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Abstract: The aims of this study were to identify fl oristic assemblages for alluvial forests 
in the Atlantic Forest and Pampa regions in Brazil, assess the level of fl oristic similarity 
between assemblages, and determine environmental gradients and indicator species 
for these assemblages. Surveys carried out in alluvial forests in the Atlantic Forest and 
Pampa regions were selected, based on which a presence/absence matrix was built 
for tree species. A cluster analysis was performed to verify the existence of species 
assemblages. Floristic similarity was determined by means of the Sorensen Distance 
measure, from which a dendrogram was developed. The fl oristic matrix was ordinated 
by means of NMDS. A PCA was performed with climatic data from areas to determine 
environmental gradients. An assessment of indicator species was carried out afterwards. 
Two groups of areas not related to the separation of the regions became visible from the 
dendrogram and were corroborated by NMDS. Temperature, rainfall and altitude gradients 
were synthesized by the PCA. Gymnanthes klotzschiana and Andira fraxinifolia were the 
most relevant species, respectively, in the Paraná-Uruguay and Atlantic assemblages. 
Alluvial forests were gradually separated in two fl oristic assemblages associated with 
river basins and migration routes, while especially infl uenced by tropicality and altitude 
gradients.

Key words: Atlantic basin, indicator species, migratory routes, Paraná-Uruguay basin.

INTRODUCTION

In the current scenario in which human 
activities lead to the rapid transformation of 
all ecosystems on the planet (Steffen et al. 
2007), a better understanding of the factors 
that determine fl oristic patterns in forests on 
a regional scale is essential for the design of 
conservation strategies and the ecological 
restoration of remaining natural areas. Despite 
a growing effort of work under such approach 
in the neotropics, knowledge on areas subject 
to recurrent fl ooding is still scarce (e.g., Silva et 
al. 2007, Wittmann et al. 2017) such as alluvial 
forests, which represent the areas along rivers, 

on plains and terraces where fl ood pulses and 
hydric saturation periodically occur (IBGE 2012). 

Alluvial forests function as a protective 
cover for natural resources by maintaining the 
hydrological cycle and protecting soils (Melo et 
al. 2011). These environments are highly relevant 
in the context of climate change, especially 
in areas tending to savanization (i.e., the 
Amazon and northern areas of Atlantic Forest), 
considering they may function as humid refuges 
in a future macroclimate of increased rainfall 
seasonality (Wittmann et al. 2017). Regardless 
of their ecological relevance, alluvial areas have 
been highly impacted by human activities (van 
den Berg & Oliveira-Filho 2000). 
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Environmental selectivity resulting from 
hydric stress in areas subject to flooding require 
plants to adapt morphologically, anatomically 
and physiologically (Koslowski 2002). The ability 
of plants to withstand hydric stress along with 
existing biotic interactions (Kraft et al. 2015) 
defines the floristic composition and structure 
of plant communities (Silva et al. 2012, Cruz & 
Campos 2013, Carvalho et al. 2016), while the 
differences in flood pulses influence species 
establishment and diversity (Lobo & Joly 2009). 
As a result, a smaller number of species is 
functionally able to thrive on floodplains by 
rivers compared to areas not subject to flooding. 
These species are adapted to and dependent 
on flood dynamics. Under this perspective, 
the relevance of alluvial environments is 
undisputable, especially considering the 
provision of ecosystem services such as 
the protection of water resources and the 
conservation of biodiversity and gene flows, as 
alluvial environments form ecological corridors 
for animals and for plant dispersal (Van Den 
Berg et al. 2007, Lima & Zakia 2009).

Notwithstanding the relevant contribution 
of studies already conducted on alluvial habitats 
(Oliveira-Filho et al. 1997, Silva et al. 2007, 2016,  
Carvalho et al. 2016, Rodrigues et al. 2016, 
Kanieski et al. 2017, Cruz et al. 2018, Gonçalves 
et al. 2018), there is a scarcity of large scale 
assessments that contemplate the identification 
of patterns in areas subject to periodic flooding 
considering their regional insertion in different 
vegetation types. Wittmann et al. (2017) only 
recently carried out a study using this approach, 
demonstrating that Brazilian alluvial forests 
have similar phytogeographic patterns to 
equivalent non-alluvial forests, with floristic 
assemblages determined by macroecological 
factors associated with climate and evolutionary 
factors related to long distance dispersal. 
Considering that some ecological factors are 

spatially structured, complementary studies on 
different regional scales are relevant to increase 
the understanding of floristic patterns.

This study aimed to contribute to a better 
understanding of floristic and phytogeographic 
patterns of alluvial areas in the Atlantic Forest 
and Pampa, regions where forest fragmentation 
is renowned. These regions were selected 
because they are characterized by distinct 
climatic contingents, therefore allowing for 
a joint and complementary approach of the 
tropical and subtropical domains. Similar 
climatic conditions occur where Atlantic Forest 
and Pampa are geographically close, in southern 
Brazil, resulting in shared species of the flora 
due to the fact that climate is one of the most 
important factors in species distribution (Buriol 
et al. 2007). We expected that the separation of 
biomes were not determinant in the formation 
of floristic assemblages despite the floristic 
similarity between Atlantic Forest and Pampa, 
due especially to the high diversity of vegetation 
types in the Atlantic Forest domain. We also 
expected alluvial environments to be associated 
with temperature and rainfall gradients. 

The Atlantic Forest region is known for its high 
proportion of endemic species and considered 
one of the most important biodiversity hotspots 
on the planet. It is therefore a priority for the 
conservation of several habitat types (Myers et al. 
2000, Mantovani 2003, Varjabedian 2010) which 
result from an extensive distribution range. The 
Atlantic Forest is increasingly constrained and 
fragmented despite conservation efforts. It has 
currently been reduced to only 12.5% of the 
original cover (SOS Mata Atlântica, INPE 2018) 
and contains the highest number of species 
officially threatened with extinction in Brazil 
(Tabarelli et al. 2003). The Pampa, on the other 
hand, is limited to one Brazilian state and has 
been largely altered by agriculture, grazing 
and the introduction and spread of invasive 
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alien species (Echer et al. 2015). Formed by 
highly diverse ecosystems in terms of animals 
and plants, the Pampa is characterized by a 
peculiar floristic composition (Araujo et al. 2018, 
Marchi et al. 2018). This diversity is, however, 
threatened, while studies on its genetic heritage 
and conservation status are scarce (Santos & 
Silva 2011, Echer et al. 2015). 

This paper aimed to provide answers to 
the following questions: i) which are the main 
floristic assemblages in alluvial forests in the 
central-southern part of the Atlantic Forest and 
Pampa regions, and what determines these 
assemblages? ii) Is there floristic similarity 
between alluvial forests in Atlantic Forest and 
Pampa? iii) Which species are indicators of the 
main assemblages in alluvial forests in the 
central-southern part of the Atlantic Forest and 
Pampa? iv) What are the environmental gradients 
associated with the main floristic assemblages 
of alluvial forests in Atlantic Forest and Pampa?

MATERIALS AND METHODS
Data collection
Studies on floristic or phytosociological surveys 
carried out in alluvial forests in the Atlantic 
Forest and Pampa were selected from searches 
on Google Scholar as a base for this assessment. 
Studies in transitional areas between these 
regions were included. The Atlantic Forest 
has a diverse physiographic composition 
that includes pioneer (initial colonization 
by plants) and forest formations: Dense 
Ombrophilous Forest (Atlantic coast forests), 
Mixed Ombrophilous Forest (Araucaria forests), 
Decidual and Semidecidual Seasonal Forests 
(IBGE 2012). The Pampa, on the other hand, is 
mainly characterized by grasslands classified as 
Steppe or Savanna intermixed with pioneer and 
forest formations of Mixed Ombrophilous Forest 
(Araucaria forests), Decidual Seasonal Forests 

and Semidecidual Seasonal Forests (IBGE 2012). 
The Dense Ombrophilous Forest (DOF), also 
defined as Tropical Rain Forest, is associated 
with high temperatures and high rainfall. It is 
characterized by lush evergreen vegetation 
composed of large trees, a high number of 
exclusive species and diverse life forms. It is 
subdivided in alluvial, lowland, submontane, 
montane and high montane formations due to 
altitudinal variation, with significant decrease 
in richness in higher altitudes (IBGE 2012). 
Araucaria Forest is the common name for Mixed 
Ombrophilous Forests (MOF), which is marked by 
the occurrence of Araucaria angustifolia in the 
canopy and intense replacement of angiosperms 
in the undergrowth. The term “mixed” refers 
to the coexistence of Tropical (Afro-Brazilian) 
and Temperate (Austral Brazilian) forests, 
where elements of the ancient orders Pinales 
and Laurales characterize the physiognomy 
(Roderjan et al. 2002). These forests are subject 
to high rainfall (therefore Ombrophilous), but 
temperatures are lower because they occur in 
areas of higher altitudes (IBGE 2012). Seasonal 
Decidual (SDF) and Semidecidual Forests (SSDF) 
occur in areas conditioned to climatic seasonality 
where a portion of the trees in the canopy drop 
their leaves in the unfavorable season. These 
forests are classified as Semidecidual when 20 
to 50% of the canopy trees drop their leaves, 
and as Decidual when the percentage is higher 
than 50%. Seasonality is associated with the dry 
period in the tropical area of Brazil, and with 
the cold period in the subtropics (IBGE 2012). 
Diversity in Seasonal Forests is lower than in 
Ombrophilous Forests even on soils of high 
fertility (Roderjan et al. 2002). 

Given the varying nomenclature attributed 
to areas associated with water bodies, as 
clarified by Rodrigues (2009), we only selected 
studies in which periodic flooding or alluvial 
soils were characterized. Forest surveys along 
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structurally controlled river margins, as those 
set in geological faults, were not considered. The 
association of each area with Atlantic Forest or 
Pampa was derived from the IBGE vegetation 
map (2017). 

The data was organized in a species 
presence/absence matrix. A total of 56 areas 
(Table SI- Supplementary Material) located in 
the states of Santa Catarina (01), Paraná (20), Rio 
Grande do Sul (16), São Paulo (05), Rio de Janeiro 
(02), Minas Gerais (08), Mato Grosso do Sul (03) 
and Espírito Santo (01) were selected. Species 
were grouped by families in accordance with the 
APG IV system (2016). Synonyms were refined 
based on the Brazilian Flora 2020 Database 
(2017). Non-identified taxa were excluded. Only 
species occurring in alluvial formations were 
considered from studies that covered other 
vegetation types. 

Study areas
The areas considered in our study cover eight 
states in five geographic regions in Brazil, and 
are generally well conserved despite past 
disturbance in the respective biomes. The areas 
are mainly flat and subject to periodic flooding 
of variable frequency and duration. The soils 
on the floodplain are marked by varying levels 
of hydromorphy, classified as Gleysol or Fulvic 
Neosol. All drainage basins are inserted in the 
Atlantic and Paraná-Uruguay basins.

The Prata River basin is the second largest 
drainage basin in Brazil, formed by the rivers 
Paraná, Paraguay and Uruguay (Tucci 2006). 
The Paraná basin includes the Paraná river 
basin up to the mouth of the Iguaçu river. A 
tropical climate predominates in the area, 
with a subtropical variant mainly in the states 
of Paraná and Santa Catarina. The Uruguay 
basin covers the entire area of the Uruguay 
river, which is formed by the confluence of the 
Pelotas and Canoas rivers that flow into the 

Prata river estuary. The Uruguay river marks the 
border between Brazil and Argentina, as well as 
between the states of Rio Grande do Sul and 
Santa Catarina, in Brazil. The climate in this area 
is subtropical. Rainfall is distributed throughout 
the year and more intense in the summer 
months (Kettelhut & Pereira 2006). The Atlantic 
basin is formed by a number of coastal basins 
that flow into the ocean, in five drainage regions: 
Western Northeast Atlantic, Eastern Northeast 
Atlantic, Eastern Atlantic, Southeastern Atlantic 
and Southern Atlantic. The Southeastern Atlantic 
drainage is formed by the water basins that flow 
into the Brazilian southeastern coast, including 
part of the eastern region and the Zona da Mata 
in the state of Minas Gerais. The rugged terrain 
favors the occurrence of orographic rains and 
marked climatic diversity always associated 
with high temperatures (MMA 2006a, ANA 2015). 
The Southern Atlantic drainage covers the 
southernmost region of the coastal mountain 
range. The climate is predominantly subtropical 
with high rainfall and no dry period, with 
summers varying from hot to mild depending 
on the altitude (MMA 2006b).

Data analysis 
A Cluster analysis was performed based on the 
tree species presence/absence matrix to assess 
the existence of species assemblages (Valli 
2002) between the communities considered in 
this study. Floristic similarity was determined 
by means of the Sorensen Distance measure. 
A dendrogram was generated with a clustering 
method using the UPGMA (Unweighted Pair 
Group Method with Arithmetic Mean) algorithm.

The floristic data matrix was ordinated by 
means of Non-Metrical Multidimensional Scaling 
(NMDS) multivariate analysis using Sorensen 
Distance as the floristic dissimilarity measure 
(Minchin 1987). In this ordination method, the 
areas are plotted on a dispersal graph, with 
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distances between them  proportional to the 
respective dissimilarities (Clarke & Warmick 
1994, Babweteera & Brown 2009). The use 
of this method in the study of communities 
has advantages such as not assuming linear 
relations between variables, being less sensitive 
to distortion, and less influenced by outliers. 
Besides, it can be applied to several types of 
ecological circumstances (Clarke & Warmick 1994, 
Mcgarigal et al. 2000). The adequacy of NMDS 
ordination for data interpretation was evaluated 
by means of “stress” values (standardized 
residual sum of squares) considering values 
lower than 0.2 as appropriate, as established by 
Kruskal (1964). “Stress” refers to the distortion 
between the similarity or dissimilarity matrix 
and the ordination generated in the graphic 
representation of axes (Ferreira & Casatti 2006). 
The geographic coordinates of the different areas 
were plotted on a map with an indication of the 
floristic assemblages to which they belonged in 
order to spatialize the results.

A Principal Component Analysis (PCA) was 
performed with climatic data from WorldClim 
(Hijmans et al. 2005) to determine environmental 
gradients. A multicollinearity analysis by means 
of VIF (Variance Inflation Factor) was executed to 
identify redundant variables. Variables with high 
multicollinearity (VIF>10) were removed. 

An analysis of indicator species was then 
conducted to determine which species best 
represented each assemblage. A significance 
level of p<0.05 was defined as a reference. 
This method allows for the identification of 
species strongly associated with a certain 
dataset. Indicative values for each species are 
independent of the relative abundance of other 
species (Dufrêne & Legendre 1997).

The analyses were processed using R 
Statistics Software, version 3.4.1 (R Development 
Core Team 2017), using the vegan (Oksanen et al. 
2017), labdsv (Roberts 2016), dendextend (Galili 

2015), maptools (Bivand & Lewin-Koh 2017) and 
USDM (Naimi et al. 2014) packages. 

RESULTS

The dissimilarity dendrogram (Figure 1) clearly 
showed the existence of two distinct floristic 
assemblages predominantly associated with 
the river basins in which the surveyed areas 
were inserted. The Atlantic basin (blue) and 
Paraná-Uruguay (red) basin covered eight and 
48 areas, respectively. The Atlantic basin group 
was mainly concentrated along the Atlantic 
Forest coast (Figure 2), with a tendency of areas 
in more tropical climate. The Paraná-Uruguay 
group was continentally distributed in both 
regions (Atlantic Forest and Pampa) over a larger 
geographic range, predominantly in subtropical 
climate.

The highest floristic similarity of all the 
areas considered in this study (approximately 
20% dissimilarity) was observed between two 
watersheds in the Paraná-Uruguay basin (Dani 
and Rodr), while areas with the highest floristic 
similarity in the Atlantic basin had approximately 
40% dissimilarity (Rena and Sand). The areas 
selected for the present study with respective 
identification codes and complementary data 
are listed in (Table SI).

A list of 776 tree species in 145 botanical 
families was compiled from the 56 areas 
reviewed in this study (Table SII).  The number of 
species varied between 8 in the area of lowest 
richness to 157 in the area of highest richness, 
with an average of 52 species. The group formed 
by alluvial forests in the Atlantic basin included 
394 species distributed in 68 families, of which 
Fabaceae (55 species), Myrtaceae (52 species), 
Lauraceae (23 species) and Rubiaceae (20 
species) were best represented. While 55 families 
were represented by less than 10 species, 22 
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families were represented by only one species. 
The four best represented families in the group 
amounted to 150 species, equivalent to 38.07% 
of the total number of species. The group 
formed by alluvial forests in the Paraná-Uruguay 
basin included 538 species in 83 families, of 
which Myrtaceae (91 species), Fabaceae (72 
species), Lauraceae (30 species) and Rubiaceae 
(29 species) were best represented. While 69 
families were represented by less than 10 
species, 32 families were represented by only 
one species. The best represented families 
amounted to 222 species, equivalent to 41.26% 
of the total number of species in the group.

The occurrence of two distinct floristic 
assemblages was complementarily verified 
from the ordination of areas by NMDS (Figure 
3). This ordination showed a “stress” level of 
0.15, which indicates its appropriateness for 
the interpretation of results. The Atlantic group 
was more cohesive, with areas less dispersed, 

inferring higher similarity. The Paraná-Uruguay 
group showed higher dispersal of areas by 
NMDS, reflecting lower floristic similarity.

The PCA (Figure 4) showed that Axis 1, with 
total explained inertia of 39.85%, was strongly 
correlated with the variables temperature in 
the wettest quarter (bio 8) and rainfall in the 
coldest quarter (bio 19), with loadings of 0.46 
and -0.46, respectively. Therefore, while areas 
with wet winters and lower temperatures in the 
period of highest rainfall are shown to the left 
side of the ordination, areas with antagonistic 
climatic conditions, drier winters and higher 
temperatures in the period of highest rainfall, 
are shown to the right of the ordination. Axis 2, 
which explained 22.44% of the total variation, 
was strongly correlated with the variables 
temperature in the warmest quarter (bio 
10), temperature in driest quarter (bio 9) and 
isothermality (bio 3), with loadings of -0.56, 0.52 
and 0.50, respectively. The lower part of the 

Figure 1.  Dendrogram generated by means of Sorensen Distance and UPGMA for alluvial forest areas in Atlantic 
Forest and Pampa. Areas in the Paraná-Uruguay basin are shown in red. Areas in the Atlantic basin are shown in 
blue. 
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ordination shows areas with less warm summers 
and higher isothermality (diurnal temperature 
range rather similar to annual temperature 
range), while the upper part shows areas with 
warmer summers and lower isothermality 
(diurnal temperature range lower than annual 
temperature range). The upper right quadrat 
includes the areas where the driest quarters are 
hotter, while the lower left quadrat includes the 
areas with low temperature in the driest quarter.

The analysis of indicator species showed 
that the group formed by alluvial forests 
in the Paraná-Uruguay basin contained 13 
species considered indicators (Table I). These 
species were distributed in nine families, 
Euphorbiaceae and Myrtaceae being dominant 

with three species each. The group formed by 
alluvial forests in the Atlantic basin contained 
69 indicator species (Table I) distributed in 31 
families. Fabaceae and Myrtaceae stand out 
with 10 and 8 species, respectively. The highest 
indicator value was attributed to Gymnanthes 
klotzschiana Müll. Arg.. This is the species with 
the highest affinity with the first assemblage. 
Allophylus edulis (A.St.-Hil., Cambess & A. Juss.) 
and Vitex megapotamica (Spreng.) Moldenke 
also stand out in the same assemblage, while 
Andira fraxinifolia Benth. had the highest value 
in the second assemblage, followed by Pera 
glabrata (Schott) Poepp. ex Baill. and Aniba 
firmula (Nees & Mart.) Mez.

Figure 2.  Geographic 
distribution of alluvial 
forests in Atlantic Forest 
and Pampa. Areas in the 
Paraná-Uruguay basin are 
shown in red. Areas in the 
Atlantic basin are shown 
in blue. 
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Figure 3.  Ordination by means of Non-Metric Multidimensional Scaling (NMDS, stress = 0.15) for alluvial forests 
in Atlantic Forest and Pampa. Areas in the Paraná-Uruguay basin are shown in red. Areas in the Atlantic basin are 
shown in blue. 
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Figure 4.  Climatic ordination of alluvial forests in Atlantic Forest and Pampa by means of Principal Component 
Analysis (PCA). (bio 3 = isothermality; bio 7 = annual temperature; bio 8 = temperature in wettest quarter no; bio 9 
= temperature in driest quarter; bio 10 = temperature in hottest quarter; bio 12 = annual rainfall; bio 19 = rainfall in 
coldest quarter; Dark blue = Paraná; Green = Santa Catarina; Dark green = Rio Grande do Sul; Black = Minas Gerais; 
Orange = São Paulo; Dark violet = Rio de Janeiro; Gray = Espírito Santo; Red = Mato Grosso do Sul). 



JÉSSICA O. SILVA et al. ALLUVIAL FORESTS IN BRAZIL

An Acad Bras Cienc (2020) 92(3) e20180803 10 | 21 

Table I. Analysis of indicator species for alluvial forests in Atlantic Forest and Pampa. 

Indicator species Family Indicator value p
Paraná-Uruguay basin

Gymnanthes klotzschiana Müll.Arg. Euphorbiaceae 0.890   0.001
Allophylus edulis (A.St.-Hil., Cambess & A. Juss.) Radlk. Sapindaceae 0.804   0.002

Vitex megapotamica (Spreng.) Moldenke Lamiaceae 0.777   0.005
Campomanesia xanthocarpa (Mart.) O.Berg Myrtaceae 0.736   0.002

Casearia decandra Jacq. Salicaceae 0.722   0.036
Luehea divaricata Mart. Malvaceae 0.708   0.047

Eugenia uniflora L. Myrtaceae 0.707   0.009
Sebastiania brasiliensis Spreng. Euphorbiaceae 0.692   0.018

Calyptranthes concinna DC. Myrtaceae 0.645   0.030
Nectandra megapotamica (Spreng.) Mez Lauraceae 0.645   0.020

Inga vera Willd. Fabaceae 0.629   0.026
Actinostemon concolor (Spreng.) Mull.Arg. Euphorbiaceae 0.612   0.033

Ruprechtia laxiflora Meisn. Polygonaceae 0.595   0.050
Atlantic basin

Andira fraxinifolia Benth. Fabaceae 0.783   0.001
Pera glabrata (Schott) Poepp. ex Baill. Peraceae 0.722   0.001

Aniba firmula (Nees & Mart.) Mez Lauraceae 0.707   0.001
Cecropia glaziovii Snethl. Urticaceae 0.707   0.001

Hyeronima alchorneoides Allemão Phyllanthaceae 0.707   0.001
Inga edulis Mart. Fabaceae 0.707   0.001

Nectandra oppositifolia Nees Lauraceae 0.707   0.001
Tapirira guianensis Aubl. Anacardiaceae 0.640   0.002

Calophyllum brasiliense Cambess. Calophyllaceae 0.632   0.001
Guatteria australis A.St.-Hil. Annonaceae 0.612   0.002

Inga thibaudiana DC. Fabaceae 0.612   0.004
Lecythis pisonis Cambess. Lecythidaceae 0.612   0.004

Myrcia racemosa (O.Berg) Kiaersk. Myrtaceae 0.612   0.002
Pseudopiptadenia contorta (DC.) G.P.Lewis & M.P.Lima Fabaceae 0.612   0.001

Simarouba amara Aubl. Simaroubaceae 0.612   0.004
Tabebuia cassinoides (Lam.) DC. Bignoniaceae 0.612   0.002

Alchornea triplinervia (Spreng.) Mull.Arg. Euphorbiaceae 0.559   0.004
Annona dolabripetala Raddi Annonaceae 0.530   0.007

Coussapoa microcarpa (Schott) Rizzini Urticaceae 0.530   0.007
Euterpe edulis Mart. Arecaceae 0.530   0.008

Garcinia gardneriana (Planch. & Triana) Zappi Clusiaceae 0.530   0.005
Pseudobombax grandiflorum (Cav.) A.Robyns Malvaceae 0.530   0.009

Pterocarpus rohrii Vahl Fabaceae 0.530   0.007
Andira ormosioides Benth. Fabaceae 0.500   0.019

Astrocaryum aculeatissimum (Schott) Burret Arecaceae 0.500   0.017
Basiloxylon brasiliensis (All.) K.Schum. Malvaceae 0.500   0.017

Brosimum lactescens (S.Moore) C.C.Berg Moraceae 0.500   0.021
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Indicator species Family Indicator value p
Calyptranthes rubella (O.Berg) D.Legrand Myrtaceae 0.500   0.025
Carpotroche brasiliensis (Raddi) A Gray Achariaceae 0.500   0.017
Chrysophyllum lucentifolium Cronquist Sapotaceae 0.500   0.017

Clusia criuva Cambess. Clusiaceae 0.500   0.025
Cupania racemosa (Vell.) Radlk. Sapindaceae 0.500   0.015

Dalbergia nigra (Vell.) Allemão ex Benth. Fabaceae 0.500   0.016
Ecclinusa ramiflora Mart. Sapotaceae 0.500   0.026

Erythroxylum cuspidifolium Mart. Erythroxylaceae 0.500   0.015
Eugenia expansa Spring ex Mart. Myrtaceae 0.500   0.024

Eugenia macahensis O.Berg Myrtaceae 0.500   0.015
Ficus gomelleira Kunth Moraceae 0.500   0.012

Ilex pseudobuxus Reissek Aquifoliaceae 0.500   0.025
Inga flagelliformis (Vell.) Mart. Fabaceae 0.500   0.016

Joannesia princeps Vell. Euphorbiaceae 0.500   0.017
Manilkara subsericea (Mart.) Dubard Sapotaceae 0.500   0.025

Miconia cinerascens Miq. Melastomataceae 0.500   0.024
Mollinedia schottiana (Spreng.) Perkins Monimiaceae 0.500   0.022

Myrcia brasiliensis Kiaersk. Myrtaceae 0.500   0.025
Myrcia insularis Gardner Myrtaceae 0.500   0.025
Myrcia pubipetala Miq. Myrtaceae 0.500   0.025
Myrcia strigipes Mart. Myrtaceae 0.500   0.025

Naucleopsis oblongifolia (Kuhlm.) Carauta Moraceae 0.500   0.016
Neoraputia alba (Nees & Mart.) Emmerich ex Kallunki Rutaceae 0.500   0.017

Ocotea odorifera (Vell.) Rohwer Lauraceae 0.500   0.022
Piptadenia gonoacantha (Mart.) J.F.Macbr. Fabaceae 0.500   0.021

Platymiscium floribundum Vogel Fabaceae 0.500   0.024
Pleroma trichopoda DC. Melostomataceae 0.500   0.025

Pourouma guianensis Aubl. Urticaceae 0.500   0.024
Schefflera angustissima (Marchal) Frodin Araliaceae 0.500   0.025

Seguieria langsdorffii Moq. Phytolaccaceae 0.500   0.014
Senefeldera verticillata (Vell.) Croizat Euphorbiaceae 0.500   0.017

Solanum cernuum Vell. Solanaceae 0.500   0.021
Sorocea guilleminiana Gaudich. Moraceae 0.500  0.017
Tabernaemontana laeta Mart. Apocynaceae 0.500   0.022

Tibouchina estrellensis (Raddi) Cogn. Melastomataceae 0.500   0.016
Xylopia sericea A.St.-Hil. Annonaceae 0.500   0.019

Guapira opposita (Vell.) Reitz Nyctaginaceae 0.474   0.019
Matayba guianensis Aubl. Sapindaceae 0.474   0.022
Cordia sellowiana Cham. Boraginaceae 0.433   0.042

Guapira graciliflora (Mart. Ex Schmidt) Lundell Nyctaginaceae 0.408   0.042
Handroanthus umbellatus (Sond.) Mattos Bignoniaceae 0.408   0.046

Pouteria beaurepairei (Glaz. & Raunk.) Baehni Sapotaceae 0.408   0.050
p: significance of indicator species analysis

Table I. Continuation
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DISCUSSION

An average of 52 tree species (between 8 and 
157 species, with a standard deviation of 30) 
occur in alluvial forests considered in this study. 
However, higher numbers have been observed 
in non-alluvial forests in the Atlantic Forest 
region, corroborating the fact that flood pulses 
create selective conditions that reduce the 
number of species capable of establishing in this 
environment. Higuchi et al. (2018), for example, 
registered 84 tree species in Mixed Ombrophilous 
Forest, while Caglioni et al. (2018) registered 183 
species in Dense Ombrophilous Forest, both of 
them forest types inserted in the Atlantic Forest 
region. The number of tree species was also 
higher in transitional areas between the Atlantic 
Forest and Pampa regions not subject to flooding 
than in alluvial environments, with species 
numbers varying between 53 (Costa et al. 2018) 
and 107 (Possebom et al. 2017). It is important 
to stress the relevance of ecosystem services 
provided by alluvial forests, which extend beyond 
floristic differences: regulation of drainage flow, 
reduction of siltation in rivers, streams and 
wetlands, maintenance of water quality and the 
hydrological cycle, conservation of biodiversity, 
and climate regulation (Aguiar Junior & Parron 
2015, Marenzi & Longarete 2018). The possibility 
of occupation of wetlands as climate refuges in 
a scenario of global climate change and changes 
in rainfall patterns (Viadana & Cavalcanti 2006, 
Sobral-Souza & Lima-Ribeiro 2017) along with 
the increased vulnerability of endemic species 
established in biologically impoverished 
communities in fragmented habitats (Medeiros 
et al. 2013) stress the importance of conservation 
of alluvial areas in the Atlantic Forest and 
Pampa biomes, essential for the maintenance of 
ecosystem services (Ferraz et al. 2014) and the 
conservation of biological diversity (Sobral-Souza 
& Lima-Ribeiro 2017). 

The total number of species found in all 
the studies assessed, 776, is close to estimates 
derived from other studies in areas subject 
to flooding. Silva et al. (2007) registered 510 
species in 23 alluvial areas in the southern and 
southeastern regions in Brazil. Giehl et al. (2011) 
found higher numbers, 1,093 species in 58 areas 
subject to flooding, but in this case the study 
area was larger than the one in the present study, 
involving the southern, southeastern and central-
western regions in Brazil as well as Argentina and 
Uruguay. Rodrigues & Nave (2009) recorded the 
occurrence of 947 species in 43 areas in a study 
that compared riparian forests in Brazil outside 
the Amazon region, covering flooding and non-
flooding environments in the states of São Paulo, 
Minas Gerais, Paraná, Mato Grosso do Sul, Mato 
Grosso and the Federal District. Wittmann et al. 
(2017) registered 904 species in 58 areas in Atlantic 
Forest and 183 in 13 areas in Pampa in a study 
on areas subject to different levels of flooding. 
Variations in species richness may be explained 
by the differences in the extent and approach 
of these studies, and most of all because areas 
not subject to flooding were included in some 
of them. In these cases, it was not possible to 
compare results or draw further conclusions. 
Alluvial forests imply the existence of floodplains, 
but this condition is not always taken into 
consideration in studies on these environments. 
The floristic results obtained corroborate the 
conclusions by Forzza et al. (2010) that indicate 
Fabaceae, Myrtaceae and Rubiaceae as part of 
the group of ten most diverse families in Brazil in 
terms of numbers of species. 

The studies in the Atlantic basin included 
areas in Dense Ombrophilous Forest and 
Semidecidual Seasonal Forest, with more areas 
in the first type. The Paraná-Uruguay studies 
included areas in Atlantic Forest and Pampa of 
all vegetation types with higher representativity 
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of Decidual and Semidecidual Seasonal Forests 
followed by Mixed Ombrophilous Forest. 

The highest floristic similarity in the Atlantic 
basin was observed between geographically 
proximate areas (Guaraqueçaba and Paranaguá, 
both in Paraná state) in Dense Ombrophilous 
Forest. The highest similarity in the Paraná-
Uruguay basin was between Semidecidual 
Seasonal Forests in the Atlantic Forest in the same 
municipality (Ipeúna, São Paulo state). The Atlantic 
basin included six of the seven stricto sensu 
areas in the Atlantic Forest region, suggesting 
a lower level of shared species between Dense 
Ombrophilous Forest and the other forest types 
in the region, Mixed Ombrophilous Forest and 
Seasonal Forests. Higuchi et al. (2013) reviewed 
studies on forest formations in southern Brazil in 
which they noted higher similarity between Mixed 
Ombrophilous Forest and Decidual Seasonal 
Forest, which are therefore more dissimilar from 
Dense Ombrophilous Forest, corroborating the 
results of this study. Although the areas of highest 
similarity in both basins were geographically 
close, geography does not fully explain the 
groups formed, as shown in the distribution map 
of the areas considered in this study (Figure 2).

The floristic organization of tree species 
derived by means of NMDS corroborated the 
results shown in the dendrogram. They indicate 
the existence of two separate groups of areas 
and denote that alluvial environments are not 
homogeneous, although they may occur in the 
same region or be geographically proximate. 
Fiaschi & Pirani (2009) noted the existence of 
distinct groups in the Atlantic Forest domain, 
represented by southern and northern areas, 
upon a review of biogeographic studies. As a 
smaller number of studies was available for the 
Atlantic basin, mainly in Dense Ombrophilous 
Forest, this may have influenced the formation 
of a more cohesive, denser group. The Paraná-
Uruguay group, which included more areas 

and higher phytogeographic heterogeneity, is 
more dispersed in terms of NMDS and more 
broadly distributed in Brazil, with more diverse 
environmental conditions in terms of climate, 
geology, geomorphology and soils. 

The floristic assemblages determined in the 
present study may be explained in part by the 
concept of migratory dispersal routes which give 
emphasis to fluvial canals for species dispersal 
from tropical areas in the North-South direction 
and vice-versa. Under this perspective, the 
floristic profile of areas in the Paraná-Uruguay 
watersheds is more influenced by an interior 
dispersal route in the West. Diversely, the 
Atlantic basin is more influenced by a dispersal 
route along the Brazilian coast in the East, with 
elements typical of Dense Ombrophilous Forest 
covering the coastal plains and slopes of the 
coast range (Rambo 1961). Jarenkow & Waechter 
(2001) indicated the transposition of these 
migratory events in the high plains in Southern 
Brazil. Rambo (1951) suggested that the “door of 
Torres” (“Porta de Torres”), a coastal strip between 
the municipalities of Torres and Osório, allowed 
the entry of species of the Atlantic domain into 
the state of Rio Grande do Sul. Although the 
Atlantic corridor reaches the state of Rio Grande 
do Sul at the “door of Torres”, some species of 
the Atlantic contingent spread West, while others 
extended to the South and mixed with deciduous 
forests that reach the coast of Rio Grande do 
Sul due to the absence of geographical barriers, 
forming a gradient of specific richness (Jarenkow 
& Waechter 2001, Higuchi et al. 2013). Although 
distributed on the coastal plain, the alluvial 
areas closer to the coast in Rio Grande do Sul 
differed from other coastal areas in Brazil and 
were included in the Paraná-Uruguay group. 
The absence of the Atlantic component along 
the Rio Grande do Sul coastline south of Osório 
occurs due to different climatic conditions 
marked by subtropical characteristics of the 
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state and the absence of geographic barriers, an 
essential element for the formation of orographic 
precipitation. As explained by Roldão et al. (2012), 
the frequent orographic rains in the coast range 
(Serra do Mar) and general range (Serra Geral) are 
formed due to geographic isolation, a particular 
condition of mountain ranges.

The Campos dos Goytacazes gap (Oliveira-
Filho & Fontes 2000) produces an area of 
discontinuity of Dense Ombrophilous Forest 
between the states of Rio de Janeiro and Espírito 
Santo. The seasonal component reaches the coast 
in this area, highlighting the irregularity of rainfall 
throughout the year (Prata et al. 2018). This is 
justified by the absence of the coast range (Serra 
do Mar) and aggravated by the texture of soils 
derived of Barreiras sandstone, which creates 
more intense drainage. The floristic profile of 
forests in the region, however, is somewhat similar 
to Dense Ombrophilous Forests in southern Bahia 
(called “Hileia Baiana”) (Saiter et al. 2016). It is 
therefore plausible that species physiologically 
incompatible with climatic seasonality have 
survived, especially in areas where soils retain 
more humidity throughout the entire year, as 
in the case of river margins. It can therefore 
be inferred that, even in periods of restricted 
rainfall in the months when the Intertropical 
Convergence Zone does not affect the Southern 
Hemisphere, species of the Atlantic contingent 
may use alluvial plains as dispersal corridors to 
the interior of the continent because there is 
more water available, as was also suggested by 
Saiter et al. (2016). In this line of reasoning, as 
exemplified by the “door of Torres” in southern 
Brazil, it is viable to consider that this region can 
also function as entry point for tropical humid 
species to integrate the flora of continental high 
plain forests. 

Axis 1 of the PCA explained 39.85% of the data 
and showed that nearly all the areas to the left 
of the ordination were located in southern Brazil. 

Dense Ombrophilous Forest areas were clustered 
in the lower quadrat, while Decidual Seasonal 
Forest areas were clustered in the upper quadrat. 
These forests occur in subtropical conditions 
with no dry season in winter (bio 19) and lowest 
temperatures in the period of higher rainfall 
(bio8). Contrarily, part of the areas to the right of 
the ordination, mostly in Dense Ombrophilous 
Forest and some in Decidual Seasonal Forest, in 
the lower quadrat, are subject to higher rainfall 
seasonality. On this side of the ordination, the 
areas in Espiríto Santo (ES) and Rio de Janeiro (RJ) 
were more highly dispersed from the others and 
more densely clustered among themselves, which 
may be attributed to drier winters in the absence 
of orographic precipitation that supports the 
occurrence of Semidecidual Seasonal Forest. The 
vectors representing the variables temperature 
(b8, b9 and b10) point in the opposite direction 
of the vectors representing rainfall (bio 12 and 
bio 19), showing a negative correlation between 
these variables. Axis 1 therefore synthesized a 
gradient of tropicality, as the variables that best 
explain the data are related with temperature 
(bio 8) and rainfall (bio 19). 

The interpretation of Axis 2 showed that the 
areas in the states of Minas Gerais (MG) and São 
Paulo (SP) are clustered in the lower part of the 
right quadrat, while the areas in Rio Grande do 
Sul (RS) are in the upper part of the left quadrat. 
The seasonal domain is therefore present above 
and below Axis 2 as a result of differences in 
seasonality due to the unfavorable dry season 
in the tropical region (lower right quadrat) and 
cold season in the subtropical region (upper left 
quadrat) (Athayde et al. 2013). The areas in MG 
occur at lower latitudes but at higher altitudes, 
as they are mostly located in the southern part 
of the state. The areas in RS, in Pampa, occur 
at higher latitudes and lower altitudes and are 
associated with the regularity of rainfall (bio 19) 
originated by cold fronts uniformly distributed 
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throughout the year. Axis 2 of the PCA therefore 
synthesized a gradient of altitude, as the variables 
that best explain the data are related with 
temperature (bio 10 and bio 9) and isothermality 
(bio 3). The altitudinal gradient is in fact evident 
from top to bottom when evaluating all areas in 
the graph, with areas closer to sea level in the 
upper part of the graph and to higher altitudes 
in the lower part. Isothermality may be related 
to altitude, between other factors, as lower areas 
closer to the sea level are usually subject to 
smaller diurnal amplitude (lower isothermality) 
than higher altitude areas (higher isothermality). 
Besides, isothermality is inversely proportional to 
latitude, also indicating a gradient of tropicality, 
as areas at higher latitudes undergo higher 
variation in annual temperature and are subject 
to lower isothermality (e.g. RS), while areas at 
lower latitudes are subject to higher isothermality 
(e.g. MG). 

The analysis of indicator species 
corroborated the existence of floristic-structural 
differences between the assemblages formed. 
The Atlantic coast assemblage included more 
indicator species, which is probably due to the 
predominance of areas in Dense Ombrophilous 
Forest in the group. This forest formation contains 
a higher number of exclusive species than the 
other forest types considered in the present 
study, therefore resulting in higher dissimilarity 
(Mattei et al. 2007). None of the three species of 
highest value in the Paraná-Uruguay group - G. 
klotzschiana, A. edulis e V. megapotamica - are 
endemic in Brazil. These are species of wide 
distribution that occur in different vegetation 
types practically in all regions in Brazil. A. edulis 
is indicated as the second species with widest 
geographic distribution in the country (Flora do 
Brasil 2020). These species occur throughout 
the subtropical domain, especially in habitats 
associated with water in different forest types. 
Nevertheless, two of the three species of 

highest association with the Atlantic group are 
endemic to Brazil (Andira fraxinifolia and Aniba 
firmula). These species are widely distributed 
both in terms of biome and geographic region. 
Considering all states, Pera glabrata, for example, 
does not occur only in Piauí state. Despite the 
wide distribution range, these species are mainly 
present in tropical (Flora do Brasil 2020). Eight of 
the 13 indicator species in the Paraná-Uruguay 
group were considered as preferring alluvial 
forests by Silva et al. (2007), a result coherent with 
the evaluation conducted in this study. Species in 
the families Euphorbiaceae, Fabaceae, Lauraceae, 
Malvaceae, Myrtaceae and Sapindaceae were 
present in both floristic assemblages, which 
suggests a stronger affinity of these families with 
alluvial environments than the other families. 

CONCLUSION

Alluvial forests in Atlantic Forest and Pampa 
were divided in two floristic assemblages mainly 
associated with river basins and migratory routes. 
The separation of ecological regions (Atlantic 
Forest and Pampa) was not a determinant in 
the formation of these assemblages. Andira 
fraxinifolia was the main indicator species in 
the Atlantic basin, which had a higher number 
of indicator species than the Paraná-Uruguay 
basin, where the main indicator species was 
Gymnanthes klotzschiana. The main gradients 
associated with the habitat types considered 
were temperature, precipitation and altitude.
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