

γ
(r – j), k+ 1

)
, r < γ, N ∈ N.

For the truncation and Monte Carlo methods, we use the Ox plataform (version 7.10, see Doornik
(2007)). For the numerical integration method, we adopt algorithms in the Mathematica software for
recursively subdivide the integration region.

The results for the three methods are given in Table II. For the truncation method, we consider the
values N = 5, 10 and 20. We note that the values for the truncation method are more accurate when
N increases in agreement with μ′r = limN→∞ μ

′
r,N. Further, these values can be considered sufficiently

precise when N = 20 compared with those values from numerical integration method. For the Monte
Carlo method, the results are less accurate when we consider large-order moments.

The script (in Ox language) for calculating the values corresponding to truncation and Monte Carlo
methods in Table II is given in Appendix B.

Incomplete moments

The r-th incomplete moment of X is determined from (9) as

m(r)
X (z) =

∫ z

0
xrf (x) dx =

∞∑
k=0

pkm
(r)
Yk

(z),

where

m(r)
Yk

(z) =
∫ z

0
xr hk+1(x) dx = β γ (k+ 1)

∫ z

0
xr [1 – (1 + βx)–γ]k (1 + βx)–γ–1 dx

is the r-th incomplete moment of Yk.
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Table II. Results for the mean, variance, skewness and kurtosis for some parameter values.

Parameter Method N mean variance skewness kurtosis

α=0.75

Truncation

5 0.7356 0.7407 5.1369 134.01

β=0.5 10 0.6960 0.6916 5.2047 138.12

γ=4.5 20 0.6963 0.6923 5.2040 138.06

λ=-0.75 Num. int. 0.6963 0.6923 5.2040 138.07

Monte Carlo 0.6949 0.7069 5.7817 99.360

α=1.5

Truncation

5 0.3861 0.1688 3.8940 55.140

β=1.0 10 0.3933 0.1715 3.8878 54.934

γ=5.0 20 0.3934 0.1715 3.8877 54.930

λ=-0.5 Num. int. 0.3934 0.1715 3.8877 54.930

Monte Carlo 0.3927 0.1735 4.3059 56.020

α=3.0

Truncation

5 0.1621 0.0344 3.1759 32.507

β=2.0 10 0.2060 0.0402 3.0934 31.455

γ=5.5 20 0.2174 0.0420 3.0889 31.254

λ=-0.25 Num. int. 0.2178 0.0421 3.0887 31.238

Monte Carlo 0.2175 0.0424 3.3848 35.354

α=5.0

Truncation

5 0.0956 0.0117 2.8857 24.900

β=3.0 10 0.1239 0.0137 2.7908 23.949

γ=6.0 20 0.1314 0.0143 2.7898 23.838

λ=0.25 Num. int. 0.1304 0.0142 2.7891 23.886

Monte Carlo 0.1302 0.0142 3.0287 27.900

α=7.0

Truncation

5 0.0587 0.0043 2.4756 17.285

β=4.0 10 0.0820 0.0051 2.3795 16.737

γ=7.0 20 0.0888 0.0053 2.4155 16.961

λ=0.5 Num. int. 0.0828 0.0048 2.3729 17.031

Monte Carlo 0.0827 0.0048 2.5454 20.037

Using the binomial expansion gives

[1 – (1 + βx)–γ]k =
k∑
j=0

(–1)j
(
k
j

)
(1 + βx)–jγ.

By replacing this expansion in m(r)
Yk

(z) and interchanging
∑∞
k=0

∑k
j=0 by

∑∞
j=0

∑∞
k=j, we have

m(r)
X (z) =

∞∑
j=0

ejm
(r)
Vj

(z),

An Acad Bras Cienc (2020) 92(3) e20180777 11 | 24
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where Vj ∼ Lx(β, (j+ 1)γ), ej =
∞∑
k=j

(–1)j
(
k
j

)
(k+ 1)

(j+ 1)
pk,

m(r)
Vj

(z) =
(j+ 1)β γ zr+1

2F1(r + 1, 1 + (j+ 1)γ; r + 2; –βz)
r + 1

,

and pFq
(
a1, . . . , ap; b1, . . . , bq; x

)
is the hypergeometric function (Gradshteyn & Ryzhik 2007).

Characteristic function

The generating and characteristic functions are useful tools, since they can be used for computing
the moments and cumulants of a distribution. For the Lomax distribution, the generating function is
defined only for t ≤ 0. Consequently, the TMOELx generating function is also defined only for t ≤ 0.
However, the characteristic function (chf) of a distribution exists for all t ∈ R. The chf of X is

φX(t) = E(eitX) =
∫ ∞

0
eitxf (x) dx,

where i =
√
–1 and t ∈ R.

Using equation (9), we obtain

φX(t) =
∞∑
k=0

pk φYk(t).

Further, using equation (16), we can write

φX(t) =
∞∑
j=0

ej φVj(t), (16)

where

φVj(t) = (j+ 1) γ e–it/β(–it)(j+1)γ
β
–(j+1)γ Γ

(
–(j+ 1)γ, –

it
β

)
(17)

and Γ(s, z) =
∫∞
z ts–1 e–t dt is the upper incomplete gamma function, which, by analytic continuation,

is defined for almost all combinations of complex s and z. Replacing (17) in equation (16) and setting

dj(t) = (j+ 1) γ ej e
–i t/β(–i t)(j+1)γ

β
–(j+1)γ,

we obtain

φX(t) =
∞∑
j=0

dj(t) Γ
(
–(j+ 1) γ, –

i t
β

)
. (18)

Equation (18) is the main result of this section.
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ORDER STATISTICS

Let X1, . . . , Xn be a random sample of size n from a distribution F(x). Then, for 1 ≤ m ≤ n, the pdf of
the m-th order statistic, X(m), can be expressed as (Severini 2005)

f(m)(x) = MF(x)m–1(1 – F(x))n–mf (x) = M f (x)
n–m∑
j=0

(–1)j
(
n –m
j

)
F(x)m+j–1,

where M = n!/[(m – 1)! (n –m)!].
Based on (8) and using the expansion for a power series raised to positive integer

powers (Gradshteyn & Ryzhik 2007), we have

F(x)m+j–1 =

 ∞∑
k=0

pk Hk+1(x)

m+j–1

=
∞∑
k=0

cm+j–1,k Hk+1(x),

where cm+j–1,0 = pm+j–1
0 and, for i ≥ 1,

cm+j–1,i =
1

i p0

i∑
s=1

[(m+ j)s – i] ps cm+j–1,i–s.

Therefore, we obtain

f(m)(x) = Mf (x)
n–m∑
j=0

∞∑
k=0

(–1)j
(
n –m
j

)
cm+j–1,k Hk+1(x),

Replacing f (x) by the expansion (9) in the last equation and, after some algebraic manipulation, we
can writte

f(m)(x) = M
n–m∑
j=0

∞∑
k,`=0

(–1)j
(
n –m
j

)
(`+ 1)

(`+ k+ 2)
cm+j–1,k p` h`+k+2(x).

We note that f(m)(x) in the above equation is a linear combination of exp-Lx densities. So, some
properties of the TMOELx order statistics can be easily obtained from those of the exp-Lx.

MAXIMUM LIKELIHOOD ESTIMATION

In this section, we consider the estimation of the parameters of the TMOELx distribution by the
maximum likelihood method. Let x = (x1, . . . , xn)> be a sample of size n from X ∼ TMOELx(α, β, γ, λ)
and θ = (α, β, γ, λ)> be the parameter vector. The log-likelihood for θ, denoted by `(θ), is given by

`(θ) = n[log(α) + log(β) + log(γ)] + (γ – 1)
n∑
i=1

log(1 + βxi) +
n∑
i=1

log{[1 – (1 + βxi)
γ](λ – 1)

+ α(λ+ 1)} – 3
n∑
i=1

log[(1 + βxi)
γ – ᾱ]. (19)
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The MLE θ̂ of θ can be obtained by maximizing (19) directly by using the SAS (PROC NLMIXED), R
(optim and MaxLik functions) and Ox program (MaxBFGS sub-routine).

Alternatively, the components of the score vector Uθ = (Uα,Uβ,Uγ,Uλ)> are

Uα =
∂ `(θ)

∂α
= nα–1 – 3

n∑
i=1

(α – 1 + uγi )
–1 + (λ+ 1)

n∑
i=1

[α(λ+ 1) + (λ – 1)(1 – uγi )]
–1,

Uβ =
∂ `(θ)

∂β
= nβ–1 + γ(γ – 1)

n∑
i=1

xiu
–1
i – 3γ

n∑
i=1

xiu
γ–1
i (α – 1 + uγi )

–1

– γ(λ – 1)
n∑
i=1

xiu
γ–1
i [α(λ+ 1) + (λ – 1)(1 – uγi )]

–1,

Uγ =
∂ `(θ)

∂γ
= nγ–1 + (γ – 1)

n∑
i=1

(log ui) +
n∑
i=1

(log uγi ) – 3
n∑
i=1

uγi (log ui)(α – 1 + uγi )
–1

– (λ – 1)
n∑
i=1

uγi (log ui)[α(λ+ 1) + (λ – 1)(1 – uγi )]
–1,

Uλ =
∂ `(θ)

∂λ
=

n∑
i=1

(1 + α – uγi )[α(λ+ 1) + (λ – 1)(1 – uγi )]
–1,

where ui = 1 + βxi.
The MLE θ̂ can also be determined by solving the nonlinear equations Uα = Uβ = Uγ = Uλ = 0

simultaneously. In this case, these equations should be evaluated numerically using Newton-Raphson
algorithms.

Under general regularity conditions, we have (θ̂ – θ) a∼ N4(0, K(θ)–1), where K(θ) is the
4 × 4 expected information matrix and a∼ denotes asymptotic distribution. For large n, K(θ) can be
approximated by the observed information matrix. This normal approximation for the MLE θ̂ can be
used for determining approximate confidence intervals and for testing hypotheses on the parameters
α, β, γ and λ.

Suppose that the parameter vector is partitioned as θ = (ψ>1 ,ψ
>
2 )

>, where dim(ψ1) + dim(ψ2) =

dim(θ). The likelihood ratio (LR) statistic for testing the null hypothesis H0 : ψ1 = ψ
(0)
1 against

the alternative hypothesis H1 : ψ1 6= ψ(0)1 is given by LR = 2 {`(θ̂) – `(θ̃)}, where θ̂ = (ψ̂
>
1 , ψ̂

>
2 )

>,

θ̃ = (ψ
(0)>

1 , ψ̃>2 )>, ψ̂i and ψ̃i are the MLEs under the alternative and null hypotheses, respectively,
and ψ(0)1 is a specified parameter vector. Based on the first-order asymptotic theory, we know that
LR a∼ χ2k (chi-square distribution with k degrees of freedom), where k = dim(ψ1). Therefore, to the
significance level ν, we reject H0 if LR > χ2(1–ν,k), where χ

2
(1–ν,k) is the quantile 1 – ν of the χ2k. Thus,

we can test sub-models of the TMOELx distribution and analyze how significant are the parameters
tested for modeling a given data set.

An Acad Bras Cienc (2020) 92(3) e20180777 14 | 24



RENILMA P. DA SILVA ET AL. TMOELX DISTRIBUTION

SIMULATION STUDY

In this section, we perform a Monte Carlo simulation experiment in order to evaluate the behavior of
the MLE θ̂ = (α̂, β̂, γ̂, λ̂) and estimate the relative biases and mean squared errors (MSEs) for sample
sizes n = 100, 200 and 250.

We consider 10, 000 Monte Carlo replications and use the BFGS method in the Ox plataform
(version 7.10, MaxBFGS function) to maximize the log-likelihood function (19). We set the parameter
values β = 0.25, γ = 0.3 and vary α and λ. Some computational aspects related to the simulation
study are detailed in Appendix C.

The results, given in Table III, reveal generally that the relative biases and MSE values decrease
when n increases. The minimum absolute values for the relative biases and MSEs are equal to 0.001
and 0.003, respectively, whereas the maximum absolute values for the relative bias and MSE are 1.632
and 4.467, respectively. Moreover, we note in Table III that the parameter λ was underestimated in
most cases (negative relative biases).

Table III. Relative biases and MSE values for the MLEs (α̂, β̂, γ̂, λ̂) (β=0.25 and γ=0.3).

relative bias MSE

λ α n α̂ β̂ γ̂ λ̂ α̂ β̂ γ̂ λ̂

-0.5 0.25 100 0.954 0.975 0.057 -0.086 0.687 0.932 0.012 0.142

200 0.549 0.696 0.045 -0.049 0.144 0.337 0.007 0.124

250 0.471 0.632 0.040 -0.049 0.111 0.301 0.006 0.117

0.5 100 0.742 0.884 0.021 -0.158 2.155 1.025 0.007 0.153

200 0.403 0.695 0.020 -0.073 0.521 0.290 0.004 0.139

250 0.348 0.671 0.020 -0.059 0.225 0.279 0.003 0.133

0.25 0.25 100 1.245 1.632 0.098 -0.349 2.260 3.752 0.021 0.151

200 0.495 0.751 0.063 -0.312 0.215 0.432 0.013 0.126

250 0.382 0.570 0.049 -0.272 0.117 0.238 0.010 0.109

0.5 100 0.802 1.122 0.043 -0.110 3.145 1.638 0.013 0.122

200 0.376 0.528 0.001 0.062 1.097 0.452 0.008 0.119

250 0.277 0.429 -0.011 0.076 0.301 0.144 0.007 0.122

0.5 0.25 100 0.931 1.131 0.144 -0.292 1.436 1.867 0.028 0.136

200 0.379 0.462 0.087 -0.202 0.227 0.297 0.018 0.105

250 0.308 0.385 0.062 -0.154 0.153 0.221 0.015 0.096

0.5 100 0.772 1.057 0.101 -0.324 4.467 2.560 0.019 0.121

200 0.237 0.348 0.040 -0.222 0.609 0.288 0.011 0.101

250 0.144 0.249 0.022 -0.196 0.379 0.122 0.009 0.098

An Acad Bras Cienc (2020) 92(3) e20180777 15 | 24



RENILMA P. DA SILVA ET AL. TMOELX DISTRIBUTION

APPLICATION

In this section, we present two applications of the TMOELx distribution.
First application: We compare the TMOELx distribution with its sub-models: the TLx, MOELx and Lx
distributions (see Table I). We use an uncensored data set corresponding to 128 intervals between the
times where vehicles pass a point on a road (traffic data). The data are given in Jorgensen (2012).

Since the parameter λ in the TMOELx distribution is such that |λ| ≤ 1, we employ the SQP
method (MaxSQP function of the Ox language) to maximizing the log-likelihood function (19). For
maximizing the log-likelihood for the sub-models, we employ the R software (R Core Team 2018),
AdequacyModel package (Diniz Marinho et al. 2016). For checking the uniqueness of the solution
to the score equations, we have perturbed the initial values, besides consider different methods:
quasi-Newton methods (BFGS and Nelder-Mead) and heuristic methods (simulated annealing and
particle swarm optimization). The MLEs of the model parameters of the TMOELx distribution and its
sub-models are listed in Table IV.

We compare the fitted models by means of some goodness-of-fit statistics: Akaike Information
Criterion (AIC) (Akaike 1974), Bayesian Information Criterion (BIC) (Schwarz 1978), Hannan-Quinn
Information Criterion (HQIC) (Hannan & Quinn 1979), Cramér-von Mises Criterion (W*) and
Anderson-Darling Criterion (A*) (Chen & Balakrishnan 1995). In general, small values of these statistics
indicate better fits. We employ the R software (AdequacyModel package) to calculate these statistics.
The goodness-of-fit values of the fitted distributions are listed in Table V.

Table IV. MLEs (standard errors).

MLE

Distribution α̂ β̂ γ̂ λ̂

TMOELx
2,087 0,775 1,062 -0,99

(0.497) (0.247) (0.141) (0.160)

MOELx
118,067 7,962 1,227 -

(179.861) (10.360) (0.095) -

TLx
- 0,067 1,679 0,189

- (0.040) (0.467) (0.435)

Lx
- 0,083 1,610 -

- (0.031) (0.392) -

The values in Table V indicate that the TMOELx distribution presents the smallest values of the
AIC, HQIC, W* and A* statistics among the fitted models. Therefore, according to these statistics, we
can conclude that the TMOELx distribution gives the best fit to the current data.

To analyze how significant is the parameter λ of the TMOELx distribution in modeling these data,
we use the LR statistic for testing the MOELx model against the TMOELx model, that is, we testH0 : λ =

0 against H1 : λ 6= 0. We obtain an approximate p-value of 0, 0019. Therefore, at the 5% significance

An Acad Bras Cienc (2020) 92(3) e20180777 16 | 24



RENILMA P. DA SILVA ET AL. TMOELX DISTRIBUTION

Table V. Goodness-of-fit statistics (first application).

Statistic

Distribution AIC BIC HQIC W* A*

TMOELx 928,168 939,576 932,803 0,256 1,528

MOELx 933,116 941,672 936,593 0,334 2,029

TLx 935,166 943,722 938,642 0,361 2,213

Lx 933,298 939,002 935,616 0,360 2,207

level, the test rejects the null hypothesis, that is, we reject the MOELx model. Thus, we have evidence
of the potential need for including the parameter λ to model these data.
Second application: In this case, we compare the TMOELx distribution with other non-nested models
proposed in the literature: exponentiated Lomax (ELx) (Lemonte & Cordeiro 2013), exponentiated
standard Lomax (EsLx) (Lemonte & Cordeiro 2013), transmuted Marshall-Olkin Fréchet (TMOFr) (AFIFY
et al. 2015), beta Lomax (BLx) (Rajab et al. 2013) and Kumaraswamy Lomax (KwLx) (Shams 2013)
distributions, whose densities are given in Appendix D. The uncensored data set refers to 213 times
of successive failures of air conditioning system of airplanes available in Proschan (1963).

Since all considered models are non-nested, we compare them by using the statistics W* and A*,
since the AIC, BIC and HQIC criterions are useful only for nested models. The goodness-of-fit values
of the fitted distributions are listed in Table VI. We can note that the TMOELx distribution has the
smallest values of the W* and A* among the fitted models. Therefore, the TMOELx model gives the
best fit to the current data.

The plots of the estimated TMOELx, TMOFr and KwLx densities are displayed in Figure 5.

Table VI. Goodness-of-fit statistics (second application).

Statistic

Distribution W* A*

TMOELx 0,034 0,249

TMOFr 0,116 0,813

EsLx 0,698 4,487

ELx 0,051 0,370

BLx 0,401 2,662

KwLx 0,085 0,632

CONCLUSIONS

In this paper, we study a new four-parameter lifetime model, named the transmuted Marshall–Olkin
extended Lomax (TMOELx) distribution, obtained from the transmuted-G (T-G) family (Shaw & Buckley
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Figure 5. Comparison of the TMOELx, TMOFr and KwLx estimated densities.

2009) when the baseline model is the Marshall-Olkin extended Lomax (MOELx) distribution (Ghitany
et al. 2007). We present some sub-models of the new distribution. We obtain simple expressions for
the cumulative and density functions. We demonstrate that the TMOELx density can be expressed as a
linear combination of exponentiated-Lomax densities and then some of its structural properties can
be determined from those of these models. We obtain explicit expressions for the quantile function,
ordinary and incomplete moments, characteristic function and order statistics. We determine the
maximum likelihood estimates for complete samples and perform a Monte Carlo study to evaluate
the behavior of these estimates in finite samples. We compare the performance of the new model
with other distributions using classical goodness-of-fit statistics. The overall results confirm that the
TMOELx model is very appropriate for lifetime applications.
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APPENDIX A

Here, we provide the mathematical development to derive eq. (8). The Lomax cdf (1) is given by

R(x) = 1 – (1 + βx)–γ =
(1 + βx)γ – 1
(1 + βx)γ ,

and then (1 + βx)–γ = 1 – R(x).
The MOEL cdf can be expressed in terms of R(x) from eq. (2) as

G(x) = 1 – α

(1 + βx)γ – (1 – α) = 1 – α(1 + βx)–γ

[(1 + βx)γ – 1](1 + βx)–γ + α(1 + βx)–γ

= 1 – α(1 – R(x))
R(x) + α(1 – R(x)) = 1 – α(1 – R(x))

(1 – α)R(x) + α =
R(x)

α
[
1–α
α
R(x) + 1

] . (20)

By considering the cdf (3) of the transmuted family, the TMOEL cdf (for λ ∈ [–1, 1]) is

F(x) = (1 + λ)G(x) – λG2(x) = (1 + λ)R(x)
α
[
1 +

(
1–α
α

)
R(x)

] – λR2(x)
α2
[
1 +

(
1–α
α

)
R(x)

]2 . (21)

For α > 1/2, we have
∣∣ 1–α
α

∣∣ < 1. Thus, since 0 < R(x) < 1 (for x > 0), using the generalized binomial expansion
(Gradshteyn & Ryzhik 2007, p. 25, subsection 1.112), we have (for α > 1/2)[

1 +

(
1 – α
α

)
R(x)

]–1
=

∞∑
k=1

(–1)k–1
(
1 – α
α

)k–1
Rk–1(x) =

∞∑
k=0

(
α – 1
α

)k
Rk(x) (22)

and [
1 +

(
1 – α
α

)
R(x)

]–2
=

∞∑
k=1

(–1)k–1k
(
1 – α
α

)k–1
Rk–1(x) =

∞∑
k=1

k
(
α – 1
α

)k–1
Rk–1(x). (23)

Inserting (22) and (23) in eq. (21) gives

F(x) =
(1 + λ)

α
R(x)

∞∑
k=0

(
α – 1
α

)k
Rk(x) – λ

α2
R2(x)

∞∑
k=1

k
(
α – 1
α

)k–1
Rk–1(x)

=
(1 + λ)

α
R(x)

[
1 +

∞∑
k=1

(
α – 1
α

)k
Rk(x)

]
– λ
α2

∞∑
k=1

k
(
α – 1
α

)k–1
Rk+1(x)

=
(1 + λ)

α
R(x) +

∞∑
k=1

[
((1 + λ)(α – 1) – kλ)

α2

(
α – 1
α

)k–1]
Rk+1(x)

=

∞∑
k=0

ak R
k+1(x), (24)

where ak =
[(1+λ)(α–1)–kλ]

α2

(
α–1
α

)k–1 for k = 0, 1, 2, . . . (with a0 = 0 when α = 1).
To obtain an expansion for F(x) when 0 < α ≤ 1/2, we can rewrite equation (20) as

G(x) = R(x)
1 – (1 – α)(1 – R(x)) . (25)

Since |(1 – α)(1 – R(x))| < 1, we consider the generalized binomial expansion (for 0 < α ≤ 1/2)

[1 – (1 – α)(1 – R(x))]–1 =

∞∑
j=1

(1 – α)j–1 (1 – R(x))j–1 =

∞∑
j=0

(1 – α)j (1 – R(x))j.
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For j ∈ N fixed, expanding (1 – R(x))j =
∑j

k=0

( j
k
)
Rk(x) gives

[1 – (1 – α)(1 – R(x))]–1 =

∞∑
j=0

j∑
k=0

(
j
k

)
(1 – α)jRk(x) =

∞∑
k=0

∞∑
j=k

(
j
k

)
(1 – α)jRk(x),

where the last equality follows by rearranging terms in the summations.
By replacing the above equation in eq. (25), we obtain (for 0 < α ≤ 1/2)

G(x) =
∞∑
k=0

∞∑
j=k

(
j
k

)
(1 – α)jRk+1(x) =

∞∑
k=0

bk R
k+1(x),

where bk =
∑∞

j=k
( j
k
)
(1 – α)j (for k = 0, 1, 2, . . .)

Inserting the last equation in (3) gives

F(x) = (1 + λ)G(x) – λG2(x) = (1 + λ)
∞∑
k=0

bk R
k+1(x) – λ

[ ∞∑
k=0

bk R
k+1(x)

]2

By using the expansion for a power series raised to positive integer powers (Gradshteyn & Ryzhik 2007, p. 17,
section 0.314) we have [ ∞∑

k=0

bk R
k+1(x)

]2
=

∞∑
k=0

ck R
k+1(x),

where c0 = b20 and cm = 1
mb0

∑m
k=1(3k –m)bk cm–k, for m ≥ 1. Thus, for 0 < α ≤ 1/2, we can write

F(x) = (1 + λ)

∞∑
k=0

bk R
k+1(x) – λ

∞∑
k=0

ck R
k+1(x) =

∞∑
k=0

[(1 + λ)bk – λ ck]R
k+1(x). (26)

Finally, from equations (24) and (26), the cdf F(x) (for all α > 0) can be expressed as

F(x) =
∞∑
k=0

pk Hk+1(x),

where Hk+1(x) = Rk+1(x) is the exp-Lx cdf with power parameter k+ 1 and

pk =

 (1 + λ)bk – λ ck, if 0 < α ≤ 1/2,

ak, if α > 1/2.

APPENDIX B

The routine (in Ox language) for calculating the values of the mean, variance, skewness and kurtosis of the TMOEL
distribution in Table II is given below:

#include <oxstd.oxh>
#include <oxfloat.oxh>
#include <oxprob.h>
decl NREP = 50000; /* number of replicas */
decl x; /* sample of size N */
decl alpha = 7.0; \\values for alpha: 0.75, 1.5, 3.0, 5.0, 7.0
decl beta = 4.0; \\values for beta: 0.5, 1.0, 2.0, 3.0, 4.0
decl gamma = 7.0; \\values for gamma: 4.5, 5.0, 5.5, 6.0, 7.0
decl lambda = 0.5; \\values for lambda: -0.75, -0.5, -0.25, 0.25, 0.5
decl K=20; /* truncation, K = 5, 10, 20 */
// generating sample
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sampleTMOEL(const N, const vP)
{ decl u = ranu(N, 1);
decl u_0 = (1 + vP[3] - sqrt ((1 + vP[3])^2 - 4*vP[3].*u))./(2*vP[3]);
decl sample = (vP[1]^(-1))*(((1 - (vP[0].*u_0)./(u_0 - 1)).^(1/vP[2]) - 1));
return sample; }

// function for calculate the r-th truncated ordinary moment
rmoment_TMOEL(const k, const r)
{ decl i,j, m, m_r, a_i;
m= zeros(k+1,r+1);
for(i = 0; i <= k; i++)
{ a_i = (((alpha-1)*(1+lambda)-i*lambda)/alpha^2) *((alpha-1)/alpha)^(i-1);
for(j=0; j <= r; j++)

{ m[i][j] = (-1)^j*binomial(r,j)*((i+1)/beta^r)*
betafunc(M_INF ,1-(1/gamma)*(r-j),i+1)*a_i; }}

m_r = sumc(sumr(m));
return m_r;}

/***********************************************************************
main program

***********************************************************************/
main()
{ decl i, theta, moment , assim, curtose, mean, var, mean_2, var_2,

assim_2, curtose_2;
ranseed("GM");
ranseed({1111,1111});
theta = alpha|beta|gamma|lambda;

/***************** calculate moments using Monte Carlo **********************/
// gerating sample x~TMOEL(alpha, beta, gamma, lambda)
x = sampleTMOEL(NREP, theta);
moment = moments(x, 4);
skew = moment[3];
kur = moment[4];
mean = meanc(x);
var = varc(x);
\\mean, variance, skewness and kurtosis via Monte Carlo
println(mean|var|skew|kur, "\n");

/************* calculate moments using expansions ****************************/
mean_2 = rmoment_TMOEL(K,1);
var_2 = rmoment_TMOEL(K,2) - mean_2^2;
skew_2 = (rmoment_TMOEL(K,3)-3*rmoment_TMOEL(K,1)*rmoment_TMOEL(K,2) +

2*rmoment_TMOEL(K,1)^3)/(sqrt(var_2))^3;
kur_2 = (rmoment_TMOEL(K,4)-4*rmoment_TMOEL(K,1)*rmoment_TMOEL(K,3)+

6*(rmoment_TMOEL(K,1)^2)*rmoment_TMOEL(K,2)-
3*rmoment_TMOEL(K,1)^4)/(var_2)^2;

\\mean, variance, skewness and kurtosis via expansions
println( mean_2~var_2~skew_2~kur_2|mean~var~skew~kur); }

APPENDIX C

In this appendix, we detail some computational aspects related to the section of simulation study . All Monte Carlo
simulations are performed using scripts implemented in the Ox programming language. A free version of Ox is available
in https://www.doornik.com.

For maximizing the log-likelihood function (19), we use the routine MaxBFGS implemented in Ox:

#import <maximize>
MaxBFGS(const func, const avP, const adFunc, const amInvHess, const fNumDer);
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• func
In: the function to be maximized with p parameters (the log-likelihood function in this case).

• avP
In: matrix of order p× 1 with the initial values.
Out: matrix of order p× 1 with the values maximizing func.

• adFunc
In: address to object.
Out: maximum value of func.

• amHessian
In: 0 or the Hessian matrix addressed (we used 0).

• fNumDer
In: 0, to use the first analytic derivatives or 1, to use the first numeric derivatives (we used 1).

The log-likelihood function (19) is implemented by using the Ox language as follows:

// log-likelihood function
flogTMOEL(const vP, const adFunc, const avSore, const amHess)
{ adFunc[0] = n*(log (vP[0]) + log (vP[1]) + log (vP[2])) + (vP[2] - 1) *

sumc(log (1 + vP[1]*x)) + sumc(log ((1 - (1 + vP[1]*x).^vP[2])*
(vP[3] - 1) + vP[0]*(vP[3] + 1))) -3 *
sumc(log ((1 + vP[1]*x).^vP[2] - 1 + vP[0]));

/* checks whether any element of adFunc[0] is NaN or infinity */
if(isnan(adFunc[0]) || isdotinf(adFunc[0]) )
return 0;
else
return 1; }

Finally, the function (19) is maximized by using the routine:

MaxBFGS(flogTMOEL, &theta_0, &dfunc, 0, 1);

General comments:

• the initial values (θ0) used for maximizing the log-likelihood function were obtained from the true value of the
parameter θ by adding a small arbitrary constant δ < 1, that is, θ0 = θ+ δ;

• For 10, 000 Monte Carlo replications, the convergence rate, in almost all scenarios considered, was greater than
85%. For β > 0.5 or n < 100, the BFGS method exhibits poor convergence. Therefore, it is not recommended to
work with samples smaller than 100.

APPENDIX D

The model densities used for comparison with the TMOELx distribution are given below:
The TMOFr pdf is

f (x) = αβσ
βx–(β+1)e–

( s
x
)b[

α+ (1 – α)e–
( s

x
)b]2

[
1 + λ – 2λe–

( s
x
)b

α+ (1 – α)e–
( s

x
)b

]
, x > 0,

where β, α, ς are positive parameters and | λ |≤ 1.
The ELx pdf is

f (x) = αβ
α(β+ x)–(α+1)

B(a, 1)

[
1 –
(
β

β+ x

)α]a–1
, x > 0,

where B(a,b) is the beta function and α, β and a are positive parameters.
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The EsLx pdf is

f (x) = α(1 + x)–(α+1)

B(a, 1)

[
1 –
(

1

1 + x

)α]a–1
, x > 0.

where α and a are positive parameters.
The BLx pdf is

f (x) = α

λB(a,b)

{
1 –
[
1 +

( x
λ

)]–α}a–1 [
1 +

( x
λ

)]–(αb+1)
, x > 0,

where α, λ, a and b are positive parameters.
Finally, the KwLx pdf is

f (x) = abα
λ

(
1 +

x
λ

)–(α+1) [
1 –
(
1 +

x
λ

)–α]a–1{
1 –
[
1 –
(
1 +

x
λ

)–α]a}b–1
, x > 0,

where α, λ, a and b are positive parameters.
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