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Abstract: We define two new flexible families of continuous distributions to fit real
data by compounding the Marshall–Olkin class and the power series distribution. These
families are very competitive to the popular beta and Kumaraswamy generators. Their
densities have linear representations of exponentiated densities. In fact, as the main
properties of thirty five exponentiated distributions are well-known, we can easily obtain
several properties of about three hundred fifty distributions using the references of this
article and five special cases of the power series distribution. We provide a package
implemented in R software that shows numerically the precision of one of the linear
representations. This package is useful to calculate numerical values for some statistical
measurements of the generated distributions. We estimate the parameters by maximum
likelihood. We define a regression based on one of the two families. The usefulness of a
generated distribution and the associated regression is proved empirically.

Key words: generating function, Marshall–Olkin family, maximum likelihood, moment,
power series distribution.

INTRODUCTION

The Marshall–Olkin (“MO”) family (Marshall & Olkin 1997) adds one parameter to a parent distribution.
Let G(z) = G(z;τττ) be the parent cumulative distribution function (cdf) of a random variable Z with
parameter vector τττ = (τ1, . . . , τq)>. The survival function and probability density function (pdf) of Z
are Ḡ(z) = Ḡ(z;τττ) and g(z) = g(z;τττ), respectively.

The cdf H(z) and survival function H̄(z) = 1 – H(z) of the MO class with baseline G(z;τττ) are

H(z) = H(z; α,τττ) =
G(z;τττ)

1 – ᾱḠ(z;τττ)
, z ∈ R, α > 0, (1)

and
H̄(z) = H̄(z; α,τττ) =

αḠ(z;τττ)
1 – ᾱḠ(z;τττ)

, (2)

respectively, where ᾱ = 1 – α.
Equation (1) can generate many continuous distributions from popular ones. The MO-G density

function can be expressed as

h(z) = h(z; α,τττ) =
α g(z;τττ)

[1 – ᾱḠ(z;τττ)]2
. (3)
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For α = 1, h(z) = g(z;τττ) is the simplest case of (3). Marshall & Olkin (1997) pioneered the
MO-Weibull (MOW) distribution which is a useful extension of the Weibull.

Consider N random variables Z1, . . . , ZN independent and identically distributed (i.i.d.) with cdf
H(z) and pdf h(z) given by (1) and (3), respectively. Here, N is a discrete random variable with support
{1, 2, . . .}. Henceforth, let X = max{Z1, . . . , ZN} and Y = min{Z1, . . . , ZN} be two random variables
assuming that N has the zero-truncated power series (PS) distribution with probability mass function
(pmf)

pn = P(N = n; θ) =
an θn

C(θ)
,n = 1, 2, . . . , (4)

where an > 0 (for n ≥ 1), θ is called the power parameter and C(θ) =
∑∞
n=1 an θn > 0. The probability

generating function (pgf) of N is P(z) = E(zN) = C(z θ)/C(θ).
Five important distributions are special cases of (4): the zero-truncated Poisson, logarithmic,

negative binomial, geometric and zero-truncated binomial distributions.
The cdf of X = max{Z1, . . . , ZN} conditional given N = n is

FX(x | N = n) = P [X ≤ x|N = n] = H(x; α,τττ)n,

and then the unconditional cdf of X follows from (4)

FX(x) =
∞∑
n=1

H(x; α,τττ)n
an θn

C(θ)
=
C (θH(x; α,τττ))

C(θ)
. (5)

The conditional cdf of Y = min{Z1, . . . , ZN} under N = n is

FY(y | N = n) = P [Y ≤ y|N = n] = 1 – H̄(y; α,τττ)n,

and then the unconditional cdf of Y follows from (4) as

FY(y) = 1 –
∞∑
n=1

H̄(y; α,τττ)n
an θn

C(θ)
= 1 –

C (θ H̄(y; α,τττ))
C(θ)

. (6)

Equations (5) and (6) define two Marshall–Olkin Power Series-G (MOPS-G) families under baseline
G. They provide a strong motivation for explaining the failure time of any mechanism formed by an
unknown number N of identical and independent (parallel or serial) components. The densities of X
and Y are obtained by differentiating (5) and (6). We emphasize that these equations can generate
many MOPS models. For each baseline G, we can generate ten (2 × 5) associated models from the
five discrete distributions in Equation (4). For α = 1, we have the Power Series-G (PS-G) classes under
baseline G.

The minimum (Y) and maximum (X) statistics can be applied in several series and parallel systems
with identical components and have many industrial and biological applications. In parallel systems,
the random variable Y models the time of the first component to fail, while X models the time for
the breakout system. A dual interpretation can be given for systems with serial components. These
random variables are also very useful in oncology. For example, suppose we are studying a recurrence
of a certain type of cancerous tumor of an individual after undergoing any kind of treatment. So, the
time for the first cell to activate to produce cancer cells can be modeled by the generated distribution
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of Y , while the disease manifestation (if it occurs only after an unknown number of factors have been
active) can be modeled by the generated distribution of X.

Four new distributions based on the MOPS construction are introduced for illustrative purposes in
Section Four special models. We derive linear representations for the densities of X and Y in Section
Expansions. A package in R is presented in Section Numerical evaluation to calculate numerically
several mathematical properties for the generated distributions based on the linear representations.
General structural properties for the two families are addressed in Section Properties. In Section
Estimation, we estimate the parameters for one of the families. We introduce in Section Regression
the Marshall–Olkin Truncated Poisson Weibull regression defined from one of the families. In Section
Two simulation studies, some simulations examine the accuracy of the maximum likelihood estimates
(MLEs) and the quantile residuals (qrs). Two applications prove the utility of our finding in Section
Applications. Finally, we offer concluding remarks in Section Conclusions.

FOUR SPECIAL MODELS

First, consider the zero-truncated Poisson in (4). The cdfs of the Marshall–Olkin Zero-Truncated
Poisson-G (MOTP-G) distributions are determined from Equations (5) and (6) as

FX(x) = (eθ – 1)–1 [exp{θH(x; α,τττ)} – 1] (7)

and

FY(y) = 1 – (eθ – 1)–1
[
exp

{
θ H̄(y; α,τττ)

}
– 1
]
. (8)

The Weibull cdf with scale parameter λ > 0 and shape parameter β > 0 is (for x ≥ 0)

G(z; λ, β) = 1 – exp
[
–(λz)β

]
.

Then, the cdf and survival function of the MO-Weibull (MOW) distribution are

H(z) = H(z; α, λ, β) =
1 – exp

[
–(λz)β

]
1 – ᾱ exp

[
–(λz)β

]
and

H̄(z) = H̄(z; α, λ, β) =
α exp

[
–(λz)β

]
1 – ᾱ exp

[
–(λz)β

] ,
respectively.

By inserting the last two formulae in Equations (7) and (8) and differentiating the resulting
expressions, we obtain the MOTP-Weibull (MOTPW) densities

fX(x) =
α θ β λ

β xβ–1 e–u

(ej – 1) (1 – ae–u)2
exp

[
θ (1 – e–u)
(1 – ᾱe–u)

]
(9)

and

fY(y) =
α θ β λ

β xβ–1 e–u

(ej – 1) (1 – ae–u)2
exp

[
α θ e–u

(1 – ᾱe–u)

]
, (10)
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respectively, where u = u(x) = (λx)β in fX(x) and u = u(y) = (λy)β in fY(y).
Second, consider the geometric distribution in (4). The cdfs of the Marshall–Olkin Geometric-G

(MOG-G) classes follow from Equations (5) and (6)

FX(x) =
(1 – θ)
θ

[
θH(x; α,τττ)

1 – θH(x; α,τττ)

]
(11)

and

FY(y) = 1 –
(1 – θ)
θ

[
θ H̄(y; α,τττ)

1 – θ H̄(y; α,τττ)

]
. (12)

The Burr XII (BXII) cdf is (for x > 0)

G(z; β, λ) = 1 –
(
1 + zβ

)–λ
, (13)

where β > 0 and λ > 0 are shape parameters. For λ = 1 and β = 1 in Equation (13), we have the
log-logistic (LL) and Lomax distributions, respectively.

Hence, the cdf and survival function of the Marshall–Olkin Burr XII (MOBXII) distribution are

H(z) = H(z; α, λ, β) =
1 – (1 + zβ)–λ

1 – ᾱ(1 + zβ)–λ

and

H̄(z) = H̄(z; α, λ, β) =
α(1 + zβ)–λ

1 – ᾱ(1 + zβ)–λ
,

respectively.
By inserting the last two formulae in Equations (11) and (12) and differentiating the resulting

expressions with respect to x and y, respectively, we obtain the MOG-Burr XII (MOGBXII) densities

fX(x) =
α β λ (1 – θ) xβ–1 (1 + xβ)–λ–1[
1 – θ – (1 – α – θ)(1 + xβ)–λ

]2 (14)

and

fY(y) =
α β λ (1 – θ) xβ–1 (1 + xβ)–λ–1{
1 – [1 – (1 – θ)α] (1 + xβ)–λ

}2 . (15)

For the MOTPW and MOGBXII distributions (to the maximum X) referred to (9) and (14), some plots
of the densities and cumulative functions are displayed in Figures 1 and 2, respectively. The various
forms of the densities indicate more flexibility than the parent distributions.

We can note increasing, decreasing, and unimodal shapes for the hrf of the MOTPW distribution
in Figure 3. Also, we see a slightly different hrf with increasing, decreasing and increasing shape.

Graphics comparing the histograms from two simulated data sets and the MOTPW and MOGBXII
densities of X under specified parameters are reported in Figure 4. They show good agreement between
the simulated values and these densities.
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Figure 1. Plots of the density and cumulative functions of the MOTPW distribution under four scenarios. (a) α = 30α = 30α = 30,
λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying θθθ. (b) α = 30α = 30α = 30, λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying θθθ. (c) θ = 0.09θ = 0.09θ = 0.09, λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying ααα. (d)
θ = 0.09θ = 0.09θ = 0.09, λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying ααα.

0 2 4 6 8 10

0
.0

0
.1

0
.2

0
.3

0
.4

x

f(
x
)

θ=0.05
θ=0.10
θ=0.30
θ=0.60
θ=0.90

(a)

0 2 4 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

θ=0.05
θ=0.10
θ=0.30
θ=0.60
θ=0.90

(b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.5

1
.0

1
.5

x

f(
x
)

α=0.05
α=0.10
α=0.20
α=0.30
α=0.40

(c)

0 1 2 3 4 5 6

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

α=0.05
α=0.10
α=0.20
α=0.30
α=0.40

(d)

Figure 2. Plots of the density and cumulative functions of the MOGBXII distribution under four scenarios. (a) α = 10α = 10α = 10,
λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying θθθ. (b) α = 10α = 10α = 10, λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying θθθ. (c) θ = 0.9θ = 0.9θ = 0.9, λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying ααα. (d)
θ = 0.9θ = 0.9θ = 0.9, λ = 2λ = 2λ = 2, β = 1.5β = 1.5β = 1.5, and varying ααα.
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Figure 3. Plots of the hrf of the MOTPW model.
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Figure 4. Plots of the MOTPW (a) and MOGBXII (b) densities and histograms of simulated data.

EXPANSIONS

We obtain useful linear representations for the density functions of X and Y for two separated cases
α ∈ (0, 1) and α > 1. For α = 1, we have H(z; 1,τττ) = G(z;τττ).

By inserting (1) in Equation (5) and letting Ḡ(x) = Ḡ(x;τττ), we can write

FX(x) =
∞∑
n=1

pn G(x)n

[1 – ᾱḠ(x)]n
. (16)

First, we consider the density of the maximum X when α ∈ (0, 1). For |z| < 1 and n = 1, 2, . . ., the
negative binomial expansion holds

(1 – z)–n =
∞∑
k=0

(
–n
k

)
(–z)k. (17)

Expanding [1 – ᾱḠ(z)]–n as in Equation (17) since α ∈ (0, 1), we have

FX(x) =
∞∑
n=1

∞∑
k=0

(
–n
k

)
(–ᾱ)k pn G(x)n [1 – G(x)]k.

Henceforth, let Ts ∼ exp-G(s) be the exponentiated-G (exp-G) random variable with power
parameter s > 0. Its cdf and pdf are Πs(x) = Πs(x;τττ) = G(x;τττ)s and πs(x) = πs(x;τττ) =

s G(x;τττ)s–1 g(x;τττ), respectively. Many exp-G properties have been studied exhaustively by several
authors (Tahir & Nadarajah 2015). We can write

FX(x) =
∞∑
n=1

wn,0Πn(x) +
∞∑
n=1

∞∑
k=1

wn,kΠn(x) [1 – G(x)]
k,
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where wn,k = wn,k(α, θ) =
(–n
k
)
(–ᾱ)k pn for n = 1, 2, . . . and k = 0, 1, . . . Further, using the binomial

theorem, we obtain

FX(x) =
∞∑
n=1

wn,0Πn(x) +
∞∑
n=1

∞∑
k=1

k∑
i=0

wn,k,iΠn+i(x),

where wn,k,i = (–1)i
(k
i
)
wn,k for i = 0, 1, . . . , k.

By differentiating the last equation, we obtain

fX(x) =
∞∑
n=1

wn,0 πn(x) +
∞∑
n=1

∞∑
k=1

k∑
i=0

wn,k,i πn+i(x). (18)

We now move to the density of the maximum X when α > 1. We modify the denominator in (16)

FX(x) =
∞∑
n=1

pn G(x)n

αn
[
1 – (1 – α–1)G(x)

]n
and then apply Equation (17) to find

FX(x) =
∞∑
n=1

∞∑
k=0

vn,kΠn+k(x),

where vn,k = vn,k(α, θ) = (–1)k
(–n
k
)
α
–n (1–α–1)k pn (for n = 1, 2, . . . and k = 0, 1, . . .). By differentiating

FX(x), the density of X follows as

fX(x) =
∞∑
n=1

∞∑
k=0

vn,k πn+k(x). (19)

Next, we consider the density of the minimum Y . By inserting (2) in Equation (6), we have

FY(y) = 1 –
∞∑
n=1

α
n pn Ḡ(y)n

[1 – ᾱḠ(y)]n
. (20)

For α ∈ (0, 1), we apply expansion (17) in the last equation to

FY(y) = 1 –
∞∑
n=1

∞∑
k=0

qn,k Ḡ(y)
n+k,

where qn,k = qn,k(α, θ) = (–1)k
(–n
k
)
ᾱ
k
α
n pn for n = 1, 2, . . . and k = 0, 1, . . .

By using the binomial theorem in Ḡ(y)n+k, we have

FY(y) = 1 +
∞∑
n=1

∞∑
k=0

n+k∑
i=0

qn,k,iΠi(y),

where qn,k,i = (–1)i+1
(n+k

i
)
qn,k for i = 0, 1, . . . ,n+ k.
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By differentiating FY(y), the density of Y can be expressed as

fY(y) =
∞∑
n=1

∞∑
k=0

n+k∑
i=1

qn,k,i πi(y). (21)

We now obtain the density of Y when α > 1. By changing the denominator in Equation (20), we
have

FY(y) = 1 –
∞∑
n=1

pn Ḡ(y)n[
1 – (1 – α–1)G(y)

]n .
Applying expansion (17) in the last equation

FY(y) = 1 –
∞∑
n=1

∞∑
k=0

tn,k Ḡ(y)
n G(y)k,

where tn,k = tn,k(α, θ) = (–1)k (1 – α–1)k
(–n
k
)
pn (for n = 1, 2, . . . and k = 0, 1, . . .).

Using the binomial theorem, we can rewrite FY(y) as

FY(y) = 1 +
∞∑
n=1

∞∑
k=0

n∑
i=0

tn,k,iΠi+k(y),

where tn,k,i = (–1)i+1
(n
i
)
tn,k for i = 0, 1, . . . By simple differentiation

fY(y) =
∞∑
n=1

∞∑
k=0

n∑
i=0

tn,k,i πi+k≥1(y), (22)

where πi+k≥1(y) is the exp-G density with power parameter i+ k ≥ 1.
Equations (18), (19), (21) and (22) are the main results of this section. These linear representations

have great utility for deriving structural properties of themaximum X andminimum Y fromwell-known
exp-G properties. More than thirty five exp-G models have been studied so far and then it is possible
to construct at least three hundred fifty (70 × 5) MOPS-G models with properties determined from
those exp-G properties. We can use statistical platforms with ten terms to have precise results.

NUMERICAL EVALUATION

In order to evaluate the analytical results presented in the previous sections, a package was
implemented using the R programming language (R Core Team 2022). The MarshallOlkinPSG package
was constructed in a generic way, that is, its most important functions allow generalizations for any
baseline G distribution or even inform a zero-truncated PS distribution.

The library code can be obtained from GitHub at https://github.com/prdm0/MarshallOlkinPSG.
On the library’s website (see https://prdm0.github.io/MarshallOlkinPSG) it is possible to have more
information on the functions implemented through the documentation and usage examples.
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To install the package hosted and maintained on GitHub, it is necessary to previously install the
remotes library. With the prerequisite met, the package MarshallOlkinPSG can be installed as:
# Install the remotes package:
# install.packages("remotes")
remotes::install_github("prdm0/MarshallOlkinPSG", force = TRUE)

The function eq_19() implements Equation (19) and compares, for example, with the exact MOTPW
density in Equation (9). To facilitate comparison, the function pdf_theorical() implements this
density function. By doing help(eq_19) it is possible to access an example of comparison of the two
equations. Note that Equation (19) approximates (9) very well when finite sums are taken in applied
problems. In other words, the results achieved by the function eq_19() approximates very well those
from pdf_theorical(). The function eq_19() will also allow any baseline cdf G(x) as an argument of
eq_19().

The function eval_plot_moptw() allows to validating numerically Equation (19) by means of plots.
The true parameters for the MOTPW density are: α = 1.20, θ = 1.50, β = 1.33, and λ = 2. In addition,
we require just a few terms in the sums to obtain a reasonable level of precision as shown in the plots
in Figure 5, where six or eight terms provide very accurate approximations.

PROPERTIES

We now provide some mathematical properties of Ts that can be easily utilized in the linear
representations of the previous section to find the corresponding properties of X and Y .

The nth ordinary moment of Ts has the form

μ
′
n = E(Tns ) = s

∫ ∞

–∞
tn G(t;τττ)s–1 g(t;τττ)dt = s

∫ 1

0
QG(u)n us–1du, (23)

where QG(u;τττ) = G–1(u;τττ) is the qf of G.
Explicit expressions for several exp-G moments can be determined from (23).
The nth incomplete moment of Ts follows the previous algebra

mn(y) = E(Tns |Ts < y) = s
∫ G(y;τττ)

0
QG(u)nus–1du, (24)

where the integral can be calculated for the great majority of G distributions. The first incomplete
moment m1(y) is the most important case of (24) to find mean deviations and Lorenz and Bonferroni
curves.

The moment generating function (mgf) of Ts follows as

M(w) = E(ewTs) = s
∫ ∞

–∞
ewt G(t;τττ)s–1 g(t;τττ)dt = s

∫ 1

0
exp [w QG(u)] us–1du. (25)

The mgfs of exp-G distributions con be determined from Equation (25).

ESTIMATION

The MLEs are appropriate at least in large samples to determine confidence intervals for the
parameters. We consider the random variable X defined from Equations (3) and (5) for any baseline
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Figure 5. Numerical evaluation of (19) with finite sums, where NNN and KKK denote the upper limits of terms in the
related sums with the running indices nnn and kkk, respectively.

G with any unknown parameter vector ψ = (α, θ,τττ)T . By simple differentiation of (5), the density of X
takes the form

fX(x; α, θ,τττ) =
α θ g(x;τττ) C′ (θH(x; α,τττ))

C(θ) [1 – ᾱḠ(x;τττ)]2
, (26)

where C′(·) follows from (4) and H(x; α,τττ) = G(x;τττ)/ [1 – ᾱ Ḡ(x;τττ)].

An Acad Bras Cienc (2022) 94(2) e20201972 10 | 20



GAUSS M. CORDEIRO et al. A COMPETITIVE FAMILY TO THE BETA AND KUMARASWAMY G

The log-likelihood function for ψ from a random sample x1, . . . , xn of X is

` = `(ψ) = log
[
α θ

C(θ)

]
+

n∑
i=1

log [g(xi;τττ)] +
n∑
i=1

log
[
C′ (θH(xi; α,τττ))

]
– 2

n∑
i=1

log [1 – ᾱḠ(x;τττ)] . (27)

A similar development can be conducted for the random variable Y defined from Equation (6) for
any baseline G.

We can find the MLE ψ̂ by maximizing Equation (27) using the MaxBFGS sub-routine (Ox program),
optim function (R), and PROC NLMIXED (SAS). The AdequacyModel package can also maximize (27)
using the PSO (particle swarm optimization) approach from the quasi-Newton BFGS, Nelder-Mead and
simulated-annealing methods to maximize the log-likelihood function and it does not require initial
values. Details are available at Marinho et al. (2019) and https://github.com/prdm0/AdequacyModel.

These scripts can be executed for a wide range of initial values and may lead to more than one
maximum. However, in these cases, we consider the MLEs corresponding to the largest value of the
maximum log-likelihood. There are sufficient conditions for the existence of these estimates such
as compactness of the parameter space and the concavity of the log-likelihood function, but they
can exist even when the conditions are not satisfied. In general, there is no explicit solution for the
estimates from maximizing (27), but we can establish theoretical conditions on their existence and
uniqueness for very special models by examining the ranges of the score components.

REGRESSION

Consider that X1, . . . , Xn are independent random variables from any distribution in (9) assuming that
the parameters λ and λ vary through them. We propose a new regression based on the response
variable in (9) with the systematic components

λi = exp(vTi η1) and βi = exp(vTi η2), i = 1, . . . ,n, (28)

respectively, where vTi = (vi1, . . . , vip), η1 = (η11, . . . , η1p)T and η2 = (η21, . . . , η2p)T . Equations (9) and
(28) define the MOTPW regression. For α = 1, it follows the truncated Poisson Weibull (TPW) regression.

In a similar manner, we can construct many other regressions based on other MOPS-G
distributions defined from Equations (5) and (6).

The log-likelihood function for the vector ψ = (α, θ, ηT1 , η
T
2)
T from the MOTPW regression can be

reduced to

l(ψ) = n log
[

α θ

exp(θ) – 1

]
+

n∑
i=1

log(βi) +
n∑
i=1

βi log(λi) +
n∑
i=1

(βi – 1) log(xi) –

n∑
i=1

(λixi)
βi –

n∑
i=1

log
{
1 – ᾱ exp[–(λixi)

βi ]
}
+ θ

n∑
i=1

{1 – exp[–(λixi)βi ]}
{1 – ᾱ exp[–(λixi)βi ]}

. (29)

We obtain the MOTPW distribution for λi = λ and βi = β.
Let ψ̂ be the MLE of ψ. Equation (29) can also be maximized using the gamlss regression framework

(Stasinopoulos & Rigby 2008) in R.
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TWO SIMULATION STUDIES

We perform two simulation studies. The first one examines the accuracy of the MLEs of the parameter
estimates in the MOTPW distribution. The second one does the same for the MOTPW regression.

The MOTPW distribution

First, we evaluate the precision of the estimates in the MOTPW distribution based on 1,000 Monte
Carlo simulations using the R software. The simulation procedure follows as:

� The inverse function Q(u) = F–1(u) comes from (7)

Q(u) = λ–1
{
– log

[
θ – log[u exp(θ) – u+ 1]

θ+ α log[u exp(θ) – u+ 1] – log[u exp(θ) – u+ 1]

]} 1
β

. (30)

� Generate u ∼ U(0, 1) and obtain the values x = Q(u) of the MOTPW distribution.

The true parameters are λ = 3, β = 1, θ = 1.5 and α = 0.7. The average estimates (AEs), biases,
and mean squared errors (MSEs) are listed in Table I. The three measures decrease steadily when n
becomes large.

Table I. Simulation results for the MOTPW distribution.

n = 100 n = 250

Parameter AE Bias MSE AE Bias MSE

λ 3.001 0.001 0.005 2.996 -0.00 0.005

β 0.998 -0.002 0.013 1.004 0.004 0.012

θ 1.585 0.085 0.081 1.567 0.0667 0.064

α 0.569 -0.130 0.090 0.563 -0.137 0.089

n = 500 n = 1, 000

Parameter AE Bias MSE AE Bias MSE

λ 2.994 -0.006 0.004 2.995 -0.006 0.003

β 1.006 0.006 0.008 1.007 0.007 0.005

θ 1.546 0.046 0.035 1.526 0.026 0.016

α 0.597 -0.103 0.077 0.632 -0.068 0.063

The MOTPW regression

We perform some Monte Carlo simulations for some values of n to investigate the accuracy of the
MLEs in the MOTPW regression under four scenarios: Scenario 1: θ = 0.6 and α = 0.4; Scenario 2:
θ = 0.6 and α = 1.4; Scenario 3: θ = 1.7 and α = 0.4; Scenario 4: θ = 1.7 and α = 1.4. We take values
greater than and less than one for θ and α.
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The explanatory variables v1, . . . , vn are generated in the regression by taking λi = 0.5 + 0.8 vi,
βi = 0.3 + 0.1 vi, and vi ∼ Bernoulli(0.5).

For each scenario and value of n, one thousand samples are generated from theMOTPW regression
fitted to each generated data set. The quantities reported in Table II are in good agreement with the
asymptotic results for the MLEs.

Residual analysis

We investigate the quantile residuals (qrs) to verity the adequacy of the response distribution to
determine outliers in the MOTPW regression. The same approach can be adopted to many other
regressions defined from the distributions in (5) and (6). The qrs are given by (Dunn & Smyth 1996)

qri = Φ–1
{
[exp(θ) – 1]–1exp

{
θ
1 – exp[–(λi xi)βi ]
1 – ᾱ exp[–(λi xi)βi ]

}
– 1

}
, (31)

where Φ(·) is the normal cdf and λi and βi are defined in Equation (28).
We consider the same scenarios for the simulations in Section Two Simulation Studies. For each

fitted regression, the qrs are calculated from Equation (31). Figures 6, 7, 8, and 9 display QQ plots which
show that the empirical distribution of these residuals is close to the standard normal distribution.

APPLICATIONS

The beta Weibull (BW) and KumaraswamyWeibull (KwW) distributions have been widely used to fit real
data in the last ten years or so. We compare the MOTPW distribution with the BW and KwW distributions
since all of them have four parameters. The BW density pioneered by Lee et al. (2007) is

f (x) =
cλc

B(a, b)
xc–1exp{–b(λx)c}[1 – exp{–(λx)c}]a–1, x > 0,

where all parameters are positive.
The KwW density introduced by Cordeiro & de Castro (2011) has the form

f (x) = a b c λcxc–1 exp{–(λx)c}[1 – exp{–(λx)c}]a–1{1 – [1 – exp{–(λx)c}]a}b–1, x > 0,

where all parameters are positive.

Application 1: Hourly dollar wage data

The first application refers to hourly dollar wages for n = 534 US workers. These data are obtained
from the SemiPar package (Wand et al. 2005). Table III lists the estimates, standard errors (SEs) in
parentheses, and three classical statistics. The lowest values of these measures reveal that the MOTPW
is the best model. Next, the likelihood ratio (LR) statistic for comparing the MOTPW and TPW models
is 6.159 (p-value < 0.013) which supports the wider distribution.

Figure 10a shows the histogram and the estimated MOTPW density. Figure 10b provides the
empirical function and estimated MOTPW cdf, thus revealing that this distribution is appropriate for
these data.
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Table II. Simulation results for the MOTPW regression.

scenario 1
n = 100 n = 500 n = 1, 000

Parameter AE Bias MSE AE Bias MSE AE Bias MSE
γ10 0.614 0.114 0.074 0.557 0.057 0.029 0.527 0.027 0.017
γ11 0.785 -0.015 0.031 0.792 -0.008 0.006 0.798 -0.002 0.002
γ20 0.256 -0.044 0.031 0.271 -0.029 0.012 0.285 -0.015 0.007
γ21 0.101 0.001 0.031 0.101 0.001 0.006 0.102 0.002 0.003
θ 0.734 0.134 0.164 0.651 0.051 0.093 0.621 0.021 0.070
α 0.477 0.077 0.089 0.440 0.040 0.072 0.413 0.013 0.067

scenario 2
n = 100 n = 500 n = 1, 000

Parameter AE Bias MSE AE Bias MSE AE Bias MSE
γ10 0.684 0.184 0.149 0.567 0.067 0.045 0.528 0.028 0.025
γ11 0.779 -0.021 0.044 0.790 -0.009 0.007 0.798 -0.002 0.004
γ20 0.235 -0.065 0.045 0.272 -0.028 0.015 0.289 -0.011 0.009
γ21 0.096 -0.004 0.035 0.103 0.003 0.007 0.100 0.000 0.003
θ 0.637 0.037 0.157 0.578 -0.023 0.086 0.558 -0.042 0.077
α 1.722 0.322 0.382 1.530 0.130 0.180 1.467 0.067 0.123

scenario 3
n = 100 n = 500 n = 1, 000

Parameter AE Bias MSE AE Bias MSE AE Bias MSE
γ10 0.337 -0.161 0.079 0.483 -0.017 0.028 0.494 -0.007 0.019
γ11 0.819 0.019 0.019 0.802 0.002 0.005 0.799 -0.001 0.002
γ20 0.465 0.165 0.069 0.323 0.023 0.014 0.311 0.012 0.009
γ21 0.094 -0.006 0.033 0.101 0.001 0.005 0.101 0.001 0.003
θ 1.349 -0.350 0.258 1.643 -0.057 0.035 1.679 -0.022 0.015
α 0.460 0.060 0.083 0.429 0.029 0.079 0.407 0.007 0.069

scenario 4
n = 100 n = 500 n = 1, 000

Parameter AE Bias MSE AE Bias MSE AE Bias MSE
γ10 0.549 0.049 0.132 0.551 0.051 0.036 0.495 -0.005 0.015
γ11 0.796 -0.004 0.038 0.795 -0.006 0.006 0.798 -0.002 0.003
γ20 0.332 0.032 0.054 0.286 -0.014 0.012 0.307 0.007 0.006
γ21 0.096 -0.004 0.032 0.100 0.000 0.005 0.103 0.003 0.003
θ 1.406 -0.294 0.222 1.643 -0.057 0.029 1.684 -0.016 0.013
α 1.913 0.513 0.739 1.604 0.204 0.240 1.408 0.008 0.090
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(a) (b) (c)

Figure 6. QQ plots for scenario 1 (θ = 0.6θ = 0.6θ = 0.6 and α = 0.4α = 0.4α = 0.4). (a) n = 100n = 100n = 100. (b) n = 500n = 500n = 500. (c) n = 1, 000n = 1, 000n = 1, 000.

(a) (b) (c)

Figure 7. QQ plots for scenario 2 (θ = 0.6θ = 0.6θ = 0.6 and α = 1.4α = 1.4α = 1.4). (a) n = 100n = 100n = 100. (b) n = 500n = 500n = 500. (c) n = 1, 000n = 1, 000n = 1, 000.

(a) (b) (c)

Figure 8. QQ plots for scenario 3 (θ = 1.7θ = 1.7θ = 1.7 and α = 0.4α = 0.4α = 0.4). (a) n = 100n = 100n = 100. (b) n = 500n = 500n = 500. (c) n = 1, 000n = 1, 000n = 1, 000.
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(a) (b) (c)

Figure 9. QQ plots for scenario 4 (θ = 1.7θ = 1.7θ = 1.7 and α = 1.4α = 1.4α = 1.4). (a) n = 100n = 100n = 100. (b) n = 500n = 500n = 500. (c) n = 1, 000n = 1, 000n = 1, 000.

Table III. Results for hourly dollar wage data.

Model log(λ) log(β) θ α AIC BIC GD

MOTPW -2.720 0.694 11.210 0.019 3031.288 3048.410 3023.288

(0.141) (0.085) (3.020) (0.007)

TPW 0.248 -0.541 31.100 (-) 3035.448 3048.289 3029.448

(0.444) (0.112) (12.540) (-)

Model log(λ) a b log(c) AIC BIC GD

KwW -0.601 12.124 0.317 0.060 3034.039 3051.160 3026.039

(0.023) (0.802) (0.013) (0.014)

BW -5.453 2.327 126.000 0.216 3084.086 3101.208 3076.086

(0.020) (0.067) (0.009) (0.007)

Application 2: Diabetes data

We consider two variables from the data reported by Reaven & Miller (1979): the response xi is
the relative weight defined by the ratio between the actual weight and the expected weight (given
the person’s height), and the explanatory variable vi1 indicates the diagnostic group (0 =normal, 1=
chemical diabetes, 2 = overt diabetes). The diagnostic group has three levels and then we have two
dummy variables (dij) (for i = 1, . . . , 145 and j = 1, 2). The objective is to know what are the relations
among the relative weight and the levels of the diagnostic group.

The systematic components for the MOTPW regression are

λi = exp (η10 + η11di1 + η12di2) and βi = exp (η20 + η21di1 + η22di2) , i = 1, . . . , 145.

The measures for the fitted regressions are reported in Table IV. Clearly, the MOTPW is the best
regression for these data.

Table V provides the estimates, SEs and p-values for the best regression.
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Figure 10. (a) Estimated MOTPW pdf. (b) Estimated MOTPW cdf and the empirical cdf.

Table IV. Measures for diabetes data.

Model AIC BIC GD

MOTPW -194.316 -170.502 -210.316

TPW -191.726 -170.889 -205.726

KwW -188.769 -164.955 -204.769

BW -185.607 -161.793 -201.607

Table V. Results for diabetes data.

Parameter Estimate SE p-Value

η10 0.065 0.093 0.489

η11 -0.119 0.036 0.001

η12 -0.049 0.028 0.082

η20 1.719 0.245 <0.001

η21 0.373 0.140 0.009

η22 0.131 0.141 0.355

θ 12.401 8.866

α 0.095 0.079
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We note that the co-variable di1 is significant and di2 is not. So, there is a real difference between
normal and chemical diabetes groups in relation to relative weight and no difference between normal
and overt diabetes groups to relative weight. The same findings can be seen in Figure 12.

The LR statistic to compare the MOTPW and TPW regressions is w = 4.590 (p-value=0.032) that
indicates that the fist regression is superior to the second regression to these data in terms of model
fitting.

The plot of the residuals reported in Figure 11a does not detect outliers and departures from the
general assumptions. The worm plot (Buuren & Fredriks 2001) of the residuals in Figure 11b and the
QQ plot displayed in Figure 11c show the adequacy of the MOTPW regression for the current data.

A graphical comparison from the estimated cdfs in Figure 12 also supports the regression analysis.
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Figure 11. (a) Residual plot. (b) Worm plots. (c) QQ plot.
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CONCLUSIONS

We define two flexible Marshall–Olkin–Power-Series (MOPS) families of continuous distributions which
can be very useful to fit real data. They are obtained by combining the Marshall–Olkin class (Marshall
& Olkin 1997) and the power series distribution. Hundreds of continuous distributions can be easily
formulated from the two families. We discuss some special distributions and maximum likelihood
estimation. We introduce the Marshall–Olkin Truncated Poisson Weibull regression associated with
one of the families. Some mathematical properties of these families are presented. We provide a
package implemented in R software which can be used to determine numerically some mathematical
properties for any distribution in the new families. The utility of the proposed models is proved
empirically in two applications.
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