
An Acad Bras Cienc (2022) 94(Suppl.1): e20201736 DOI 10.1590/0001-3765202220201736
Anais da Academia Brasileira de Ciências  |  Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc  |  www.fb.com/aabcjournal

An Acad Bras Cienc (2022) 94(Suppl.1)

Running title: HTS DNA from 
Ellsworth

Academy Section: 

MICROBIOLOGY

e20201736

94 
(Suppl.1)
94(Suppl.1)

DOI
10.1590/0001-3765202220201736

MICROBIOLOGY

Using metabarcoding to assess 
Viridiplantae sequence diversity 
present in Antarctic glacial ice 

PAULO E.A.S. CÂMARA, GRACIELE C.A. MENEZES, OTAVIO H.B. PINTO, MICHELINE 
C. SILVA, PETER CONVEY & LUIZ H. ROSA

Abstract: Antarctica contains most of the glacial ice on the planet, a habitat that is 
largely unexplored by biologists. Recent warming in parts of Antarctica, particularly the 
Antarctic Peninsula region, is leading to widespread glacial retreat, releasing melt water 
and, potentially, contained biological material and propagules. In this study, we used 
a DNA metabarcoding approach to characterize Viridiplantae DNA present in Antarctic 
glacial ice. Ice samples from six glaciers in the South Shetland Islands and Antarctic 
Peninsula were analysed, detecting the presence of DNA representing a total of 16 taxa 
including 11 Chlorophyta (green algae) and fi ve Magnoliophyta (fl owering plants). The 
green algae may indicate the presence of a viable algal community in the ice or simply 
of preserved DNA, and the sequence diversity assigned included representatives of 
Chlorophyta not previously recorded in Antarctica. The presence of fl owering plant DNA 
is most likely to be associated with pollen or tissue fragments introduced by humans.
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INTRODUCTION

Glaciers and ice sheets cover about 15 million 
km2 globally, or about 10% of the Earth’s land 
surface (Anesio & Laybourn-Parry 2012). A 
limited number of microorganisms (bacteria, 
various groups of algae, and fungi) are known to 
be able to survive the harsh conditions within 
ice (Sanyal et al. 2018, Perini et al. 2019). Many 
of these microorganisms exhibit a range of 
adaptations that protect their metabolism from 
the damaging effects of harsh environmental 
conditions such as extreme temperatures and 
lack of liquid water (Siddiqui & Cavicchioli 
2006, Margesin & Miteva 2011), including some 
of potential biotechnological interest. Some 
microbial communities present in glacial ice 
are biochemically active (Price 2000, Anesio et 
al. 2009, Hodson et al. 2010). However, available 

reports are mostly restricted to bacteria and 
from studies in the Northern Hemisphere 
(Sheridan et al. 2003, Miteva & Brenchley 2005). 

Antarctica contains most of the world’s 
glacial ice (de Menezes et al. 2020), representing 
about 70% of freshwater globally (Sadaiappan et 
al. 2020). Formed by the accumulation of snow 
gradually compressed over many years, Antarctic 
glacial ice may provide a unique habitat for 
microorganisms that could have been trapped 
for many thousands of years (Abyzov 1993, 
Gunde-Cimerman et al. 2003), with the oldest ice 
yet drilled in Antarctica being dated to several 
hundred thousand years (Elzinga 2012). 

In recent decades, parts of Antarctica have 
experienced the impacts of anthropogenic 
warming. In the Antarctic Peninsula region, 
the temperature increase already exceeds 
1.5 °C over pre-industrial temperatures (Turner 
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et al. 2005), where it has led to widespread 
glacial retreat (Cook et al. 2017). This releases 
meltwater into the surrounding environment, 
potentially including viable biological material 
and propagules. Therefore, understanding the 
biological diversity contained in this habitat is a 
research priority.

To date, very few studies have addressed 
the biodiversity of ice-associated habitats. The 
majority have focused on bacteria and are 
mostly based on traditional culture methods 
(Margesin et al. 2002, Foght et al. 2004, Yallop & 
Anesio 2010) or direct observation (Porazinska 
et al. 2004, Stibal et al. 2006). The biodiversity 
and adaptations of species found in some ice-
associated habitats, such as glacier surface 
cryoconite holes (Porazinska et al. 2004) and in 
surface snow (Davey et al. 2019) have received 
research attention, and there are a small 
number of studies of algal communities found in 
glacier ice, mostly in the Northern Hemisphere 
and focused on the ice surface (Takeuchi et 
al. 2015, Stibal et al. 2017, Onuma et al. 2018). 
The considerable differences in physical and 
chemical properties of surface snow and bare 
ice result in very distinct biological communities 
being present in these two environments 
(Yoshimura et al. 1997, Lutz et al. 2017). 

Rapid developments in molecular 
biological techniques in recent decades now 
allow the assessment of biological diversity 
in environmental samples based on the DNA 
sequences present, for instance through 
DNA metabarcoding using high throughput 
sequencing (HTS) (Rippin et al. 2018, Ruppert 
et al. 2019). This includes the possibility of 
detecting stages which are typically not detected 
in morphological surveys (e.g. pollen, spores, 
microscopic fragments and even single cells), as 
well as traces of environmental DNA, which may 
sometimes be preserved for many years (Barnes 
& Turner 2015). Conversely, these approaches 

do not allow assessment of viability or activity, 
while putative identifications depend on the 
level of diversity coverage achieved by existing 
databases (Darling & Mahon 2011). To date, 
only a few studies (Rippin et al. 2018, Garrido-
Benavent et al. 2020, Fraser et al. 2018, Câmara 
et al. 2020) have applied HTS for assessing 
plant biodiversity in Antarctica, and none in 
terrestrial glacier ice. The aim of the current 
study was, therefore, to use HTS to characterize 
Viridiplantae DNA present within glacial ice from 
Antarctica.

MATERIALS AND METHODS
Sampling
We collected three glacial ice fragments  of 
approximately 20 kg each were collected from 
the ablation zone of seven glaciers in the 
South Shetland Islands and the north-west 
Antarctic Peninsula during the austral summer 
of 2015/2016 (Figure 1, Table I). Immediately after 
collection, the external surface of the ice was 
sterilized following the protocol established by 
de Menezes et al. (2020), ice samples were then 
melted at room temperature (ca. 22°C) for 48 h 
in sterile conditions. The water obtained was 
filtered using 0.47 µm membranes (Millipore, 
USA). A total of 12-15 L of ice were filtered until 
the membranes were saturated (ca. 4-5 L per 
membrane), meaning a total of three membranes 
were obtained from each site. Membranes were 
stored at -20°C until DNA extraction.

DNA extraction, Illumina library construction 
and sequencing
Total DNA was extracted as described by Lever et 
al. (2015). For DNA cleaning we used the DNeasy 
Plant Mini Kit (QIAGEN, Carlsbad, USA) from step 
six, following the manufacturer’s instructions. 
The three membranes from each sampling site 
were extracted separately, with the products 
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obtained then being combined to concentrate 
the DNA. DNA quality was analysed by agarose 
gel electrophoresis (1% agarose in 1× Trisborate-
EDTA) and then quantified using Quanti-iT™ Pico 
Green dsDNA Assay (Invitrogen). The internal 
transcribed spacer 2 (ITS2) of the nuclear 
ribosomal DNA was used as a DNA barcode for 
molecular species identification (Chen et al. 
2010, Richardson et al. 2015) using the universal 

primers ITS3 and ITS4 (White et al. 1990). Library 
construction and DNA amplification were 
performed using the Library kit Herculase II 
Fusion DNA Polymerase Nextera XT Index Kit V2, 
following Illumina 16S Metagenomic Sequencing 
Library Preparation Part #15044223 Rev. B 
protocol. Paired-end sequencing (2 × 300 bp) 
was performed on a MiSeq System (Illumina) by 
Macrogen Inc. (South Korea).

Table I. Sites were glacial ice was sampled in South Shetland Islands and Antarctic Peninsula.

Glacier Site Coordinates Code
King George Island Ajax/Stenhouse 62°06’S, 058°27”W KGI
Greenwich Island Fuerza Aerea 62°30’S 59°38”W Grw
Livingston Island Huron 62°37’50”S 60°06’50”W Livin

Antarctic Peninsula 1 Sikorsky 64°12’S 60°53”W Pen1
Antarctic Peninsula 2 Leonardo/Blanchard 64°42’S, 61°58’W Pen2
Arctowski Peninsula Rozier/Woodbury 64°45’S 62°13”W Arctow

Figure 1. Map showing the sampling locations in the South Shetland Islands, KGI = King George Island, Grw = 
Greenwich Island, Livin = Livingston Island, Pen1 = Antarctic Peninsula 1, Pen2 = Antarctic Peninsula 2, Arctow = 
Arctowski Peninsula.
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Data analysis
Raw fastq files were filtered using BBDuk version 
38.34 (BBMap – Bushnell B. –sourceforge.net/
projects/bbmap/) to remove Illumina adapters, 
known Illumina artefacts, and the PhiX Control 
v3 Library. Quality read filtering was carried 
out using Sickle version 1.33 -q 30 -l 50 (Joshi 
et al. 2011), to trim 3’ or 5’ ends with low Phred 
quality score, and sequences shorter than 50 bp 
were discarded. The remaining sequences were 
imported to QIIME2 version 2019.10 (https://
qiime2.org/) for bioinformatics analyses (Bolyen 
et al. 2019) and the pipeline was executed 
for merged pair-ended sequences with the 
following plug-ins: vsearch join-pairs (Rognes 
et al. 2016), vsearch dereplicate-sequences, 
quality-filter q-score-joined (Bokulich et 
al. 2013), vsearch cluster-features-de-novo 
97% identity limit, vsearch uchime-denovo. 
Taxonomic assignments were determined for 
operational taxonomic units (OTUs) using the 
feature-classifier (Bokulich et al. 2018) classify-
sklearn against the PLANiTS2 database (Banchi 
et al. 2020) trained with Naïve Bayes classifier. 
We follow the definition of Viridiplantae of 
Leliaert et al. (2012).

Many factors, including extraction, PCR and 
primer bias, can affect the number of reads 
obtained (Medinger et al. 2010), and thus lead 
to misinterpretation of absolute abundance 
(Weber & Pawlowski 2013). However, Giner et 
al. (2016) concluded that such biases did not 
affect the proportionality between reads and 
cell abundance, implying that more reads are 
linked with higher abundance (Deiner et al. 2017, 
Hering et al. 2018). Therefore, for comparative 
purposes we used the number of reads as a 
proxy for relative abundance.

RESULTS

The calculated rarefaction curves indicated that 
the sampling gave an accurate representation 
of the local OTU diversity in the sites where 
such a curve was possible to calculate (Fig. 
2), for Arctowski Peninsula the curve had not 
completely stabilized. For sites with only one 
taxon (e.g. Livingston Island) it was not possible 
to produce a rarefaction curve.

A total of 2,007,454 paired-end DNA reads 
were generated in the sequencing run of which 
704,819 reads remained after quality filtering, 
representing 16 OTUs (Table II). These were 
assigned to 11 Chlorophyta (green algae) and five 
Magnoliophyta (flowering plants). Some OTUs 
could only be resolved at higher taxonomic level 
(family, order or division). The unassigned ranks 
refer to groups not present in the consulted 
databases (Fig. 3), mostly representing Fungi. 

Sequences assigned to a number of 
flowering plants (Magnoliophyta) were also 
identified (Table II), with four OTUs from King 
George Island and one from the Antarctic 
Peninsula region. The alga Koliella longiseta 
had the highest number of reads, followed by 
Chlamydomonas nivalis. The most widespread 
taxon (present in four sites) was also K. longiseta. 

DISCUSSION

Hodson et al. (2008) recognised two glacial 
ecosystems, supraglacial, including organisms 
living on the ice surface, and subglacial, 
including organisms living within the ice layers, 
with the former community being more diverse 
and abundant. 

The sequence data obtained here revealed 
the presence of a quite diverse algal assemblage. 
Koliella longiseta, a freshwater species, was 
the most abundant OTU and was also present 
in four of the six glaciers glacial ice samples 
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obtained. The species was previously reported 
by Câmara et al. (2020) in a metabarcoding study 
of soil samples from Deception Island, also in 
the South Shetland Islands. Representatives of 
this genus are known to occur on alpine glacier 
surfaces and in snow (Hindák 1996). The second 
most abundant OTU was C. nivalis, a freshwater/
terrestrial species, which was present at two 
sampling locations. Clamydomonas nivalis 
is also a well-known snow alga (Remias et al. 
2005) and has been reported from mountains 
and snowfields globally (Guiry & Guiry 2021). 
Chloromonas alpina is also a snow alga, 

but has not previously been reported from 
Antarctica, with records from Europe, India and 
Australia/New Zealand (Guiry & Guiry 2021). 
Myrmecia bisecta is a terrestrial alga that 
has been reported in a metabarcoding study 
on Deception Island (Câmara et al. 2020) and 
also in a traditional culture study of soil near 
Bellingshausen Station on King George Island 
(Andreyeva & Kurbatova 2014). Raphidonema 
nivale is another snow alga that is also found 
in terrestrial and freshwater habitats, with wide 
occurrence in Europe, North and South America, 
Asia and Australia (Guiry & Guiry 2021), and 

Figure. 2. Rarefaction curves for samples from (a) King George Island (b) Greenwich Island, (c) Antarctic Peninsula 
2, (d) Arctowski Peninsula. Due to low numbers of taxa detected, it was not possible to generate rarefaction curves 
for the remaining samples. Blue lines represent 95% confidence limits.
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again recorded through metabarcoding in soil 
on Deception Island (Câmara et al. 2020).

Among the Ulotrichales, Chlorothrix is a 
genus of marine algae which has only three 
European species recognised. DNA sequences 
assigned to this genus have recently been 
reported from Deception Island (Câmara et al. 
2020). Monostroma angicava is also a marine 
species, reported from Japan, China, Korea and 
Norway but not previously from Antarctica. The 
closely related species M. kuroshiense F. Bast. 
and M. nitidum Wittrock are widely cultivated 

in Asia as food and have been used for 
treating viral infections (Kazłowski et al. 2012). 
Planophila is a genus of terrestrial or subaerial 
algae with only three recognised European 
species, although again reported in soil from 
Deception Island (Câmara et al. 2020). The genus 
Ulothrix includes about 39 accepted species, 
with representatives occurring in both marine 
and freshwater environments, cosmopolitan 
in temperate and colder regions (Guiry & 
Guiry 2021), and sequences assigned to this 
genus have again been reported in soil from 

Table II. Assigned plant OTUs present in glacier ice obtained from six different sampling locations, with the 
number of reads for each. KGI = King George Island, Grw. = Greenwich Island, Pen1 = Antarctic Peninsula 1, Pen2= 
Antarctic Peninsula 2, Arctow.= Arctowski Peninsula and Living. = Livingston Island. 

TAXA KGI Grw. Pen. 1 Pen. 2 Arctow. Livin.
Phylum Chlorophyta
Chlamydomonadales 0 151 0 14 01 0

Chlamydomonas nivalis (F.A. Bauer) Wille 0 685 0 1074 0 0
Chlorelalles

Chloromonas alpina Wille 0 0 0 62 0 0
Prasiolales

Myrmecia bisecta Reisigl 0 18 0 0 0 0
Koliella longiseta (Vischer) Hindák 0 307 203 9209 11 0

Raphidonema nivale Lagerheim 0 0 0 249 0 0
Ulotrichales

Chlorothrix sp. 03 32 0 166 0 0
Monostroma angicava Kjellman 0 0 0 0 0 20

Planophila sp. 0 0 0 0 2 0
Ulothrix sp. 0 0 0 4 0 0
Urospora sp. 23 0 0 99 0 0

Phylum Magnoliophyta 
Fabaceae

Cenostigma sp. 3 0 0 0 0 0
Fagaceae

Nothofagus pumilio (Poepp. & Endl.) Krasser 56 0 0 0 0 0
Myrtaceae

Eugenia boliviana (D. Legrand) Mattos 5 0 0 0 0 0
Plantaginaceae

Plantago lagopus L. 0 0 0 0 15 0
Rosaceae
Malus sp. 1 0 0 0 0 0
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Deception Island (Câmara et al. 2020), Ulothrix 
australis  Gain has been previously reported 
from the Antarctic Peninsula (Papenfuss 1964). 
Urospora is a widespread marine genus with 
about 10 accepted species, including reports 
from the Arctic (Lee 1980), and with the species 
U. penicilliformis (Roth) Areschoug reported 
from the Antarctic Peninsula, Wilkes Land and 
the South Shetland Islands (Papenfuss 1964). 
The presence of sequences assigned to marine 
species could suggest seawater contamination 
although. As the studied glaciers are all coastal 
and the sampled ice surfaces were cleaned 
before DNA extraction, it is also possible that 
organisms (or propagules or fragments) were 
transferred in marine aerosols and became 
trapped in the ice.

Among the sequences assigned to fl owering 
plants (Magnoliophyta), the most abundant 
OTU was the Fagaceae Nothofagus pumilio, a 
southern beech tree species native to the Andes 
of Patagonia, Tierra del Fuego and Navarino 
Island, where it is widespread and abundant. 
Pollen of this tree genus is widely reported in 
palynological studies of both ice and sediment 
cores obtained in Antarctica. The Plantaginaceae 
Plantago lagopus is a herb distributed in 
Europe, Asia and South America and used as a 
herbal tea and in medication for blood pressure 

(Galisteo et al. 2005). Eugenia boliviana an 
endemic Mytaceae from the Bolivian (Andes) 
and Southern Brazil, Cenostigma is a neotropical 
legume genus with medicinal uses and the 
Rosaceae Malus (apple) is a widely cultivated 
for food (Jackson 2003). None of these taxa are 
considered as invasive, and the association of 
several with food or medicinal uses may suggest 
a human role in their presence in the current 
study. This inference may also be supported 
by the majority of fl owering plant OTUs being 
found on King George Island, which is one of the 
most intensively human impacted locations in 
Antarctica. Indeed, the Malus OTU was present in 
ice obtained very close to the Brazilian Antarctic 
Station Comandante Ferraz. 

The  presence of DNA assigned to OTUs of 
fl owering plants most likely refl ects the presence 
of pollen or tissue fragments, or brought by 
humans, especially taxa used as food.

CONCLUSIONS

This study is the fi rst to use a metabarcoding 
approach to assess DNA sequence diversity 
present in Antarctic glacial ice. The data obtained 
confi rm the presence of Viridiplantae DNA in the 
ice. The OTU diversity detected suggests that the 

Figure 3. Histogram showing a) Tthe total number of reads obtained from each sampling site, including unassigned 
reads; and b) Percentage of groups represented, with the exclusion of unassigned reads.
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ice may contain a community of green algae, 
though cannot differentiate whether members 
of this are active or viable, or are represented 
by preserved DNA. Chlorophyta records include 
cold environment taxa not previously reported 
from Antarctica. The presence of DNA assigned 
to OTUs of flowering plants most likely reflects 
the presence of pollen or tissue fragments, or an 
association with human contamination. 
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