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A new class of distributions as a finite functional
mixture using functional weights
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HASSAN S. BAKOUCH

Abstract: In this paper, we introduce a new family of distributions whose probability
density function is defined as a weighted sum of two probability density functions; one
is defined as a warped version of the other. We focus our attention on a special case
based on the exponential distribution with three parameters, a dilation transformation
and a weight with polynomial decay, leading to a new life-time distribution. The explicit
expressions of the moments generating function, moments and quantile function of
the proposed distribution are provided. For estimating the parameters, the method of
maximum likelihood estimation is used. Two applications with practical data sets are
given.
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INTRODUCTION

The mixture distributions arise in a wide variety of applications, including children’s heights
distribution, discussed by Everitt & Hand (1981), and plasma concentration of Beta-Carotene given
in Schlattmann (2009). Also, a natural application of mixture distributions is in the modelling of
heterogeneous data where each component of the mixture distribution corresponds to a cluster of the
data. Since themixture distributions have the potential tomodel a wide variety of randomphenomena,
they have received increasing attention in the literature and have been explored by many researchers
in various contexts, see McLachlan & Peel (2000). The k-component mixture distribution is defined
via the following probability density function (pdf):

h(x) =
k∑
i=1

pifi(x), (1)

where pi ∈ [0, 1],
k∑
i=1

pi = 1, and fi(x) is the pdf of the ith cluster of population. Themixture distribution

in (1) is expressed as a weighted sum of pdfs and shows enough flexibility in modeling heterogeneous
data having multiple modes, see Elmahdy & Aboutahoun (2013), Elmahdy (2017), Frühwirth-Schnatter
(2006), Seidel (2010) and the monographs cited above. On the other side, a given distribution can be
generalized by employing a composite function. To be more specific, let f (x) be a pdf with support on
(a, b), G(x) be increasing function on (a, b) with lim

x→a+
G(x) = a, lim

x→b–
G(x) = b and g(x) = G′(x). Then
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one can show that g(x)f (G(x)) is also a pdf based on the warping of f (x). For instance, when f (x) is
the pdf of an exponential distribution, then g(x)f (G(x)) is the pdf of the Weibull distribution for a
polynomial term G(x). Further developments and examples can be found in, e.g., AL-Hussaini (2012),
Alzaatreh et al. (2013, 2012), Sharma et al. (2017), and the references therein.

Combining the two approaches mentioned above, a natural way to increase the flexibility of f (x)
and g(x)f (G(x)) is to consider a mixture of these two pdfs defined by h(x) = pf (x)+(1–p)g(x)f (G(x))
with p ∈ [0, 1]. The parameter p operates a compromise between f (x) and g(x)f (G(x)), with h(x) = f (x)
if p = 1 and h(x) = g(x)f (G(x)) if p = 0. It is important to note that the proportion p is assumed
to be a fixed constant regardless of the support of the random variable, although this can seem
impractical in certain cases. Keeping this in mind, we introduce a new generator of distributions which
generalizes the finite mixture of the pdfs f (x) and g(x)f (G(x)) by introducing a Lebesgue measurable
and monotonic function w(x) with w(x) ∈ [0, 1] for any x ∈ (a, b). The new family of distributions is
characterized by the following pdf:

h(x) = w(x)f (x) + [1 – w (G(x))] g(x)f (G(x)) , (2)

(further details are given in Proposition 1 below). Thus, h(x) can be viewed as two components
“functional mixture” of f (x) and g(x)f (G(x)) with the “functional weights” {w(x), 1 – w(G(x))}. It
provides a compromise between f (x) and g(x)f (G(x)), using a monotonic weight function which
depends on the variations of x. The introduction of such a functional weight in a finite mixture
of distributions is also motivated by the weighted distributions’ utility in efficient modeling and
prediction from data, see Saghir et al. (2017), and the references therein.

The rest of the paper is organized as follows. In the second section (The proposed family of
distributions and some of its properties) presents the fundamentals of our proposed family of
distributions. Some special cases are discussed. We also stress the significance of the family, with
a highlight on existing connections with other well-known families of distributions. Expressions
of the ordinary moments are derived. The third section (The FWE distribution and its properties)
is devoted to a special case, providing a new lifetime distribution with three parameters. It is
based on the exponential distribution for f (x), a dilation transformation for G(x), and a weight
with polynomial decay for w(x). The moments of this distribution are also provided. The maximum
likelihood estimations of the parameters are considered in the forth section (Applications), and two
real life applications are presented to demonstrate the applicability of the distribution. A concluding
remark is given in the last section (Concluding remarks).

THE PROPOSED FAMILY OF DISTRIBUTIONS AND SOME OF ITS PROPERTIES

In this section, we formally define the proposed family of distributions along with some particular
cases. Expressions of ordinary moments are also investigated in the general case.

Construction of the family

The pdf of the family is defined in the next proposition.

Proposition 1. Let f (x) be a pdf with support on (a, b) with (a, b) ∈ R2 ∪ {–∞,∞}2 (including the
semi-infinite intervals: (0,∞) and (–∞, 0), and the real lineR), G(x) a differentiable increasing function
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on (a, b) with lim
x→a+

G(x) = a, lim
x→b–

G(x) = b, g(x) = G′(x) and w(x) a measurable function on (a, b)

with w(x) ∈ [0, 1] for any x ∈ (a, b). Then the following function is a pdf:

h(x) = w(x)f (x) + [1 – w (G(x))] g(x)f (G(x)) . (3)

Proof of Proposition 1. Using the assumptions on f (x), w(x) and G(x), and after some standard
analytical arguments, we can show that h(x) ≥ 0. Now, we need to show that

∫ b
a h(x)dx = 1. By

using the change of variables for y = G(x), we obtain∫ b

a
h(x)dx =

∫ b

a
w(x)f (x)dx +

∫ b

a
[1 – w (G(x))] g(x)f (G(x)) dx

=

∫ b

a
w(x)f (x)dx +

∫ b

a
[1 – w(y)] f (y)dy =

∫ b

a
f (x)dx = 1.

This completes the proof. �
Table I lists some special cases of pdfs as presented in (3) with various choices of f (x), w(x) and

G(x). It is important to note there that the pdfs that are given in Table I are new to the statistics
literature. The particular distribution based on exponential density with w(x) = 1

1+αx2 and G(x) =
x
σ

will be discussed in detail in the next section (The FWE distribution and its properties). Readers may
explore other cases for their properties and potential applications in future studies. The motivation
for the choice of this distribution will be clear later.

Table I. Some new pdfs h(x)h(x)h(x), defined by (3), with various choices of f (x)f (x)f (x),w(x)w(x)w(x) and G(x)G(x)G(x) ?.

f (x) w(x) G(x) h(x)

θe–θx e–αx xσ θe–(θ+α)x + θς
[
1 – e–αx

σ
]
xσ–1e–θx

σ

θe–θx [cos(αx)]2 xσ θ [cos(αx)]2 e–θx + θς [sin (αxσ)]2 xσ–1e–θx
σ

θe–θx [cos(αx)]2 eσx – 1 θ [cos(αx)]2 e–θx + θς [sin (αxσ)]2 eσxe–θ(e
σx–1)

2θxe–θx
2

1 – e–αx x + xσ 2θxe–θx
2

(1 – e–αx) + θe–α(x+x
σ)(1 + ςx)e–θ(x+x

σ)

θe–θx 1

1 + αx2
x
σ

θ

1+αx2 e
–θx + αθ

σ(σ2+αx2) x
2e–θ

x
σ

θβe–θx
(
1 – e–θx

)β–1 1

1 + αx2
x
σ

θβ

(
1

1+αx2 e
–θx

(
1 – e–θx

)
β–1

+ α

σ

x2
σ2+αx2 e

–θ x
σ

(
1 – e–θ

x
σ

)
β–1

)
θβ(θx)β–1e–(θx)

β 1

1 + αx2
x
σ

θβ

(
1

1+αx2 (θx)
β–1e–(θx)

β

+ α

σ

x2
σ2+αx2

(
θ
x
σ

)
β–1

e–
(
θ
x
σ

)
β

)
?All parameters appearing above are defined on (0,∞) and x ∈ (0,∞).

It is important to note that the pdf h(x) is very flexible and can be expressed as a sum of the
functions of different natures/shapes. Due to the complex structure, the cumulative distribution
function (cdf) associated to h(x) does not necessarily have a closed form. However, if we take
w(x) = F(x), the cdf of the family has a very nice closed form expression and a probabilistic
interpretation. The associated pdf and cdf are given by

h(x) = F(x)f (x) + [1 – F (G(x))] g(x)f (G(x))

and

H(x) =
1

2
[F(x)]2 +

1

2

[
1 – [1 – F (G(x))]2

]
, (4)
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respectively. The random variable associated with (4) can be interpreted as the following random
variable:

Z = ε sup(X, Y) + (1 – ε) inf(G–1(X),G–1(Y)),

where ε is a random variable following the Bernoulli distribution with parameter 1
2 , X and Y are

independent and identically distributed random variables with common pdf f (x), and G–1(x) denotes
the inverse/quantile function of G(x). Therefore, the proposed family of distributions includes finite
mixtures of sup and inf of random variables.

Another point is to show the possible connection between the proposed family and skewed
distributions. Consider the case where a = –∞, b = ∞, G(0) = 0, f (x) be a symmetric pdf around 0

and w(x) = 1{x>0} is the indicator function over the set {x > 0}. Hence, the pdf h(x) becomes a skewed
version of f (x) as follows

h(x) =

 f (x) if x ≤ 0,

g(x)f (G(x)) if x > 0.

The proposed family of distributions can be used to generate another skewed family of
distributions investigated by Huang & Chen (2007). It can be defined as follows. Let k(x) be a pdf
symmetric around 0 andm(x) ∈ [0, 1] be a Lebesgue measurable function satisfyingm(x)+m(–x) = 1,
x ∈ R, almost everywhere. Then the function f (x) = 2k(x)m(x), x ∈ R, is a proper pdf.

Using pdf (3) with w(x) = m(x), we can derive a new skewed family of distributions; for a given
k(x), we get

h(x) = 2
(
k(x)(m(x))2 + [1 –m (G(x))] g(x)k (G(x))m (G(x))

)
, x ∈ R.

Based on this idea, it is possible to develop new skewed families of distributions.

Some properties of the family

We now present the ordinary moments of the proposed family of distributions specified by (3). Let X
be a random variable with pdf h(x), defined by (3), and Y be a random variable with pdf f (x). The rth
non-central moment of X is

μ
′
r = E(Xr) =

∫ b

a
xrh(x)dx =

∫ b

a
xr [w(x)f (x) + [1 – w(G(x))] g(x)f (G(x))] dx

=

∫ b

a
xrw(x)f (x)dx +

∫ b

a
xr [1 – w(G(x))] g(x)f (G(x))dx

=

∫ b

a
xrw(x)f (x)dx +

∫ b

a
(G–1(x))r(1 – w(x))f (x)dx

= E(Yrw(Y)) + E
[
(G–1(Y))r(1 – w(Y))

]
.

Upon rearranging this equality, an alternative formula is

μ
′
r = E((G–1(Y))r) + E

[
w(Y)(Yr – (G–1(Y))r)

]
.
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In particular, the mean of X is given by μ′1 = E(G–1(Y))+ E
[
w(Y)(Y – G–1(Y))

]
and the variance of X is

given by V(X) = μ′2 – (μ
′
1)

2.
The moments generating function is

M(t) = E(etX) =
∫ b

a
etxh(x)dx =

∫ b

a
etx [w(x)f (x) + [1 – w(G(x))] g(x)f (G(x))] dx

= E(etYw(Y)) + E
[
etG

–1(Y)(1 – w(Y))
]
.

One can verify that μ′r = M(k)(t) |t=0. Using the same mathematical arguments, the rth non-central
conditional moment of X is given by, for t ∈ (a, b),

μ
′
r(t) =

∫ t

a
xrh(x)dx = E(Yrw(Y)1Y≤t) + E

[
(G–1(Y))r(1 – w(Y))1{Y≤G–1(t)}

]
.

The mean deviation about the median M can be written as

δ = E(|X – M|) =
∫ b

a
|x – M|h(x)dx

= E(Yw(Y)) + E
[
(G–1(Y))(1 – w(Y))

]
– 2μ′1(M).

All the expectations above can be calculated or approximated for specific functions f (x), w(x) and
G(x).

In the next section, we focus on a submodel of the family with three parameters based on the
exponential distribution, a dilation transformation and a weight with polynomial decay, called the
functional weighted exponential distribution.

THE FWE DISTRIBUTION AND ITS PROPERTIES

In this section, we consider a special submodel of the proposed family based on the exponential
distribution and discuss some of its properties.

Definition

We now consider the exponential pdf f (x) = θe–θx , θ > 0, x > 0, the weight function w(x) = 1
1+αx2 ,

α ≥ 0 and G(x) = x
σ
, σ > 0. Note that w(x) ∈ [0, 1] and G(x), a standard dilation function, satisfying

G(0) = 0 and limx→∞ G(x) = ∞. The pdf (3) with a = 0 and b = ∞ becomes

h(x) =
θe–θx

1 + αx2
+
αθx2e–θ

x
σ

σ(σ2 + αx2)
, x > 0. (5)

We call the distribution with pdf (5) the functional weighted exponential distribution, FWE for short.
It is of interest because of the compromise made between the functions with exponential decay f (x)
and g(x)f (G(x)), and a function with polynomial decay w(x). This ensures greater flexibility in terms
of the rates of decay, which is an advantage for modeling a wide variety of lifetime data. Also, note
that the FWE distribution is reduced to the exponential distribution when α = 0 or σ = 1. Thus the
proposed distribution can be considered as an extension of the exponential distribution. Figure 1
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shows the pdf plots of the FWE distribution for selected values of the parameters. The pdf of the FWE
distribution takes decreasing and uni-modal shapes depending on the choices of the parameters. The
first derivative of h(x) is

h′(x) = –θ

αxe–θxσ (θσ2x + αθx3 – 2σ3)
σ2(σ2 + αx2)2

+
e–θx(θ+ αθx2 + 2αx)

(1 + αx2)2

 ,

and, when it exists, the mode of the distribution, x0, satisfies the following equation:

αx0e–
θx0
σ (θσ2x0 + αθx30 – 2σ

3)(1 + αx20)
2 + e–θx0(θ+ αθx20 + 2αx0)σ2(σ2 + αx20)

2 = 0. (6)

Also, observe that h(x) = θ – θ2x+ x2
[
θ
3

2 + αθ
(

1
σ3
– 1
)]

+O(x3) and lim
x→0

h(x) = θ > 0. Thus, we
see the role of the parameters in the curvature of the pdf around x = 0, mainly for the polynomial
term x2. Also, we have lim

x→∞
h(x) = 0 as

h(x) = e–θx
[
θ

αx2
–
θ

α2x4
+ O

(
1

x6

)]
+ e–

θx
σ

[
θ

σ
–
σθ

αx2
+
σ
3
θ

α2x4
+ O

(
1

x6

)]
.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

D
e
n
s
it
y

θ = 1,α = 1,σ = 1

θ = 2,α = 1,σ = 1

θ = 0.5,α = 0.5,σ = 0.5

θ = 0.5,α = 0.05,σ = 0.05

θ = 0.5,α = 0.5,σ = 1

θ = 0.25,α = 1,σ = 0.25

Figure 1. Various shapes of the pdf of the FWE distribution.

From a probabilistic point of view, the FWE distribution comes from the simple stochastic
representation, Y = SXX, where X is a random variable with pdf f (x), σ 6= 1, and SX is a random
variable such that

P(Sx = 1 | X = x) =
1

1 + αx2
, P(Sx = σ | X = x) =

αx2

1 + αx2
.

An Acad Bras Cienc (2021) 93(2) e20181019 6 | 16



DALAL LALA BOUALI et al. A NEW CLASS OF DISTRIBUTIONS USING FUNCTIONAL MIXTURE

We can observe that h(x) is a weighted exponential distribution function since it can be written as

h(x) = W(x)θe–θx , W(x) =
1

1 + αx2
+

αx2

σ(σ2 + αx2)
e–θ

(
1
σ
–1

)
x .

Note that W(0) = 1 and limx→∞W(x) = 0 if σ < 1, limx→∞W(x) = 1 if σ = 1 and limx→∞W(x) = ∞
if σ > 1. For more information on weighted distributions see Saghir et al. (2017). The practical aspects
of the FWE distribution are studied in the applications section.

Moments of the FWE distribution

Let X be a random variable with pdf h(x), defined by (5). Then the rth non-central moment of X is given
by

μ
′
r = E(Xr) =

∫ ∞

0
xrh(x)dx = θ

∫ ∞

0

xr

1 + αx2
e–θxdx +

αθ

σ

∫ ∞

0

xr+2

σ2 + αx2
e–θ

x
σdx

= θ

∫ ∞

0

xr

1 + αx2
e–θxdx + αθσr

∫ ∞

0

xr+2

1 + αx2
e–θxdx

= θ

∫ ∞

0

xr

1 + αx2
(1 + ασrx2)e–θxdx =

1

θr

∫ ∞

0

1

1 + α(x/θ)2
(
xre–x +

α

θ2
σ
rxr+2e–x

)
dx.

Using the expression 1
1+α(x/θ)2 = 1

α(x/θ)2
1

1+(α(x/θ)2)–1 and geometric series, we obtain

μ
′
r =

1

θr

(∫ θ√
α

0

∞∑
i=0

(–1)i
α
i

θ2i

(
xr+2ie–x +

α

θ2
σ
rxr+2i+2e–x

)
dx

+

∫ ∞

θ√
α

∞∑
i=0

(–1)i
α
–(i+1)

θ–2(i+1)

(
xr–2(i+1)e–x +

α

θ2
σ
rxr–2ie–x

)
dx
)
,

=
1

θr

( ∞∑
i=0

(–1)i
α
i

θ2i

[
γ

(
r + 2i+ 1,

θ√
α

)
+
α

θ2
σ
r
γ

(
r + 2i+ 3,

θ√
α

)]

+
∞∑
i=0

(–1)i
α
–(i+1)

θ–2(i+1)

[
Γ

(
r – 2i – 1,

θ√
α

)
+
α

θ2
σ
rΓ
(
r – 2i+ 1,

θ√
α

)])
,

where γ(a, x) =
∫ x
0 s

a–1e–sds, a, x > 0 and Γ(a, x) =
∫∞
x sa–1e–sds, a ∈ R, x > 0, are the upper and

lower incomplete gamma functions, respectively. In particular, the mean of X is given by

μ
′
1 =

1

θ

( ∞∑
i=0

(–1)i
α
i

θ2i

[
γ

(
2(1 + i),

θ√
α

)
+
α

θ2
σγ

(
2(i+ 2),

θ√
α

)]

+
∞∑
i=0

(–1)i
α
–(i+1)

θ–2(i+1)

[
Γ

(
–2i,

θ√
α

)
+
α

θ2
σΓ

(
2(1 – i),

θ√
α

)])
. (7)

The variance of X can be obtained as V(X) = μ′2 – (μ
′
1)

2.
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Using similar mathematical arguments, the moment generating function can be expressed as, for
t < θ/max(1, σ),

MX(t) = E(etX) =
∫ ∞

0
etxh(x)dx =

∫ ∞

0
etx
(

θ

1 + αx2
e–θx +

αθ

σ

x2

σ2 + αx2
e–θ

x
σ

)
dx

= θ

(∫ ∞

0

1

1 + αx2
e–(θ–t)xdx + α

∫ ∞

0

x2

1 + αx2
e–(θ–σt)xdx

)

= θ

(∫ 1√
α

0

∞∑
i=0

(–1)i(αx2)ie–(θ–t)xdx + α
∫ 1√

α

0

∞∑
i=0

(–1)i(αx2)ix2e–(θ–σt)xdx

+

∫ ∞

1√
α

∞∑
i=0

(–1)i(αx2)–(i+1)e–(θ–t)xdx + α
∫ ∞

1√
α

∞∑
i=0

(–1)i(αx2)–(i+1)x2e–(θ–σt)xdx
)

= θ

( ∞∑
i=0

(–1)iαi
[

1

(θ – t)2i+1
γ

(
2i+ 1,

θ – t√
α

)
+

1

(θ – σt)2i+3
γ

(
2i+ 3,

θ – σt√
α

)]

+
∞∑
i=0

(–1)iα–(i+1)
[

1

(θ – t)–2i–1
Γ

(
–2i – 1,

θ – t√
α

)

+
1

(θ – σt)–2i+1
Γ

(
–2i+ 1,

θ – σt√
α

)])
. (8)

The mean deviation about the median M is given by

δ(x) = E(|X – M|) =
∫ ∞

0
|x – M|h(x)dx = μ′1 – 2

∫ M

0
xh(x)dx,

= μ
′
1 – 2θ

(∫ M

0

x
1 + αx2

e–θxdx + ασ
∫
σM

0

x3

1 + αx2
e–θxdx

)
.

The integrals appeared above can be written in terms of sums as done in (8), by distinguishing the
cases M > 1√

α
, M ≤ 1√

α
, σM > 1√

α
and σM ≤ 1√

α
. For the sake of brevity, we omit it.

The Shannon entropy is defined by S [h(X)] = –E [logh(X)]. We have

S [h(X)] = –E

log
 θe–θX
1 + αX2

+
αθX2e–θ

X
σ

σ(σ2 + αX2)

 ,
= –E

[
log

(
1 + ασ–1X2(1 + αX2)(σ2 + αX2)–1e

σ–1
σ
θX

θ–1(1 + αX2)eθX

)]
,

= –E
[
log
(
1 + ασ–1X2(1 + αX2)(σ2 + αX2)–1e

σ–1
σ
θX
)]

+ E
[
log
(
θ
–1(1 + αX2)eθX

)]
.

Using the series expansion E [log(1 + Xn)] = –
∞∑
i=1

(–1)i
i E(Xin), we arrive at

S [h(X)] =
∞∑
i=1

(–α)i

iσi
E

(X2(1 + αX2)
σ2 + αX2

e
σ–1
σ
θX
)i – ∞∑

i=1

(–α)i

i
E(X2i) + θE(X) – log (θ) . (9)

The expansions of the expectations can be done via similar mathematical arguments used for the
moments.
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APPLICATIONS

This section includes two real life applications of distributions fitting. We present the goodness-of-fit
of the FWE distribution based on the standard maximum likelihood method. We compare the fit of the
FWE distribution with five other distributions having three parameters, which are the most popular
generalizations of the Weibull and gamma distributions. The distributions considered for comparison
are:

� Modified Weibull (MW) distribution by Sarhan & Zaindin (2009) with cdf

F(x) = 1 – e–βx
λ–αx , λ > 0, β, α ≥ 0 with β+ α > 0.

� Exponentiated Weibull (EW) distribution by Mudholkar & Srivastava (1993) with cdf

F(x) =
(
1 – e–βx

λ

)α
, β > 0, λ > 0, α > 0.

� Exponentiated gamma (EG) distribution by Cordeiro et al. (2011) with cdf

F(x) = [GammaCDF(α, β)]θ , β > 0, θ > 0, α > 0,

where GammaCDF(α, β) is the cdf of the gamma distribution with shape parameter α and scale
parameter β.

� Weighted Weibull (WtW) distribution by Shahbaz et al. (2010) with pdf

f (x) =
β+ 1

β
αλxα–1e–λx

α
(
1 – e–βλx

α
)
, β > 0, λ > 0, α > 0.

� Extended generalized gamma (EGG) distribution used by Lee & Wang (2013) with pdf

f (x) =
λα
α
β
λα

Γ(α)
xλα–1e–α(βx)

λ

, β > 0, λ > 0, α > 0.

The EGG distribution is reduced to the Weibull distribution for α = 1.

The fitting results are compared using two practical data sets related to reliability and survival
analysis. Data sets are discussed in the following subsections.

Failure times data

The goodness-of-fit of the FWE distribution is first accessed for lifetimes of fatigue fracture of Kevlar
373/epoxy that are subjected to constant pressure at a stress level of 90 until all fail. The data set was
reported by Barlow et al. (1984) and studied by Andrews & Herzberg (2012). Descriptive statistics are
presented in Table II. Since Skewness = 1.980 and Kurtosis = 2.16, the data are positively skewed and
have a lower peak for its frequency distribution than the normal curve.

In full generality, the shapes of the empirical failure (hazard) rate of a data set can be identified
by the concept of total time on test plot (TTT) of Aarset (1987). The scaled TTT transform is

g(u) =
H–1(u)
H–1(1)

,
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with H–1(u) =
∫ F–1(u)
0 [1 – F(y)]dy, u ∈ (0, 1), and its empirical version is

gn
( r
n

)
=

1
n∑
i=1

xi:n

 r∑
i=1

xi:n + (n – r)xr:n

 ,
where r = 1, 2, . . . ,n and xi:n, i = 1, 2, . . . ,n, represent the order statistics of the sample. It has been
shown that the scaled TTT transform is convex (concave) if the hazard rate is decreasing (increasing),
and for bathtub (unimodal) hazard rates, the scaled TTT transform is first convex (concave) and then
concave (convex). Figure 2 indicates that the failure times data set has an increasing hazard rate.
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Figure 2. TTT plots for both data sets.

Table II. Descriptive statistics of both data sets.

Statistic Failure times Survival times Statistic Failure times Survival times

data data data data

Minimum 0.03 1.0 Q1 0.91 4

Maximum 9.10 156.0 Q3 2.30 65

Mean 1.96 40.9 Skewness 1.98 1.16

Median 1.74 22.0 Kurtosis 2.16 2.88

St. Deviation 1.57 46.7 Range 9.07 155
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The MLEs of the distribution parameters along with their standard errors (SEs) are shown in Table
III for this data set. From this table, it is clear that the SEs corresponding to the estimates of parameters
of the FWE distribution are the smallest among the others.

We now apply formal goodness-of-fit tests in order to verify which distribution fits better the
given data set. We consider Akaike Information Criterion (AIC = 2p – 2l̂n(`)), Bayesian Information
Criterion (BIC = p ln(n) – 2l̂n(`)), –l̂n(`) and Kolmogorov-Smirnov (K-S) statistic along with p-value as
goodness-of-fit criterion, where l̂n(`) is the value of the likelihood function evaluated at the parameter
estimates, n is the number of observations, and p is the number of estimated parameters. For a given
data set, the smaller AIC or BIC indicates a better fit. These statistics are computed using MLEs of
the parameters based on the data set and presented in Table IV. We can note from this table that
the FWE distribution has smaller values of AIC, BIC and KS statistics, among others. Therefore, we can
conclude that FWE distribution fits better than the considered distributions for the given set of data.
The Probability-Probability (PP) plots of the distributions are given in Figure 3 for failure times data
set. Figures 4 and 5 show the fitted pdf and cdf of the FWE distribution for this data set, respectively.
The fitted and empirical estimates are extremely close. These figures indicate that the FWE distribution
can provide good estimates of the probabilities associated with lifetimes of fatigue fracture of Kevlar
373/epoxy, e.g., q = P (2 < X < 3) = 0.184, and its estimate is q̂ = 0.176.

Table III. The MLEs and SEs of the parameters of the distributions for failure times data.

Model Estimate (SE)

FWE(θ, α, σ) θ̂ = 0.227(0.078) α̂ = 0.123(0.111) σ̂ = 0.294(0.115)

EG(α, β,θ) α̂ = 1.260(2.196) β̂ = 1.334(2.513) θ̂ = 0.759(0.479)

MW(α, β, λ) α̂ = -0.063(0.453) β̂ = 0.431(0.475) λ̂ = 1.283(0.295)

EW(α, β, λ) α̂ = 1.443(0.647) β̂ = 0.580(0.302) λ̂ = 1.101(0.264)

EGG(α, β, λ) α̂ = 1.477(0.805) β̂ = 0.502(0.063) λ̂ = 1.065(0.338)

WtW(α, β, λ) α̂ = 0.907(0.130) β̂ = 0.336(2.768) λ̂ = 0.973(0.960)

Table IV. The log-likelihood, AIC, BIC, KS and p-values for the fitted distributions for failure times data.

Model –l̂n(`) AIC BIC KS PV

FWE 121.099 248.197 255.190 0.088 0.567

EG 122.235 250.469 257.461 0.096 0.460

MW 122.512 251.024 258.016 0.108 0.311

EW 122.164 250.327 257.319 0.099 0.422

EGG 122.230 250.460 257.452 0.100 0.402

WtW 122.366 250.733 257.725 0.094 0.489
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Figure 3. Probability-Probability (PP) plots of the
distributions for failure times data.
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Figure 4. Fitted density plot of the FWE distribution for
failure times data.
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Figure 5. Fitted cdf plot of the FWE distribution for
failure times data.
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Survival times data

In this subsection, we present the modelling of survival times of 33 patients who died from acute
myelogenous leukaemia. The survival times are noted in weeks. The data set is obtained from Feigl
& Zelen (1965) and is also available in “MASS” package of R software. The frequency distribution of
the data is heavy tailed and right skewed, see Table II. From Figure 2, we can see that the TTT plot for
failure times data set first convex and then concave, which means the data set has a bathtub shaped
hazard rate.

We compute the MLEs, along with respective SEs, of the parameters of all distributions for survival
times data. They are presented in Table V. For each distribution, the log-likelihood, AIC, BIC, KS and
p-values are obtained using the MLEs. They are shown in Table VI. From this table, we see that the FWE
distribution has the smallest AIC, BIC and KS values over all other distributions. The p-value of the KS
test statistic is maximum for the FWE distribution. Therefore, we can conclude that the FWE distribution
is a better model for modelling survival times than the EG, EM, EGG WtW and MW distributions. PP plots
of the distributions are given in Figure 6 for the survival times data set. Figure 7 shows the fitted pdf of
the FWE distribution for the given data set. Figure 8 shows the fitted cdf of the FWE distribution. Since
the fitted and empirical estimates are very close to each other, we can say that the FWE distribution
fits well with this frequency distribution.

Table V. The MLEs and SEs of the parameters of the distributions for survival times data.

Model Estimate (SE)

FWE(θ, α, σ) θ̂ = 0.070(0.0264) α̂ = 0.0195(0.0213) σ̂ = 3.277(1.202)

EG(α, β,θ) α̂ = 100.034(9675.29) β̂ = 0.601× 10–2(3.697× 10–5) θ̂ = 0.526(0.229)

MW(α, β, λ) α̂ = -0.0027(0.0424) β̂ = 0.0645(0.0396) λ̂ = 0.795(0.293)

EW(α, β, λ) α̂ = 1.535(5.286) β̂ = 0.160(1.033 ) λ̂ = 0.608(1.137)

EGG(α, β, λ) α̂ = 2.574(7.181) β̂ = 0.037(0.025) λ̂ = 0.444(0.695)

WtW(α, β, λ) α̂ = 0.512(0.0675) β̂ = 8.021×10–5(1.515) λ̂ = 0.3583(0.291)

Table VI. The log-likelihood, AIC, BIC, KS and p-values for the fitted distributions for survival times data.

Model –l̂n(`) AIC BIC KS PV

FWE 151.125 308.250 312.739 0.090 0.952

EGD 153.136 312.271 316.761 0.136 0.576

MW 153.585 313.169 317.659 0.129 0.644

EWD 153.585 313.169 317.659 0.137 0.564

EGG 153.501 313.003 317.492 0.137 0.562

WtW 153.507 313.013 317.503 0.137 0.565
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Figure 6. Probability-Probability (PP) plots of the
distributions for survival times data.
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Figure 7. Fitted density plot of the FWE distribution for
survival times data.

0 50 100 150

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Survival times (in weeks)

C
d
f

FWE cdf

Empirical cdf

Figure 8. Fitted cdf plot of the FWE distribution for
survival times data.
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CONCLUDING REMARKS

We introduce and study a new family of distributions based on a finite functional mixture using
functional weights. Some mathematical properties of the new family are investigated. A special case
based on the polynomial weights and the exponential distribution, called the functional weighted
exponential (FWE) distribution, is studied in detail. The estimates of the unknown parameters of the
FWE distribution are obtained using the maximum likelihood method. The usefulness of the proposed
submodel, FWE, is demonstrated via two real life data sets.
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