
An Acad Bras Cienc (2021) 93(3): e20190961 DOI 10.1590/0001-3765202120190961
Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc | www.fb.com/aabcjournal

MATHEMATICAL SCIENCES

The Weibull Burr XII distribution in lifetime and
income analysis

RENATA ROJAS GUERRA, FERNANDO A. PEÑA-RAMÍREZ & GAUSS M. CORDEIRO

Abstract:We study a five-parameter model called theWeibull Burr XII (WBXII) distribution,
which extends several models, including new ones. This model is quite flexible in terms
of the hazard function, which exhibits increasing, decreasing, upside-down bathtub,
and bathtub shapes. Its density function allows different forms such as left-skewed,
right-skewed, reversed-J, and bimodal. We aim to provide some general mathematical
quantities for the proposed distribution, which can be useful to real data analysis. We
develop a shiny application to provide interactive illustrations of the WBXII density and
hazard functions. We estimate the model parameters using maximum likelihood and
derive a profile log-likelihood for all members of the Weibull-G family. The survival
analysis application reveals that the WBXII model is suitable to accommodate left-skewed
tails, which are very common when the variable of interest is the time to failure of a
product. The income application is related to player salaries within a professional sports
league and it is peculiar because the mean of the player’s salaries is much higher than
for most professions. Both applications illustrate that the new distribution provides much
better fits than other models with the same and less number of parameters.

Key words: Bimodal distribution, Burr XII distribution, profile log-likelihood, Weibull-G
family.

INTRODUCTION

For the Burr XII (BXII) distribution, also known as the Singh-Maddala distribution (Singh & Maddala
1975, 1976) with shape parameters d > 0 and c > 0 and scale parameter s > 0, the cumulative
distribution function (cdf) is

G(x; c, d, s) = 1 –
[
1 +

(x
s

)c]–d
, x > 0. (1)

For d = 1 and s = m–1, we have the log-logistic (LL) distribution and, for c = 1, it reduces to the
Lomax distribution. The probability density function (pdf) corresponding to equation (1) is

g(x; c, d, s) = c d s–c xc–1
[
1 +

(x
s

)c]–d–1
. (2)

This distribution is part of the Burr system of distributions (Burr 1942) and has extensive use in the
context of income data. For recent examples, see Jäntti & Jenkins (2010), Brzeziński (2013), Tanak et al.
(2015). Cirillo (2010) also applied this model for analyzing the size distribution of Italian firms by age.
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Chotikapanich et al. (2013) considered it for calculating poverty measures in countries from South and
Southeast Asia. Kumar et al. (2013) adopted the BXII distribution on reliability context.

Bourguignon et al. (2014) pioneered a family of univariate distributions generated by extending
the Weibull (W) model applied to the odds ratio G(x)/[1 – G(x)]. For any baseline cdf G(x;ξξξ), which
depends on a parameter vector ξξξ, they defined the Weibull-G family (for x ∈ D ⊆ R) by the pdf and
cdf

f (x; α, β,ξξξ) = α β g(x;ξξξ)
G(x;ξξξ)β–1

1 – G(x;ξξξ)β+1
exp

{
–α
[

G(x;ξξξ)
1 – G(x;ξξξ)

]β}
(3)

and

F(x; α, β,ξξξ) =
∫ G(x;ξξξ)

1–G(x;ξξξ)

0
α β tβ–1e–α t

β

dt = 1 – exp

{
–α
[

G(x;ξξξ)
1 – G(x;ξξξ)

]β}
, (4)

respectively. The Weibull-G family has the same parameters of the G distribution plus two shape
parameters α > 0 and β > 0. According to Bourguignon et al. (2014), these additional parameters
are sought as a manner to furnish more flexible distributions. If β = 1, it gives the exponential
generator (Gupta et al. 1998). Cordeiro et al. (2015) and Tahir et al. (2016c) introduced another two
types of Weibull-G families.

Following the formulation by Bourguignon et al. (2014), we define the Weibull-Burr XII (WBXII)
distribution and provide some of its mathematical quantities which were not addressed by
Bourguignon et al. (2014). The new expressions can be helpful for those interested in applying this
distribution to real life data.

In a similar approach, we can refer the reader to six other contributed works addressed to specific
baselines of the Weibull-G family. These contributions are listed in Table I.

Table I. Contributed works on the Weibull-G family.

Distribution Author(s)

Weibull exponential Oguntunde et al. (2015)

Weibull Lomax Tahir et al. (2015)

Weibull Rayleigh Merovci & Elbatal (2015)

Weibull Pareto Tahir et al. (2016a)

Weibull Dagum Tahir et al. (2016b)

Weibull Fréchet Afify et al. (2016)

Weibull Birnbaum-Saunders Benkhelifa (2016)

Four-parameter Weibull Burr XII Afify et al. (2018)

The WBXII distribution is obtained by inserting (1) and (2) in equations (3) and (4). Then, its pdf
reduces to (for x > 0)

f (x) =
α β c d s–cxc–1

[1 + (x/s)c]1–d
exp

{
–α [(1 + (x/s)c)d – 1]β

}
[(1 + (x/s)c)d – 1]β–1, (5)
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where α > 0, β > 0, d > 0 and c > 0 are shape parameters and s > 0 is a scale parameter. The
corresponding cdf is

F(x) = 1 – exp
{
–α [(1 + (x/s)c)d – 1]β

}
. (6)

Based on equation (6) we note that z(x) = [1 + (x/s)c]d is the inverse of the BXII survival function,
which is identifiable. Then, α [z(x) – 1]β is identifiable and so the WBXII cdf.

Two interpretations of (6) are now presented. First, let T be a BXII random variable with cdf (1)
describing a real life phenomenon. If the random variable X represents the odds, the risk that this
stochastic mechanism following the lifetime T will not occur at time x is given by G(x; c, d, s)/[1 –
G(x; c, d, s)]. If we model the randomness X of these odds by the Weibull density with scale parameter
α > 0 and shape parameter β > 0, the cdf of X is given by (6). For the second interpretation, we take a
WBXII random variable X and a random variable T with the Weibull density (for t > 0) defined above. We
can write P(X ≤ x) = F(x) = 1 – exp

{
–α [(1 + (x/s)c)d – 1]β

}
= P (T ≤ G(x; c, d, s)/[1 – G(x; c, d, s)]).

Since the function κ(x) = G(x; c, d, s)/[1 – G(x; c, d, s)] is always monotonic and non–decreasing, we
obtain T = κ(X), where the equality of random variables refers to equivalence of distributions. So, if
X has the WBXII cdf (6), then T = κ(X) has a Weibull cdf with the above parameters.

If X is a random variable with density function (5), we write X ∼ WBXII(c, d, s, α, β). The hazard rate
function (hrf) of X reduces to

h(x) = α β c d s–cxc–1
[
1 + (x/s)c

]d–1
[(1 + (x/s)c)d – 1]β–1.

The main contributions of this paper are described below:

1. In the estimation section, we demonstrate that all members of the Weibull-G family present
a semi-closed form for the maximum likelihood estimator (MLE) of α. Thus, the MLEs for any
member of the Weibull-G family can also be determined from the profile log-likelihood function,
which is much simpler.

2. Bourguignon et al. (2014) obtained general mathematical expressions for the Weibull-G family
based on an infinite linear combination of exponentiated-G (exp-G) densities. We derive a new
linear representation for the WBXII pdf in a simpler form based directly on the BXII model itself.
Besides, we provide some important mathematical and statistical properties of the proposed
distribution. These results are especially helpful for applications to real lifetime data.

3. Equation (5) has different forms, including left-skewed, right-skewed, reversed-J,
decreasing-increasing-decreasing and bimodal. Plots of the WBXII density function for selected
parameter values are displayed in Figure 1. We develop a shiny application that allows the
reader to access dynamic plots of the WBXII pdf and hrf1. From those plots, we note that the
WBXII density presents bimodality, or the unusual decreasing-increasing-decreasing shape
when β is very small, and the baseline shape parameters c and d are large.

4. The proposed distribution overcomes a limitation of its baseline, whose hazard function presents
only monotonic and unimodal shapes. The WBXII hrf admits the four main characteristics:
decreasing, increasing, upside-down bathtub, and bathtub shaped. These are desirable

1https://newdists.shinyapps.io/WBXIIdist/.
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properties for a lifetime distribution. Figure 2 provides plots of the hrf of X for selected parameter
values.

5. Equation (5) extends at least twenty lifetime distributions, including new ones. In fact, if we
combine the Weibull and its two sub-models (exponential and Rayleigh) with seven special cases
(Lomax, Fisk, log-logistic, Weibull, exponential and Rayleigh) of the Burr XII distribution including
this distribution itself, the WBXII model can generate twenty descendants. Note that the first
three models listed in Table 1 published in 2015 are just special cases of the new distribution.
For α = β = 1, the power generalized Weibull (PGW) (Nikulin & Haghighi 2006, Dimitrakopoulou
et al. 2007) also arises as a special model.

6. A major advantage of fitting a wider model to real data is that we can easily verify, based on
the likelihood ratio (LR) statistics, whether its sub-models (with fewer parameters) can be more
properly to the data.

7. Equation (5) can be reduced to a four-parameter distribution by setting the scale parameter
to one (Afify et al. 2018) and then it becomes a very competitive model to all well-known
four-parameter lifetime distributions such as the beta Weibull, Kumaraswamy Weibull,
Kumaraswamy gamma, beta Dagum, among several others.

8. Although the proposed model has five parameters, it can provide much better fits, based on
Anderson-Darling and Kolmogorov-Smirnov statistics, than other models with the same and less
number of parameters. This fact is proved empirically in applications to survival analysis and
income distribution (see the application section). The survival analysis application illustrates the
WBXII superiority to accommodate left-skewed tails, which are very common when the variable of
interest is the time to failure of a product or component. The second data set is related to player
salaries within a professional sports league. The salary distribution is typically heavy skewed to
the right for several professions and also in themacro-economy. For the sports market, the salary
distribution is no different from other occupations in terms of the shape. However, according
to Rockerbie (2003), it is peculiar because their mean is much higher, and those markets are
typically a natural monopoly. The WBXII model showed suitable to accommodate these feature
as well.

An implementation in R language (R Core Team 2018) used to obtain plots, application and simulation
for the five-parameter Weibull Burr XII distribution is available in the footnote2.

The remainder of the paper is organized as follows. Two useful expansions for the WBXII cdf and
pdf are derived. We investigate some of its mathematical properties such as the quantile function
(qf), ordinary and incomplete moments, mean deviations, and generating function. We determine
the order statistics. The maximum likelihood method is used to estimate the model parameters .
Two applications to real data sets are addressed in the application section. Finally, we offer some
concluding remarks.

2https://drive.google.com/open?id=1an1YbEeX1XHEbSvwIo8jbEAwkLxFJSxP.
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Figure 1. Plots of the WBXII density with s = 1.
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Figure 2. Plots of the WBXII hrf with s = 1.

TWO USEFUL EXPANSIONS

Two useful expansions for equations (5) and (6) can be derived by using power series. It follows
from Bourguignon et al. (2014) that the Weibull-G density function can be expressed as

f (x; α, β,ξξξ) =
∞∑
j,k=0

ρj,k g(x;ξξξ)G(x;ξξξ)
(k+1)β+j–1,

where

ρj,k =
(–1)k β αk+1 Γ((k+ 1)β+ j+ 1)

k! j! Γ((k+ 1)β+ 1)
,

and Γ(·) is the gamma function. By replacing G(x;ξξξ) for (1) and g(x;ξξξ) for (2), we obtain

f (x; α, β,ξξξ) = c d s–c
∞∑
j,k=0

ρj,k x
c–1u–d–1

(
1 – u–d

)(k+1)β+j–1
, (7)

where u = 1 +
( x
s
)c. If |z| < 1 and b > 0 is a real non-integer, the power series holds

(1 – z)b–1 =
∞∑
r=0

(–1)rΓ(b)
r! Γ(b – r)

zr . (8)

Using the above expansion for
(
1 – u–d

)[(k+1)β+j–1]–1 in equation (7) and, after some algebraic
manipulation, we obtain

f (x) =
∞∑
r=0

wr g(x; c, (r + 1)d, s), (9)
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where (for r = 0, 1, . . .)

wr =
∞∑
k,j=0

(–1)r ρj,k Γ((k+ 1)β+ j)
Γ((k+ 1)β+ j – r)(r + 1)!

(10)

and g(x; c, (r+1)d, s) is the BXII density function with scale parameter s and shape parameters (r+1)d
and c. Equation (9) reveals that the WBXII density is an infinite linear combination of BXII densities. So,
several structural properties of the WBXII distribution can be determined from those BXII properties.
By integrating equation (9) gives

F(x) =
∞∑
r=0

wr G(x; c, (r + 1)d, s). (11)

Equations (9) and (11) are the main results of this section.

MATHEMATICAL PROPERTIES

In this section, we obtain some mathematical quantities of the WBXII distribution including quantile
and random number generation, ordinary and incomplete moments, moment generating function
(mgf), mean deviations and Bonferroni and Lorenz curves. By determining analytical expressions for
those quantities can be more efficient than computing them directly by numerical integration of the
density function (5).

Density and hazard shapes

The WBXII density and hazard functions are quite flexible as can be noted in Figures 1 and 2. They can
take various forms depending on the shape parameters α, β, c, and d. In this section, we illustrate the
exact behavior of these functions for some parameter sets by analyzing their limiting behavior and
derivatives of their logarithms with respect to x. In addition, we provide interactive plots that allow
observing the behavior of these functions for several parameter combinations.

For the pdf (5), we note that

lim
x→0

f (x) =


∞ if β, c < 1,

αds–1 if β = c = 1,

0 if β, c > 1,

and lim
x→∞

f (x) = 0.
Some calculations show that

dlog f (x)
dx

=
1

x

{
c – 1 +

c (x/s)c

1 + (x/s)c

[
d – 1 +

d (β – 1) [1 + (x/s)c]d

[1 + (x/s)c]d – 1

–
α β d [1 + (x/s)c]d

{[1 + (x/s)c]d – 1}1–β

]}
. (12)

The critical points of the WBXII pdf are the roots of the above equation, and numerical software
is required to solve it. Nevertheless, from (12), we can verify that the WBXII density is decreasing if
β ≤ 1, c ≤ 1, and d ≤ 1.
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We can analyze the limiting behavior of the WBXII hrf for some parameter sets. We verify that

lim
x→0

h(x) =


∞ if β, c < 1,

αds–1 if β = c = 1,

0 if β, c > 1,

and lim
x→∞

h(x) =


0 if β, c, d < 1,

αs–1 if β = c = d = 1,

∞ if β, c, d > 1.

The critical point of h(x) are obtained from

dlogh(x)
dx

=
1

x

{
c – 1 +

c (x/s)c

1 + (x/s)c

[
d – 1 +

d (β – 1) [1 + (x/s)c]d

[1 + (x/s)c]d – 1

]}
= 0.

From the last equation, we can note that: i) if β < 1, c < 1 and d < 1, then dlogh(x)/dx < 0 and the
hrf is decreasing; ii) if β = c = d = 1, then dlogh(x)/dx = 0 and the hrf is constant in α/s; and iii) if
β > 1, c > 1 and d > 1, then dlogh(x)/dx > 0 and the hrf is increasing; iv) the parameter α does not
affect the hrf shapes; and v) numerical softwares are required to obtain the root of this equation.

Quantile function and random number generation

The qf of X follows by inverting (6) as

Q(u) = s


[(

– log(1 – u)
α

)1/β
+ 1

]1/d
– 1


1/c

. (13)

By setting u = 0.5 in (13) gives the median M of X. Different quantiles of interest can also be obtained
from (13) by replacing appropriate values for u.

If U is a uniform variate on the unit interval (0, 1), then the random variable X = Q(U) has pdf given
by (5). Thus, the qf can be useful to generate observations from theWBXII distribution using the inverse
transformation (see Section SIMULATION STUDY for an example). Another motivation to introduce
this quantity is its applicability to obtain alternative expressions for the skewness and kurtosis. The
Bowley’s skewness (Kenney & Keeping 1962) based on quartiles is

B =
Q(3/4) – 2Q(1/2) + Q(1/4)

Q(3/4) – Q(1/4)
.

The Moors’ kurtosis (Moors 1988) based on octiles is

KM =
Q(7/8) – Q(5/8) – Q(3/8) + Q(1/8)

Q(6/8) – Q(2/8)
.

These measures are less sensitive to outliers and may exist even for distributions without moments.
These quantile-based measures can be obtained for the WBXII model from (13). See the next section
for illustrative examples.

Moments

The nth ordinary moment of X can be determined from (9) as

μ
′
n = E(Xn) =

∞∑
r=0

wr
∫ ∞

0
xn g(x; d, (r + 1)d, s)dx.
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Using a result in Zimmer et al. (1998), we have (for n < c d)

μ
′
n = sn d

∞∑
r=0

(r + 1)wr B((r + 1)d – n c–1, 1 + n c–1), (14)

where B(a, b) is the beta function. The central moments (μs), cumulants (κs) and the skewness and
kurtosis of X can be evaluated from (14) using well-known relationships.

Table II provides a small numerical study by computing the first three moments and the B and
KM coefficients for six scenarios, each one with a different parametrization for the WBXII distribution.
Figure 3 displays plots of B and KM for some parameter values. In fact, they indicate that the proposed
distribution is quite flexible in terms of variation of the moments, skewness and kurtosis. It can
accommodate positive and negative values for both skewness and kurtosis coefficients.

Table II. First three moments and B and KM for some scenarios of the WBXII distribution.

Scen. c d s α β E(X) E(X2) E(X3) B KM

1 0.1 0.4 2.5 3.0 1.5 3.3612 135.9916 7272.5887 0.9950 43.3541

2 1.5 3.0 0.2 2.0 0.5 0.0373 0.0031 0.0004 0.3309 0.8222

3 1.0 5.0 5.0 2.0 2.3 0.5158 0.3062 0.2001 -0.0009 0.0065

4 1.0 5.0 3.0 2.0 0.5 0.1898 0.1180 0.1150 0.5139 1.3401

5 0.4 0.2 1.8 3.0 4.0 3.0980 160.8452 9497.2515 0.4246 1.2157

6 0.8 1.2 0.2 0.9 5.0 0.1369 0.0201 0.0001 -0.0283 -0.0698

Incomplete moments

The hth incomplete moment of X, say Th(y) =
∫ y
0 xh f (x)dx, can be expressed as

Th(y) = c d
∞∑
r=0

(r + 1)wr
∫ y

0
xh–1

(x
s

)c [
1 +

(x
s

)c]–(r+1)d–1
dx.

By setting t =
[
1 +

( x
s
)c]–1 in the last equation, we obtain

Th(y) = d sh
∞∑
r=0

(r + 1)wr
∫ 1

sc/(sc+yc)
t(r+1)d–hc –1 (1 – t)

h
c dt.

Hence, the hth incomplete moment of X reduces to (for h < c d)

Th(y) = d sh
∞∑
r=0

(r + 1)wr Bsc/sc+yc((r + 1)d – h c–1, 1 + h c–1), (15)

where Bz(a, b) =
∫ 1
z t

a–1 (1 – t)b–1dt is the upper incomplete beta function.
An important application of the first incomplete moment refers to the mean deviations about the

mean and the median, namely

δ1 = 2μ′1F(μ
′
1) – 2 T1(μ

′
1) and δ2 = μ′1 – 2 T1(M),
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Figure 3. Skewness and kurtosis of X for some parameter values.
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respectively, where F(μ′1) is easily obtained from (6), μ′1 = E(X), the median M of X follows from (13)
as M = Q(1/2), and (for c d > 1) T1(y) is the first incomplete moment given by (15) with h = 1. An
alternative expression for T1(·) comes from (9) as

T1(y) = c d s
∞∑
r=0

(r + 1)wr
∫ y

0
xc
[
1 +

(x
s

)c]–(r+1)d–1
dx.

Setting z = (x/s)c, we obtain

T1(y) = d s
∞∑
r=0

(r + 1)wr
∫ (

y
s

)c
0

z1/c(1 + z)–(r+1)d–1dz.

Thus,

T1(y) =
c d s yc+1

1 + c

∞∑
r=0

(r + 1)wr 2F1
[
1 +

1

c
, (r + 1)d+ 1; 2 +

1

c
; –
(y
s

)c]
,

where

2F1(a, b; c; x) =
∞∑
k=0

(a)k(b)k
(c)k

xk

k!

is the hypergeometric function and (a)k = a(a + 1)(a + k – 1) is the (rising) Pochhammer symbol if
k > 1 and (a)0 = 1.

The above results are related to the Bonferroni and Lorenz curves. These curves are important in
economics for studying income and poverty but can be useful in demography, reliability, insurance,
medicine, and several other fields. For a given probability π, they are defined by B(π) = T1(q)/(πμ′1)
and L(π) = T1(q)/μ′1, respectively, where q = Q(π) is given by (13). If π is the proportion of units whose
income is lower than or equal to q, the values of L(π) yield fractions of the total income and B(π)
refers to the relative income levels.

Generating function

The mgf of X is defined by M(t) = E(etX). Let Md(t) be the mgf of the BXII(c, d, s) distribution. We can
write from (9)

M(t) =
∞∑
r=0

wr M(r+1)d(t), (16)

where M(r+1)d(t) is the BXII(s, (r + 1)d, c) generating function and Md(t) is given by

Md(t) = cds–c
∫ ∞

0
xc–1etx

[
1 +

(x
s

)c]–d–1
dx. (17)

Guerra et al. (2020) considered the following expansion in the above equation[
1 +

(x
s

)c]–d–1
=

∞∑
j=0

(
–d – 1
j

)[(x
s

)cj
1(0,s] (x) +

(x
s

)–c(j+d+1)
1(s,∞) (x)

]
, (18)
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where 1A(x) denotes the indicator function over a given set of real numbers A, i.e., 1A(x) = 1 if
x ∈ A and 1A(x) = 0 elsewhere. Combining (17) and (18), and after some algebra, Guerra et al. (2020)
expressed the BXII mgf as an infinite sum of incomplete gamma functions given by (for t < 0)

Md(t) = c d
∞∑
j=0

(
–d – 1
j

)[
(–st)–(j+1)c

γ ((j+ 1)c, –st)

+ (–st)(d+j)c Γ (–(d+ j)c, –st)
]
, (19)

where γ(a, z) =
∫ z
0 t

a–1 e–tdt and Γ(a, z) =
∫∞
z ta–1 e–tdt are the lower and upper incomplete gamma

functions, respectively. Hence, for t < 0, the mgf of X can be follows from (16) and (19) as a double
summation

M(t) = c d
∞∑
i=0

(r + 1)wr
∞∑
j=0

(
–(r + 1)d – 1

j

)[
(–st)–(j+1)c

γ ((j+ 1)c, –st)

+ (–st)c[(b+r)d+j] Γ (–c [(r + 1)d+ j] , –st)
]
. (20)

Equation (20) is the main result of this section.

Stress-strength reliability

Let X1 be the life of a component with a random strength that is subjected to a random stress X2. We
can define stress-strength reliability as R = P(X2 < X1) =

∫∞
0 f1(x) F2(x)dx, i.e., the component fails

when the stress applied to it exceeds the strength (X2 > X1); otherwise, the component will function
well. This measure is very useful in reliability.

Let X1 and X2 have independent WBXII(c, d1, s, α1, β1) and WBXII(c, d2, s, α2, β2) distributions,
respectively, with the same shape parameter c and scale parameter s. We can derive R using the
results in (9) and (11). Note that the pdf of X1 and cdf of X2 can be expressed as

f1(x) =
∞∑
m=0

wm g(x; c, (m+ 1)d1, s) and F2(x) =
∞∑
n=0

wn G(x; c, (n+ 1)d2, s),

respectively, where wm and wn are given by (10). Thus, setting u = 1 +
( x
s
)c, we obtain

R =
∞∑

m,n=0

(n+ 1)d2 wm wn
(m+ 1)d1 + (n+ 1)d2

.

ORDER STATISTICS

Order statistics are important tools in many areas of statistical theory and practice. Let X1, · · · , Xn be
a random sample of the Weibull-G family and Xi:n the ith order statistic. The density fi:n(x) of Xi:n has
the form

fi:n(x) =
1

B(i,n – i+ 1)

n–i∑
j=0

(–1)j
(
n – i
j

)
f (x) F(x)i+j–1. (21)
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Setting u = 1 + (x/s)c and using the power series in (8), we can rewrite F(x)i+j–1 as1 – exp

–α
(
1 – u–d

)β
u–dβ



i+j–1

=
∞∑
k=0

(–1)k (i+ j – 1)!
k! (i+ j – k – 1)!

exp

–α k
(
1 – u–d

)β
u–dβ

 .

Inserting the above expansion in (21) and after some algebra, we obtain

fi:n(x) =
α β c d s–cxc–1 u–d–1

B(i,n – i+ 1)

(
1 – u–d

)β–1
u–d(β+1)

∞∑
k=0

n–i∑
j=0

(
n – i
j

)
(–1)j+k (i+ j – 1)!
k! (i+ j – k – 1)!

(22)

× exp

–α (1 + k)

(
1 – u–d

)β
u–dβ

 .

By expanding the exponential function in the last equation, rewriting (u–d)β as
[
1 – (1 – u–d)

]β
,

considering the power series given by (for |z| < 1 and b > 0 real non-integer)

(1 – z)–b =
∞∑
j=0

Γ(b+ j)
j! Γ(b)

and inserting both expansions in equation (22), we obtain

fi:n(x) =
β c d s–cxc–1 u–d–1

B(i,n – i+ 1)

∞∑
k, l,m=0

n–i∑
j=0

(
n – i
j

)
(–1)j+k+l αl+1 (1 + k)l (i+ j – 1)!

k! l! (i+ j – k – 1)!

× Γ((l+ 1)β+ 1 +m)

m! Γ((l+ 1)β+ 1)

(
1 – u–d

)(l+1)β+m–1
.

Finally, expanding (1 – u–d)(l+1)β+m–1 in the previous expression as in (8) and after some algebra, we
can write

fi:n(x) =
∞∑
q=0

υq g(x; c, (q+ 1)d, s), (23)

where (for q = 0, 1, . . .)

υq =
∞∑

k, l,m=0

n–i∑
j=0

(
n – i
j

)
(–1)j+k+l+q β αl+1 (1 + k)l (i+ j – 1)!

k! l!m! (q+ 1)!B(i,n – i+ 1) (i+ j – k – 1)!

× Γ((l+ 1)β+ 1 +m) Γ((l+ 1)β+m)

Γ((l+ 1)β+ 1)Γ((l+ 1)β+m – q)

and g(x; c, (q+1)d, s) is the BXII density function with scale parameter s and shape parameters (q+1)d
and c. Equation (23) is the main result of this section. Based on this linear representation, we can
obtain some structural properties of Xi:n using a similar procedure as that one applied for the WBXII
mathematical properties.
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MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood method is an important technique employed to estimate model parameters
in distributions. Bourguignon et al. (2014) determined the MLEs for the Weibull-G parameters from
the total log-likelihood function. In this section, we demonstrate alternatively that the MLEs of
theWeibull-G family can be determined based on the profile log-likelihood function. We also provide
the MLEs for the WBXII distribution.

The Weibull-G profile log-likelihood

Let x1, · · · , xn be observed values from the Weibull-G family with parameter vectorΘ = (α, β,ξξξ>)>. As
shown by Bourguignon et al. (2014), the total log-likelihood function forΘ has the form

`(Θ) =n log(α β) – α
n∑
i=1

H(xi;ξξξ)
β + β

n∑
i=1

log[H(xi;ξξξ)] (24)

–
n∑
i=1

log[G(xi;ξξξ)] –
n∑
i=1

log[1 – G(xi;ξξξ)],

where H(x;ξξξ) = G(x;ξξξ)/ [1 – G(x;ξξξ)]. Thus, the first component of the score vector U(Θ) =(
Uα,Uβ,U>ξξξ

)>
is

Uα =
n
α
–

n∑
i=1

H(xi;ξξξ)
β.

For fixed β and ξξξ, a semi-closed MLE for α follows from Uα = 0 as

α̂(β,ξξξ) =
n

n∑
i=1

H(xi;ξξξ)β
.

By replacing α by α̂ in (24), we obtain the Weibull-G profile log-likelihood forΘpΘpΘp = (β,ξξξ)> as

`(ΘpΘpΘp) = n log(n β) + β
n∑
i=1

log[H(xi;ξξξ)] –
n∑
i=1

log[G(xi;ξξξ)] –
n∑
i=1

log[1 – G(xi;ξξξ)] (25)

– n log

 n∑
i=1

H(xi;ξξξ)
β

 – n.
Hence, the MLE Θ̂pΘ̂pΘ̂p of the parameter vectorΘpΘpΘp can be numerically found by maximizing (25) and the
MLE of α is just α̂(Θ̂pΘ̂pΘ̂p). Note that the maximization of the profile log-likelihood might be simpler since
it involves one less parameter.
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The WBXII MLEs

Let x1, · · · , xn be a random sample of size n from the WBXII(c, d, s, α, β) distribution. Let ΘΘΘ =

(c, d, s, α, β)T be the parameter vector. The log-likelihood function forΘΘΘ follows as

`(ΘΘΘ) = n log(α β c d s–1) + (c – 1)c–1
n∑
i=1

log(ui – 1) + (d – 1)
n∑
i=1

log ui (26)

– α
n∑
i=1

(
udi – 1

)β
+ (β – 1)

n∑
i=1

log
(
udi – 1

)
,

where ui = 1 +
( xi
s

)c
. The estimates of the model parameters can be obtained by maximizing (26).

Alternatively, we can be differentiating (26) and solving the resulting nonlinear likelihood
equations. The components of the score vector U(Θ)U(Θ)U(Θ) are

Uc(ΘΘΘ) = n c–1 + c–1
n∑
i=1

log(ui – 1) + (d – 1) c–1
n∑
i=1

(ui – 1) log (ui – 1) u
–1
i

– α β d (c s)–1
n∑
i=1

(ui – 1) log (ui – 1) u
d–1
i

(
udi – 1

)β–1
+ d (β – 1) (c s)–1

n∑
i=1

(ui – 1) log (ui – 1) u
d–1
i

(
udi – 1

)–1
,

Ud(ΘΘΘ) = nd–1 +
n∑
i=1

log ui + (β – 1)
n∑
i=1

udi log ui
(
udi – 1

)–1
– αβ

n∑
i=1

udi log ui
(
udi – 1

)β–1
,

Us(ΘΘΘ) = – c n s–1 + c(d – 1)s–1
n∑
i=1

(ui – 1)u
–1
i

– c d (β – 1) s–1
n∑
i=1

(ui – 1)u
d–1
i

(
udi – 1

)–1
+ α β c d s–1

n∑
i=1

(ui – 1)u
d–1
i

(
udi – 1

)β–1
,

Uα(ΘΘΘ) = n α–1 –
n∑
i=1

(
udi – 1

)β
and

Uβ(ΘΘΘ) = n β–1 +
n∑
i=1

log
(
udi – 1

)
– α

n∑
i=1

(
udi – 1

)β
log
(
udi – 1

)
.

Setting these expressions to zero, U(Θ)U(Θ)U(Θ) = 0, and solving them simultaneously yields the MLEs of the
five parameters. These equations cannot be solved analytically, but some statistical softwares can be
used to solve them numerically using iterative methods such as the Newton-Raphson type algorithms.
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For fixed c, d, s and β, the MLE of α is

α̂(c, d, s, β) =
n∑n

i=1(u
d
i – 1)

β
. (27)

By fixing x1, · · · , xn, it is easy to verify from (27) that

� α̂→ 1 when β→ 0+;

� α̂→ ∞ when s→ ∞;

� α̂→ 0+ when s→ 0+;

� α̂→ 0+ when d→ ∞;

� α̂→ ∞ when d→ 0+.

By replacing α by (27) in equation (26) and letting ΘpΘpΘp = (c, d, s, β), the profile log-likelihood
function forΘpΘpΘp has the form

`(ΘpΘpΘp) = n log(n β c d s–1) + (c – 1)c–1
n∑
i=1

log(ui – 1) + (d – 1)
n∑
i=1

log ui (28)

– n log
n∑
i=1

(
udi – 1

)β
+ (β – 1)

n∑
i=1

log
(
udi – 1

)
– n.

The components of the score vector U(Θp)U(Θp)U(Θp) of (28) are

Uc(ΘpΘpΘp) = n c–1 + c–1
n∑
i=1

log(ui – 1) + (d – 1)c–1
n∑
i=1

(ui – 1) log(ui – 1)u
–1
i

– n β d c–1
 n∑
i=1

(
udi – 1

)β–1 n∑
i=1

(ui – 1)u
d–1
i

(
udi – 1

)β–1
log (ui – 1)

+ d (β – 1) c–1
n∑
i=1

(ui – 1)u
d–1
i

(
udi – 1

)–1
log (ui – 1) ,
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Ud(ΘpΘpΘp) = nd–1 +
n∑
i=1

log ui + (β – 1)
n∑
i=1

udi
(
udi – 1

)–1
log ui

– nβ

 n∑
i=1

(
udi – 1

)β–1 n∑
i=1

udi
(
udi – 1

)β–1
log ui,

Us(ΘpΘpΘp) = –n c s–1 + c(d – 1)s–1
n∑
i=1

(ui – 1)u
–1
i

– c d (β – 1) s–1
n∑
i=1

(ui – 1) u
d–1
i

(
udi – 1

)–1

+ n β c d s–1
 n∑
i=1

(
udi – 1

)β–1 n∑
i=1

(ui – 1) u
d–1
i

(
udi – 1

)β–1

and

Uβ(ΘpΘpΘp) = n β–1 +
n∑
i=1

log
(
udi – 1

)
– n

 n∑
i=1

(
udi – 1

)β–1 n∑
i=1

(
udi – 1

)β
log
(
udi – 1

)
.

Solving the equations U(Θp)U(Θp)U(Θp) = 0 simultaneously yields the MLEs of c, d, s and β. The MLE of α is just
α̂(ĉ, d̂, ŝ, β̂). The maximization of the profile log-likelihood might be simpler since it involves only four
parameters.

For interval estimation of the model parameters, we require the observed information matrix
J(Θ)J(Θ)J(Θ), whose elements can be obtained from the authors upon request. Under standard regularity
conditions, the approximate confidence intervals for the model parameters can be constructed based
on the multivariate normal N5(0, J(Θ̂)J(Θ̂)J(Θ̂)–1) distribution.

A major advantage of fitting the proposed distribution to a real data set is that we can easily verify,
based on the likelihood ratio (LR) statistics, whether any of its sub-models (with fewer parameters)
can be preferred to these data.

The maximized (unrestricted and restricted) log-likelihoods are useful to compute LR statistics to
verify if WBXII sub-models (with fewer parameters) can be preferred for fitting a given data set. This
is a major advantage since the WBXII model extends at least twenty lifetime distributions, including
new ones. Let Θ0Θ0Θ0 be the restricted parameter vector for a given WBXII sub-model. Thus, hypothesis
tests of the type H0 : ΘΘΘ = ΘΘΘ0 versus H : ΘΘΘ 6= ΘΘΘ0 can be performed using LR statistics. For example,
the LR statistic for testing H0 : α = β = 1 (versus H : H0 is not true), thus comparing the WBXII and
PGW distributions, is

w = 2{l(ĉ, d̂, ŝ, α̂, β̂) – l(c̃, d̃, s̃, 1, 1)} d→ χ22,

where ŝ, d̂, ĉ, α̂, and β̂ are the MLEs under H, c̃, d̃, and s̃ are the estimates under H0 and Θ0Θ0Θ0 =

(c, d, s, 1, 1)>.
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SIMULATION STUDY

In this section, we evaluate the performance of the MLEs of the parameters of the WBXII distribution.
We conduct Monte Carlo simulations based on 10,000 replications under five different parameter
combinations and sample size n =100, 250 and 500. The simulation study is performed using the
optim subroutine and SANN algorithm in R software for maximizing the log-likelihood in (26). Table III
reports the empirical mean estimates and corresponding root mean squared errors (RMSEs). For all
parameter combinations, we note that the empirical biases and RMSEs decrease when the sample
size increases in agreement with the first-order asymptotic theory.

Table III. Mean estimates and RMSEs of the WBXII distribution.

Mean RMSE

ΘΘΘ n ĉ d̂ ŝ α̂ β̂ ĉ d̂ ŝ α̂ β̂

(0.1, 0.4, 2.5,3,1.5) 100 0.216 0.586 2.763 2.379 1.376 0.285 0.480 1.635 1.631 0.830

250 0.136 0.466 2.569 2.666 1.472 0.138 0.193 1.072 1.150 0.547

500 0.109 0.430 2.526 2.832 1.511 0.058 0.110 0.761 0.824 0.366

(1.5,3,0.2,2,5) 100 1.409 4.700 0.907 2.557 0.835 0.928 2.892 1.452 1.880 0.799

250 1.537 3.338 0.231 2.121 5.121 0.362 1.136 0.122 1.039 1.059

500 1.525 3.209 0.217 2.067 5.073 0.292 0.909 0.084 0.862 0.848

(1,5,5,2,2.3) 100 2.117 5.968 3.756 3.468 1.823 2.011 3.394 2.905 3.225 1.297

250 1.608 5.472 4.137 3.066 2.022 1.288 2.597 2.450 2.539 1.042

500 1.362 5.275 4.380 2.755 2.122 0.900 2.031 2.072 2.030 0.860

(1,5,3,2,0.5) 100 1.430 5.925 3.203 2.184 0.590 1.029 2.822 2.336 1.327 0.583

250 1.288 5.575 3.125 2.080 0.546 0.759 2.206 1.918 0.916 0.447

500 1.183 5.318 3.089 2.037 0.517 0.561 1.770 1.622 0.714 0.314

(0.4,0.2,1.8,3,4) 100 0.674 0.199 2.198 2.833 4.097 0.581 0.125 1.333 1.488 0.803

250 0.543 0.198 1.953 2.860 4.093 0.379 0.098 0.999 1.144 0.584

500 0.475 0.197 1.887 2.913 4.062 0.247 0.067 0.835 0.926 0.428

APPLICATIONS

In this section, we illustrate the usefulness of the WBXII distribution for modeling income and lifetime
data. The first data set represents the times to failure (103 h) of 40 suits of turbochargers in one type of
diesel engine (Xu et al. 2003). These data were previously considered by Benkhelifa (2016). The second
data set consists in annual salaries of 862 professional baseball players of the Major League Baseball
for the season 2016. The data are measured in American dollars and are available for download at
https://www.usatoday.com/sports/mlb/salaries/2016/player/all/. Both data sets are available in the
appendix.
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We use these two data sets to compare the fits of the WBXII distribution with other six related
models, i.e., the beta Burr XII (BBXII), Kumaraswamy Burr XII (KwBXII), BXII, LL, PGW, and W distributions.
The seven competitive models are defined as follows. The BBXII pdf is

f (x) =
cd(x)c–1

scB(α, β)

{
1 –
[
1 + (x/s)c

]–d}α–1[
1 + (x/s)c

]–(dβ+1), x > 0,

where α > 0 and β > 0 are shape parameters; the KwBXII density is

f (x) = α β c d s–cxc–1
[
1 +

(x
s

)c]–d–1{
1 –
[
1 +

(x
s

)c]–d}α–1
×

[
1 –

{
1 –
[
1 +

(x
s

)c]–d}α]β–1
, x > 0,

where α > 0 and β > 0 are shape parameters; the BXII density is given by equation (2); the LL is defined
by taking s = m–1 and d = 1 in (2); and the PGW and W distributions are sub-models of (5) by taking
α = β = 1 and α = β = d = 1, respectively.

In each case, the parameters are estimated by maximum likelihood using the AdequacyModel
script in the R software (Marinho et al. 2016). We report the MLEs and their corresponding standard
errors. We present the following goodness-of-fit statistics: the Akaike information criteria (AIC),
consistent Akaike information criteria (CAIC), Hannan-Quinn information criteria (HQIC), corrected
Anderson-Darling statistic (A∗) (Chen & Balakrishnan 1995) and Kolmogorov-Smirnov (KS) statistic.
The lower values of these statistics are associated with better fits. We also compute the LR statistics
for testing WBXII sub-models.

Turbochargers failure time

Table IV provides some descriptive statistics of the turbochargers failure time data. Note that these
data present negative skewness (S) and kurtosis (K) and have an amplitude of 7.4. We also have close
values for the mean and median. This descriptive summary indicates that the turbochargers data
follow a power-law distribution with a left-skewed tail.

Table IV. Descriptive statistics for turbochargers data.

Mean Median SD Variance S K Min. Max.

6.25 6.50 1.96 3.82 -0.66 -0.36 1.60 9.00

Table V lists the MLEs for the fitted models to these data and their corresponding standard
errors. For all fitted models, the parameter estimates are significant. Table VI gives the goodness-of-fit
statistics. The WBXII distribution has the lowest values for all statistics. Note that the WBXII is quite
competitive with the W distribution. However, the W model may not be an effective alternative for
modeling left-skewed data. Table VII provides the LR statistics for the PGW and W fitted models.
By considering a significance level of 10%, we may reject both sub-models in favor of the WBXII
distribution. It is another clear evidence of the WBXII superiority for modeling these data. Figure 4
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displays the histogram and the estimated densities with lower values for goodness-of-fit statistics.
We note that the WBXII yields a good adjustment to the current data. In fact, the wider model is more
accurate than the W distribution for modeling the right tail and is quite competitive with the BBXII
distribution. Thus, we can conclude from Figure 4 and Tables VI and VII that the WBXII model provides
the best fit to the turbocharges failure time data.

Table V. MLEs of the model parameters and their standard errors in parentheses.

c d s α β

WBXII 13.4956 7.5404 8.8931 1.1128 0.2216

(2.7613) (3.6805) (0.7060) (0.3671) (0.0576)

BBXII 15.4893 11.1316 11.2702 0.1666 4.5249

(0.0395) (0.1854) (0.1994) (0.0282) (2.0589)

KwBXII 15.1758 6.2322 9.2966 0.1559 0.7550

(0.1931) (0.9355) (0.3827) (0.0398) (0.2306)

BXII 3.8290 3.9620 9.6190

(0.5506) (1.8934) (1.5960)

PGW 3.5830 1.3300 7.7010

(0.5466) (0.6152) (1.4125)

W 3.8740 6.9230

(0.5177) (0.2948)

c m

LL 4.8480 6.2230

(0.6544) (0.3476)

Baseball players salaries

Some descriptive statistics for the baseball players data are provided in Table VIII. These data present
positive values for the S and K coefficients, thus indicating right-skew data. We have a high amplitude,
variance, and SD. We also note that the mean and median are not so close. This behavior is quite
common in income data sets.

Table IX provides the MLEs and their standard errors for the seven models fitted to the baseball
players data. We have significant estimates for all parameters of these models. Table X lists some
goodness-of-fit measures for the fitted models. The WBXII distribution presents the lowest values for
all statistics. These results indicate that the WBXII distribution yields a better fit than the other fitted
models to the baseball players data. The results for the LR tests are given in Table XI. Clearly, we reject
the PGW and W distributions in favor of the wider model. So, there is a strong evidence of the potential
need for the extra shape parameters of the WBXII in the second application. Figure 5 displays the fitted
WBXII, BBXII and KwBXII densities and the histogram for the baseball players data. They confirm that
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Table VI. Goodness-of-fit statistics for the fits to the turbochargers failure time data.

AIC CAIC HQIC A∗ KS

WBXII 165.8103 167.5750 168.8635 0.1186 0.0532

BBXII 166.9631 168.7278 170.0163 0.1240 0.0744

KwBXII 167.0753 168.8400 170.1286 0.1241 0.0579

BXII 174.8080 175.4746 176.6399 0.8475 0.1029

PGW 169.6197 170.2864 171.4516 0.4962 0.1066

W 168.9511 169.2754 170.1724 0.5730 0.1072

LL 181.4134 181.7377 182.6347 1.4072 0.1432

Table VII. LR statistics for the fits to the turbochargers failure time data.

Models Θ0Θ0Θ0 Statistic w p-value

WBXII vs PGW (c,d, s, 1, 1)> 7.80889 0.02015

WBXII vs W (c, 1, s, 1, 1)> 9.14138 0.05013
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Figure 4. Histogram and estimated densities of the
WBXII, BBXII and W models for the turbochargers
failure time data.
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Figure 5. Histogram and estimated densities of the
WBXII, BBXII and KwBXII models for the baseball
players data.

the WBXII model yields the best fit. Finally, we can conclude that the WBXII is an effective alternative to
modeling lifetime (see the first data set) and income (see the second data set) data, especially when
they present power-law tails. It is quite competitive to the classical Weibull distribution and other BXII
generalizations.
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Table VIII. Descriptive statistics for baseball players data.

Mean Median SD Variance S K Min. Max.

4,529,859.69 1.5× 106 6,070,096 3.7× 1013 1.98 3.74 507,500 34,416,666

Table IX. MLEs of the model parameters and corresponding standard errors in parentheses.

c d s α β

WBXII 0.5527 0.0796 1.8716 2.4141 7.4298

(0.0686) (0.0115) (0.8292) ( 1.0993) (0.3079)

BBXII 1.8134 0.0487 5.7723 12.3094 6.2716

(0.1742) (0.0046) (0.7939) (0.6308) (0.5546)

KwBXII 3.92390 0.03251 2.59116 9.16545 4.0435

(0.2031) (0.0016) (0.4065) (0.5123) (0.2463)

BXII 6.8459 0.0102 2.6500

(0.6858) (0.0010) (0.3534)

PGW 1.6123 0.0400 10.1363

(0.1926) (0.0047) (1.2913)

W 0.0646 9.9377

(0.0015) (1.2611)

c m

LL 0.1289 14.2324

(0.0036) (1.7615)

Table X. Goodness-of-fit statistics for the fitted models for baseball players data.

AIC CAIC HQIC A∗ KS

WBXII 28023.5004 28023.5705 28032.6096 44.3602 0.2168

BBXII 28977.3246 28977.3947 28986.4338 45.9851 0.3812

KwBXII 29077.1495 29077.2196 29086.2586 45.7928 0.3858

BXII 31195.1989 31195.2268 31200.6643 45.8619 0.5745

PGW 30421.9845 30422.0125 30427.4500 45.2787 0.6359

W 32146.5307 32146.5447 32150.1744 44.9291 0.8667

LL 31825.4901 31825.5040 31829.1337 45.4325 0.7943
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Table XI. Likelihood ratio statistics for the fits to the baseball players data.

Models Θ0Θ0Θ0 Statistic w p-value

WBXII vs PGW (c,d, s, 1, 1)> 2402 < 0.0001

WBXII vs W (c, 1, s, 1, 1)> 4129 < 0.0001

CONCLUDING REMARKS

The five-parameter Weibull Burr XII distribution is introduced and studied in detail. The proposed
model extends at least twenty lifetime distributions, including new ones. Its hazard rate function
can be increasing, decreasing, upside-down bathtub, and bathtub-shaped. It is also very flexible in
terms of the density function, which has several forms including left-skewed, right-skewed, reversed-J,
and bimodal. We emphasize that a shiny application is developed to provide interactive plots and
illustrate the behavior of those functions for several parameter combinations. Some mathematical
properties of the proposed model are presented, including the ordinary and incomplete moments,
quantile and generating functions, mean deviations, stress-strength reliability, and order statistics.
We estimate the model parameters using maximum likelihood, present the components of the score
vector and the profile log-likelihood. We also derive a general result for the Weibull-G family, which
presents a semi-closed form for the maximum likelihood estimator of the parameter α. We provide
applications to real lifetime and income data sets. They illustrate the usefulness of the proposed
distribution for modeling these kinds of data and also prove empirically that the WBXII distribution is
quite competitive to other known Burr XII and Weibull generalizations.
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APPENDIX A

A.1. First data set

Table A.I. Turbochargers failure time data.

1.60 3.50 4.80 5.40 6.00 6.50 7.30 7.70 8.10 8.50

2.00 3.90 5.00 5.60 6.10 6.70 7.30 7.80 8.30 8.70

2.60 4.50 5.10 5.80 6.30 7.00 7.30 7.90 8.40 8.80

3.00 4.60 5.30 6.00 6.50 7.10 7.70 8.00 8.40 9.00

A.2. Second data set

Table A.II. Baseball players salaries data.

30714286 8400000 6500000 4000000 2275000 1050000 530500 518000 511200

34416666 16000000 6750000 4000000 5125000 1050000 530000 518000 511000

31000000 18000000 6725000 4000000 3000000 7081428 530000 517800 511000

29200000 12250000 7333333 4000000 2750000 1000000 530000 517700 511000

25714285 11666667 6575000 4000000 2175000 1000000 530000 517500 510500

25000000 25000000 8666666 4000000 2150000 1000000 530000 517500 510500

25000000 11333333 8750000 3750000 1800000 1000000 529600 517500 510500

24000000 10000000 6500000 3900000 2100000 1000000 529000 517500 510500

25833333 14325000 6250000 3900000 2100000 1000000 529000 517500 510200

25000000 13000000 6500000 3900000 2075000 1000000 528700 517300 510200

24400000 11500000 6425000 3900000 9083333 1000000 528600 517246 510120

24000000 10357142 5543750 3800000 3625000 1000000 528200 517000 510000

23777778 10000000 5500000 3750000 2500000 1000000 528000 517000 510000

25000000 11500000 6250000 3750000 2000000 1000000 527600 516700 510000

22500000 11000000 6250000 3583333 2000000 1000000 527500 516700 510000

23000000 10500000 5487500 3700000 2000000 1000000 527500 516650 510000

22000000 10000000 6225000 3125000 2000000 1000000 527000 516500 510000

24000000 11000000 6200000 3300000 2000000 1000000 527000 516500 510000

30000000 10976096 6170000 3333333 2000000 987500 527000 516500 510000

22125000 10936574 8750000 4000000 2000000 975000 526400 516100 510000

22142857 18000000 6125000 5125000 2000000 975000 526014 516100 510000

17666666 10700000 6125000 3500000 2000000 950000 525500 516100 509700

18000000 10650000 12500000 3500000 2000000 925000 525500 516000 509700

20000000 10550000 8285714 3500000 2000000 2666666 525500 516000 509675
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23000000 14000000 6416666 5400000 2000000 900000 525300 515900 509600

21857142 10400000 6000000 2900000 2000000 900000 525270 515900 509500

27500000 9333333 6000000 3450000 2000000 900000 525000 515800 509500

22000000 12000000 6000000 3400000 2000000 897500 525000 515750 509500

18750000 5700000 6000000 3400000 2000000 895000 525000 515500 509500

21250000 10000000 7750000 3375000 1925000 850000 525000 515400 509500

18555555 7000000 6400000 5166666 1825000 850000 524900 515000 509500

20285714 9650000 5750000 3300000 1800000 810000 524525 515000 509500

15500000 9625000 5731704 3300000 1750000 807500 524500 515000 509500

17000000 10000000 5700000 3275000 1725000 800000 524500 515000 509500

20625000 10000000 7150000 10000000 1700000 800000 524500 515000 509500

22500000 11325000 5600000 3857142 1697500 800000 524100 515000 509500

15775000 11600000 5600000 3200000 1650000 765000 524100 515000 509500

18571429 6500000 5500000 3125000 1650000 725000 524000 515000 509300

23000000 9150000 5250000 3125000 1600000 660000 523900 514875 509200

19500000 25000000 5000000 3150000 1600000 652000 523700 514500 509000

17250000 9000000 4250000 3125000 1600000 650000 523500 514500 508900

11538461 5103900 5500000 3100000 2100000 650000 523500 514500 508800

18000000 8000000 4200000 3025000 1550000 625000 523400 514500 508800

22000000 10000000 6000000 5000000 1525000 607000 523000 514400 508750

17500000 9000000 5350000 3900000 1875000 606000 522900 514400 508600

17000000 8500000 5312000 3500000 1750000 600000 522700 514250 508600

17000000 7500000 5300000 3000000 1500000 600000 522500 514200 508500

18000000 11000000 5857142 3000000 1500000 587500 522500 514000 508500

19000000 8750000 6825000 3000000 1500000 575000 522500 514000 508500

21666666 8000000 5250000 3000000 1500000 575000 522400 513900 508500

11428571 8666666 1312500 3000000 1500000 574000 522300 513900 508500

17142857 4200380 5250000 3000000 1500000 570000 522000 513800 508500

17000000 8375000 2800000 2975000 1500000 570000 521800 513600 508500

16000000 9250000 5100000 2950000 1500000 566000 521700 513308 508500

14250000 6950000 7000000 2925000 1500000 563750 521600 513300 508500

24083333 6000000 10333333 2925000 1500000 556000 521300 513000 508500

15000000 8250000 5000000 4250000 1500000 550000 521300 513000 508500

16000000 7833333 4333333 2900000 1490314 550000 521200 513000 508450

16000000 14285714 5000000 2875000 1475000 550000 521100 513000 508200

15800000 12500000 3750000 3500000 1475000 548000 521000 512900 508200

15800000 10000000 5000000 2800000 1475000 547500 521000 512500 508000
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15800000 9166666 5000000 2800000 1450000 546500 521000 512500 508000

13000000 7000000 5000000 2800000 1400000 546250 520700 512500 508000

14500000 9000000 5000000 2800000 1400000 545000 520500 512500 508000

15000000 8000000 5000000 2800000 1400000 545000 520500 512500 507500

16400000 8000000 4800000 4700000 1387500 545000 520500 512500 507500

15000000 8000000 4800000 3000000 1375000 543400 520300 512500 507500

12000000 8000000 4750000 2750000 1500000 542604 520200 512500 507500

16000000 8000000 7700000 2725000 1350000 542500 520200 512500 507500

14250000 8000000 5500000 2700000 1350000 541000 520000 512500 507500

15000000 8000000 5000000 2650000 3466666 540300 520000 512500 507500

16666666 8571428 4500000 2625000 1300000 540000 520000 512500 507500

15000000 6000000 4500000 2600000 1300000 539500 520000 512500 507500

12000000 7562500 4400000 2600000 1275000 539000 520000 512500 507500

14000000 14000000 4350000 2600000 1275000 539000 520000 512500 507500

14000000 11416666 4325000 2600000 1255000 539000 520000 512500 507500

13000000 7000000 4300000 3833333 5100000 537500 520000 512500 507500

13750000 7666666 5750000 2075000 1250000 537500 520000 512500 507500

13000000 7333333 4250000 2525000 1250000 537500 520000 512500 507500

8583333 7500000 4250000 4710739 1250000 536500 520000 512500 507500

12083333 6500000 4250000 2750000 1250000 536200 519700 512100 507500

11000000 6250000 4225000 2500000 1250000 535375 519500 512000 507500

13000000 7250000 4200000 2500000 1250000 535000 519500 512000 507500

13000000 7250000 4200000 2500000 1250000 535000 519400 512000 507500

12500000 7250000 4150000 2500000 1225000 535000 519300 511900 507500

13750000 6000000 4150000 2500000 4600000 535000 519200 511750 507500

13600000 7150000 4125000 2500000 1200000 535000 519100 511500 507500

8500000 8333333 2200000 2500000 1185000 534900 519000 511500 507500

16000000 6500000 4100000 2500000 1162500 533400 518500 511500 507500

13250000 7000000 4100000 2500000 1150000 532900 518500 511500 507500

12000000 7000000 10416666 2500000 975000 532500 518425 511500 507500

12500000 7000000 5918483 2425000 1100000 532500 518200 511400 507500

16875000 7000000 5000000 2400000 1065000 532500 518100 511360 507500

12500000 9250000 5000000 2375000 1050000 532000 518000 511250 507500

13333333 6166666 4000000 2350000 1050000 532000 518000 511200 507500

507500 507500 507500 507500 507500 507500 507500
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