
An Acad Bras Cienc (2022) 94(Suppl. 4): e20211024 DOI 10.1590/0001-3765202220211024
Anais da Academia Brasileira de Ciências | Annals of the Brazilian Academy of Sciences
Printed ISSN 0001-3765 I Online ISSN 1678-2690
www.scielo.br/aabc | www.fb.com/aabcjournal

ENGINEERING SCIENCES

Acceleration strategies for Tridimensional
Coupled hydromechanical problems based on
CPU and GPU programming in MATLAB

JEAN B. JOSEPH, PAULO MARCELO V. RIBEIRO, LEONARDO J.N. GUIMARÃES,
CICERO VITOR CHAVES JUNIOR & JONATHAN DA C. TEIXEIRA

Abstract: Large-scale fluid flow in porous media demands intense computations and
occurs in the most diverse applications, including groundwater flow and oil recovery.
This article presents novel computational strategies applied to reservoir geomechanics.
Advances are proposed for the efficient assembly of finite element matrices and the
solution of linear systems using highly vectorized code in MATLAB. In the CPU version,
element matrix assembly is performed using conventional vectorization procedures,
based on two strategies: the explicit matrices, and themultidimensional products. Further
assembly of the global sparse matrix is achieved using the native sparse function. For
the GPU version, computation of the complete set of element matrices is performed
with the same strategies as the CPU approach, using gpuArray structures and the native
CUDA support provided by MATLAB Parallel Computing Toolbox. Solution of the resulting
linear system in CPU and GPU versions is obtained with two strategies using a one-way
approach: the native conjugate gradient solver (pcg), and the one provided by the
Eigen library. A broad discussion is presented in a dedicated benchmark, where the
different strategies using CPU and GPU are compared in processing time and memory
requirements. These analyses present significant speedups over serial codes.

Key words: Computational efficiency, explicit matrix, finite elements, geomechanical
problem, GPU programming, sparse stiffness matrices.

1 - INTRODUCTION

The multiple physics that occurs from the interaction between the porous medium and the fluids is
interesting to several engineering areas, such as reservoir engineering, biomechanics, chemical and
environmental engineering (Keyes et al. 2013). An example is the variations in effective pressures and
stress due to the extraction of fluids in oil reservoirs located at great depths.

The variations in pore pressure and in the state of effective stresses that interact during the oil
extraction demand intensive studies in the area of multiphase flow in the porous media (Binning &
Celia 1999, Li et al. 2013), geomechanics (Inoue & Fontoura 2009) as well as in the scope of modern
computational techniques (Mena et al. 2020). In reservoir engineering, the coupling between the
physics that govern the fluid flow and the mechanical aspects that cause the deformations of the
rocky material plays an important role in production through the compaction and subsidence of the

An Acad Bras Cienc (2022) 94(Suppl. 4)



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

reservoir (Duran et al. 2020), the integrity of capping rocks (Zheng et al. 2017), structural stability of
wells (Gomes et al. 2019), and problems of faults reactivation (Soltanzadeh & Hawkes 2009, Pereira et
al. 2014, Zhang et al. 2020).

The importance of knowledge on mechanical behaviour grows continuously, as the
unconventional (Zoback & Kohli 2019, Mandal et al. 2020) and conventional reservoirs have been
increasingly detected and exploted (Bell & Eruteya 2015). Such phenomena need to be accounted in
a more effective way in order to optimize the production of hydrocarbons contained in the field. The
reservoir engineers, geologists and hydrogeologists use workflows as a decision-making tool, building
more realistic reservoir (or aquifer) models every day.

However, the combination of complex models and large scales are often not used. Their study
leads to a computational cost that can cause delays in the definition of production projects,
restrictions on the number of development scenarios to be analyzed, or even become unfeasible for
computational analysis. Such challenges are constantly found in production problems and advanced
hydrocarbons in oil reservoirs (Ferrari et al. 2021), geological storage of CO2 (Almeida et al. 2010) and
hydrological modelling. All those application fields present great challenges for numerical computer
simulations due to their large dimensions.

Several studies have been carried out in hydrogeological modelling (Bear 1988, Andersen et
al. 2001) and mainly in the recovery and production of hydrocarbons in an oil reservoir that uses
modern computational techniques combined with parallel procedures (Bear 1988, Lyupa et al. 2016). In
problems involving multiple coupled physics, quite often, aiming at a computational gain, the various
phenomena that govern the problem are solved in an implicit sequential manner (Kim et al. 2011),
this produces a system of equations of different primary unknowns, governed by separate physical
phenomena (i.e. subproblems, where the unknown are the pressure of the fluids in the porous of
the rock; the displacements related to the mechanical behaviour of the material; and Saturation /
Concentration linked to the transport of different fluids/components), which are coupled to each
other over the domain.

For the development of these types of systems, one of the techniques that have been used is the
vectorization procedure of assembling the matrices of the elements that compose the model, which,
when compared to serial code (conventional repetition structures), proves to be extremely efficient
(Bird et al. 2017). On the other hand, there are two disadvantages: (i) the huge amount of memory
required to store arrays of auxiliary elements and vectors; and (ii) the compromise in the interpretation
and flexibility of the code, since many operations are reduced to a few lines of programming. An
alternative to the second limitation emerges with the conversion of the original functions to low-level
languages; for example, MATLAB allows support of these operations with the construction of MEX
(MATLAB EXecutable) functions, which establish an interface between MATLAB (or functions of the
MATLAB) and functions developed in C, C ++ or Fortran.

Several authors have explored techniques for calculating products and assemblingmatrices B and
D (Griffiths et al. 2009, Shiakolas et al. 1994). The authors concluded that explicit matrices are more
efficient than the use of traditional numerical integration procedures. The construction algorithm in
explicit form consists of a search for common positions (or index collisions produced by the mesh
connectivity) to sum the individual values of the element’s stiffness, and this demands the storage
of the complete set of the element matrices. Besides, two other vectors (I, J) with the corresponding

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 2 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

positions in the global stiffness matrix are necessary, requiring a large RAM use and, consequently,
compromising the sparse matrix construction process computationally.

To minimize the use of RAM, (Cuvelier et al. 2016) employ a sequential call to the MATLAB sparse
function. Another alternative appears with the use of the global stiffness matrix symmetry, thus
reducing the memory consumption of the triplet.

Many authors have explored alternatives for better performance of the sparse matrix construction
procedure. In this sense, several functions in the MEX format were developed by third parties
as alternatives. Engblom & Lukarski (2016) developed the fsparse function, which applies efficient
ordering and uses parallel processing to build the sparse matrix. Another proposal comes with the
sparse2 function. In both options, no information about the mesh or connectivity of the elements is
provided. In general, the two routines perform better than the MATLAB native command (Zayer et al.
2017).

To effectively explore the geometric information of the domain, Dabrowski et al. (2008) proposed
a function defined as sparse_create, where vectors I and J are replaced by the element’s connectivity
matrix, which is smaller than necessary in approaches that use global positions. This aspect allows
a more compact function and with low memory usage. Besides, the symmetry of the stiffness matrix
can be included as an additional feature in the function argument. The efficiency of the sparse_create
function is directly associated with the number of collisions of the global stiffness matrix indices. In
meshes with few occurrences, the performance gain is small, and the most significant advantage will
be the reduction of memory consumption. A big advantage in MATLAB in its 2020a version is support
for vectors I and J in single precision format, which further reduces memory consumption compared
to the double type (MathWorks 2021).

This study aims to use efficient programming practices in MATLAB, which follow the state of the art
in vectorization and construction of problem matrices in finite elements. Also, strategies for solving
the resulting equation system will be evaluated, including codes in CPU and GPU versions, concepts
of explicit matrices and multidimensional products between matrices, and highly optimized functions
in MEX language for the construction of element matrices and acceleration of critical parts of the
codes. In such a way that the construction of the sparse matrices appears in an original form with the
use of gpuArray structures and the great advantages of MATLAB in its 2020a version, through support
for vectors I and J in single precision format, which reduces, even more, the memory consumption.
The development process of the element matrices is evaluated in terms of its efficiency given the
various acceleration options presented by other authors (sparse2, fsparse) andmore advanced options
that explore the mesh connectivity (sparse_create). All analyzes are performed in combination with
linear solvers using the conjugate gradient method, both in CPU and GPU. There was no data transfer
between the CPU and the GPU, only in mesh generation was the gpuArray function used to create the
mesh on the GPU. From mesh generation to result plotting all data remains on the GPU. Some recent
studies have used the GPU as a way of accelerating the assembly of stiffness matrices and solutions
of the System of Equations, (Gasparini et al. 2021) developed a structure with multiple GPUs in up
to 2000 processes to solve linear sparse problems focusing on reservoir flow oil and geomechanical
simulation. (Ferrari et al. 2021) coupled two software, ABAQUS and Echelon, which solve geomechanical
and oil reservoir flow problems, respectively. In this study, the authors used GPU to speed up the
process. The use of the GPU is also found in software in Health, it was used, for example, in the genomic

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 3 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

analysis of the Parabricks platform. In this architecture, supercomputers and storage connected to the
NetApp cloud are used.

In the present work, the flow problem in porous media is coupled with the geomechanical
problem through a one-way approach. In this context, the flow problem is solved independently,
without returning information from the mechanical problem (such as changes in porosity and
permeability). The entire pressure solution history is saved, subsequently transferred unidirectionally
to the mechanical problem, where displacements, stresses and strains are computed. The constitutive
model used for the mechanical problem is elastic linear. In large scale models, this type of simulation
requires the construction and resolution of linear systems of equation with millions of degrees
of freedom. Therefore, efficient computational strategies are discussed and applied to a reference
benchmark.

The structure of the article is arranged as follows. First, a brief mathematical description is
presented. Section 2 presents a finite element representation in space and time in the sense of solving
two subproblems: themechanical and the Darcy flow problem is presented. The computational aspects
used for constructing the matrices and the resolution of the flow problem in a deformable porous
area applied to oil reservoirs is detailed on section 3. In section 4, a new procedure was presented
to accelerate the construction of the local stiffness matrices of the mesh elements, the assembly of
the global stiffness matrix and techniques to solve the problem in a more computationally efficient
way. In section 5, the numerical results of the validation exercises are presented demonstrating the
potential for the proposed schemes.

2 - MATHEMATICAL DESCRIPTION AND FINITE ELEMENT REPRESENTATION

This section presents an outline of the governing equations for coupled deformation, and fluid flow
applied to oil reservoirs (i.e., hydro-mechanical problem) (Cuisiat et al. 1998). We will consider that
the fluid flow is isothermal and slightly compressible. For simplicity and without loss of generality, we
neglect the capillary effects and consider that the porous medium presents linear elastic behaviour
and is subject to the hypothesis of small strains. Such governing equations are composed of
conservation and constitutive laws.

Conservation equations are related to the amount of movement and mass. On the macroscopic
scale, two main approaches can be found depending on Eulerian and Lagrangian descriptions: the
pioneering research by Terzaghi and Biot (Biot 1941) provides a concise explanation for the Eulerian
case; and the work of Coussy (Coussy 2004) develop the Lagrangian case. Under the assumption of
quasi-static condition, the mechanical deformation can be expressed as follows:

∇ ⋅ 𝜎 + 𝜌sg = 0 (1)

where 𝜎 is the total stress tensor, 𝜌s is the density of the solid material, g is the gravity vector, and
0 the null vector. In terms of Cauchy’s effective stress tensor, the momentum conservation equation
can be written as:

∇ ⋅ (𝜎′ − 𝛼pI) + 𝜌sg = 0 (2)

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 4 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

where 𝜎′ is the Cauchy effective stress tensor, p the fluid pressure in the pores (in MPa), 𝛼 is the Biot
coeficiente, and I ∈ ℝ3x3 is the identity matrix. The set of equations in (1) are subjected to the following
boundary conditions:

𝜎 ⋅ n = t in ΓuN (3a)

u = u0 in ΓuD (3b)

In addition, to the momentum conservation equation and boundary conditions, it is necessary to
use equations that relate strains-displacements, known as kinematic relations (Zienkiewicz 2000).
Considering the hypothesis of small strains, according to which the strains and rotations are
considered infinitesimal strain, the relationship is described as:

𝜀 (u) = 1
2

(∇u+ ∇Tu) (3c)

where u is the displacement vector.
To characterize the material behavior, the effective stress tensor is defined by the following

stress-strain relationship:
𝜎′ = 𝒟𝜀 (4)

where 𝒟 = 2𝜇𝕀 + 𝜆I⨂ I is the constitutive matrix of the material, and 𝜀 is the elastic strain tensor.
With 𝕀 = I − 1

3 I⨂ I, and I⨂ I denoting the tensorial product of the matrices I, the parameters 𝜇 and
𝜆 and are the Lamé constants (in MPa).

Similarly to Bear (Bear 1988), the mass conservation of the fluid phase in saturated porous
medium and the solid phase, are expressed as:

𝜕𝜙𝜌f
𝜕t

+ ∇ ⋅ (𝜌f vf + 𝜌f𝜙u̇) = 𝜔 (5a)

𝜕 (1− 𝜙) 𝜌s
𝜕t

+ ∇ ⋅ ([1− 𝜙] 𝜌su̇) = 0 (5b)

where 𝜙 is the porosity, 𝜌f the density of the fluid, vf = − K
𝜇 (∇p− 𝜌g) is the fluid velocity described

by Darcy’s law, 𝜔 is the term of mass source, 𝜌s the density of the solid and u̇ = 𝜕u
𝜕t is the solid phase

velocity.
Considering that the fluid phase is slightly compressible, the relationship between the density of

the fluid 𝜌f and the pore pressure p can be written based on the compressibility of the fluid cf as:

cf = 1
𝜌f

.
𝜕𝜌f
𝜕p

(6)

Combining Eqs. (5a) and (6), after some algebraic manipulations and disregarding the fluid
and solid density gradients, the following mass conservation equation for a deformable medium is
detained:

cf𝜙
𝜕p
𝜕t

+ ∇ ⋅ vf + ∇ ⋅ u̇ = f (7)

where f is the volumetric source term. The boundary condition is:

vf ⋅ n = −s+ 𝛾 (p− p) in Γp (8)

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 5 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

with s, 𝛾 and p are the imposed volumetric flow (in m³ / s), the penalty term (m³ / s / MPa), and the
prescribed pore pressure, respectively.

The strong form of the coupled deformation problem and fluid flow applied to oil reservoirs can
be summarized in two sets of equations, one for the mathematical description for poroelasticity and
the other for the fluid velocity described by Darcy’s law and is completed by the application of Dirichlet
and Neumann boundary conditions, through of Eqs. (7) and (8), respectively.

3 - NUMERICAL FORMULATION

In this section, the numerical resolution scheme of the formulation described in the previous section
will be presented. The time derivatives are approximated by the implicit Euler method. The index
(∘)n+1 represents terms evaluated in the subsequent state n + 1 and the (∘)n means terms evaluated
in the last state n. For spatial variables, a classic finite element discretization (Galerkin) is adopted
(Zienkiewicz 2000).

Second-order derivatives of conservation laws are reduced to first-order derivatives by using the
Gauss divergence theorem after integration by parts. Numerical approximations H1 will be used for
the two sets of equations that model the poroelasticity and mass.

Figure 1. The problem domain.

In the Figure 1 below it is described the domain Ω ∈ ℝ 3 bounded by the surface Γ ∈ ℝ2, with
Ω splitted into subdomains or convex elements Ωe. The boundary of each element is defined as Γe
and its normal unit vector domain given by n. For the weak form of the poroelastic problem, uh is
used as an approximation variable for the displacement field, while the ph to the pore pressure field
approximation used for the Darcy flow problem. Therefore, we have to uh ∈ Vh and ph ∈ Sh, where we
define the required functional approximation spaces:

Vh = {uh ∈ [H1h (Ω)]3 ∶ uh = u0 on ΓuD} (9)

Sh = {ph ∈ H1h (Ω)} (10)

with the respective finite-dimensional subspaces of the allowable variations:

V0 = {v ∈ [H1h (Ω)]3 ∶ v = 0 on ΓuD} (11)

S0 = {q ∈ H1h (Ω)} (12)

where H1 (Ω) is the Sobolev space of the functions with square-integrable derivatives and q the flow
in the element.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 6 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Choosing admissible members of the function spaces, previously defined, as trial and tests
functions following the standard Galerkin method, we have to:

uh =
m

∑
i=1

Niui = Neuue (13)

w =
m

∑
i=1

Niwi = Newwe (14)

ph =
m

∑
i=1

Nipi = Neppe (15)

q =
m

∑
i=1

Niqi = Nepqe (16)

where m the number of nodes of each element (tetrahedrons = 4), ui, wi, qi and pi are the nodal
values of the displacements, weighting functions and pore pressures of the element e, respectively.
Ni, Ni, Ni and Ni are functions chosen appropriately in order to belong to the spaces Vh, V0, Sh and S0
respectively.

Following the standard procedures of the finite element method in the sense of Galerkin’s
method (Zienkiewicz 2000), we multiply Eqs. (2) and (7) with the respective weighting (tests) functions,
integrating by parts the higher order terms, followed by the application of the divergence theorem
and, finally, considering the boundary conditions, we eventually obtain the following weak formulation
of the problem:

∫
Ωe

[𝜆 (∇ ⋅ uh) I+ 𝜇 (∇uh + ∇Tuh)] ∶ ∇w dΩe = ∫
Ωe

𝛼phI ∶ ∇w dΩe − ∫
Ωe

𝜌sg ⋅ w dΩe + ∫
Γu
N

t ⋅ w dΓe

(17a)

∫
Ωe

(𝜙cf )pn+1
h q dΩe − Δt∫

Ωe

∇qK
𝜇

∇pn+1
h dΩe

+ Δt∫
Γp

𝛾pn+1
h q dΓp =

∫
Ωe

(𝜙cf )pnhq dΩe

− Δt∫
Ωe

∇ ⋅ (𝜌f
K
𝜇
g )q dΩe − Δt∫

Ωe

∇ ⋅ u̇ q dΩe + Δt∫
Ωe

fq dΩe

+ Δt∫
Γp

(s+ 𝛾p)q dΓp

(17b)

replacing (13) - (16) in (17) and suppressing the indexes we can rewrite more compactly:

∫
Ωe

weTBeTu DBeuuedΩe = ∫
Ωe

weTBeTu 𝛼INeppedΩe − ∫
Ωe

weTNeTu 𝜌sgdΩe + ∫
Γu
N

weTNeTu t dΓe (18a)

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 7 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

where Beu = ∇Neu and m = (1, 1, 1, 0, 0, 0) is an auxiliary vector.

l{∫
Ωe

qeTNeTp (𝜙cf )
eNeTp dΩe − Δt∫

Ωe

qeT(∇Nep)
T[K

𝜇
]
e
∇Nep dΩe

+Δt∫
Γp

qeT(∇Nep)
T𝛾Nep dΓp} (pe)n+1

= ∫
Ωe

qeTNeTp (𝜙cf )
eNep (pe)n dΩe

− Δt∫
Ωe

qeT(∇Nep)
T[𝜌f

K
𝜇

]
e
∇ ⋅ g dΩe

− Δt∫
Ωe

qeTNeTp mT Beuu̇
e dΩe

+ Δt∫
Ωe

qeTNeTp f e dΩe

+ Δt∫
Γp

qeTNeTp (s+ 𝛾p) dΓp

(18b)

As weT and qeT are arbitrary functions, then equations (18) can be written as:

∫
Ωe

BeTu DBeuuedΩe = ∫
Ωe

BeTu 𝛼INeppedΩe − ∫
Ωe

NeTu 𝜌sgdΩe + ∫
Γu
N

NeTu t dΓe (19a)

{∫
Ωe

NeTp (𝜙cf )
eNeTp dΩe − Δt∫

Ωe

(∇Nep)
T[K

𝜇
]
e
∇Nep dΩe

+Δt∫
Γp

(∇Nep)
T𝛾Nep dΓp} (pe)n+1

= ∫
Ωe

NeTp (𝜙cf )
eNep (pe)n dΩe − Δt∫

Ωe

(∇Nep)
T[𝜌f

K
𝜇

]
e
∇ ⋅ g dΩe

− Δt∫
Ωe

NeTp mT Beuu̇
e dΩe

+ Δt∫
Ωe

NeTp f e dΩe + Δt∫
Γp

NeTp (s+ 𝛾p) dΓp

(19b)

For the mechanical problem (linear momentum equation - equilibrium equation), the first term
on the left side of Eq. (19a) forms the stiffness matrix of the element, while the last two terms on
the right side of the equation, represent the vector of external forces and finally, the first term of
r.h.s is the coupling matrix of the hydro-mechanical problem. The matrix representation of Eq. (19a) is
described below by equation (20a)

stiffness matrix
⏞Keu

nodal displacement
⏞ue =

first term
⏞Fpe −

last two terms on the r.h.s
⏞Fg + Ft (20a)

As for the Darcy flow problem (mass conservation equation), we have the l.h.s. in the Eq. (19b) is
formed by the terms of storage (first term), penalty and the Darcy flow term, in which it presents the
same form as the stiffness matrix for the mechanical problem. The first two terms r.h.s. of Eq. (19b) are

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 8 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

the storage and the gravitational term, respectively. The third term represents the coupling term of
the tensor-deformation behaviour dependent on the acting stresses that cause the variation of the
porous volume (volumetric strain) and the last term of Eq. (19b) represents the sources / sinks of the
Darcy flow problem. The equation (20b) represents the matrix representation of Eq. (19b).

Kep{pe}n+1 =
⎧{
⎨{⎩

the storage term
⏞Fpe −

gravitational term
⏞Fg −

the coupling term
⏞Fu +

sources/sinks
⏞FS

⎫}
⎬}⎭

n

(20b)

For the hydromechanical coupling problem treated in the present study, the one-way coupling
will be used (Settari & Walters 2001, Kim et al. 2011). This type of coupling consists of solving the
flow and mechanical problem separately. At the same time, the answers to the first problem feed the
second, but the solution to the second does not feed the first. This exchange of information is done
using the nodal pore pressures pn of the flow problem obtained in the specific time steps, called n,
and later converted into static loads for the mechanical problem, as shown in Figure 2.

Figure 2. One-way coupling flowchart.

In this article, all the analyzes were concentrated on the stiffness matrix assembly and some
aspects of computational efficiency in solving the geomechanical problem.

4 - NOVEL COMPUTACIONAL PROCEDURES

The codes were developed in MATLAB language and are divided into two modules: (i) mechanical
and (ii) single-phase flow in porous media, so in this article, the objective was to study strategies to
improve the computational efficiency of the mechanical problem. The mechanical problem is defined
by the FEM formulations for the tetrahedral element discussed in section 3 by Eq. (19a). The flow
module (Darcy flow problem) also follows the formulation discussed in section 3 by Eq. (19b) and
is approximated by linear tetrahedra. The two problems are partially coupled in a unidirectional
way (one-way). The code is divided into steps, which allow optimization of the mechanical problem
according to the following structure i) stiffness matrix assembly of the element (Ke); ii) construction
of the global rigidity matrix (KG); iii) coupling and solution of the system of equations.

In the specific case of GPU processing, the Parallel Computing Toolbox is used, with an interface
for NVIDIA GPUs. Structures of the gpuArray type are defined, which allow the application of a series
of commands for matrix operations. These operations are performed both in the development phase
of the problem matrices and in the solution of the system of equations. The graphics processing unit
(GPU), has a single chip as the CPU but with the main difference in the number of cores, since it can

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 9 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

have hundreds of cores aligned to a single hardware as shown in Figure 3b. For a computationally
massive problem, the GPU surpasses the CPU in GFLOPS (Giga FLoating point OPerations per Second).
CUDA (Compute Unified Device Architecture) is the architecture used by NVIDIA for implementation on
the GPU (NVIDIA. CUDA C programming guide, 2020) with integration with the C ++ language.

Figure 3. Difference between CPU and GPU in terms of number of cores. (a) CPU with multicolors and (b) GPU with
hundreds of colors.

The GPU use in MATLAB requires little effort due to native function support and does not require
great CUDA knowledge.

A general outline of the code structure and analysis options is shown in Figure 4.
Three sectors of the codes were the object of study: the explicit and implicit assembly of the local

stiffness matrix, the global assembly, and the analysis of techniques to accelerate the solver.

4.1 - Stiffness matrix assembly of the elements (Ke)

According to the scheme shown in Figure 4, the several options for the assembly of the stiffness matrix
of the elements are discussed below.

4.2 - Exp (Explicit matrix assembly)

The explicit assembly technique presents a closed form and excellent computational efficiency in
algebraic operations. It also results in two significant advantages: the absence of product between
matrices and numerical integration procedures. The result is a symbolic expression for each term in
the stiffness matrix of the elements. In computational terms, it results in a simple computation of the
terms involved in each element of the stiffness matrix, with possible elimination of symmetric terms

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 10 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Figure 4. General scheme of the code structure.

Figure 5. Linear indexing and idea of the method for allocation of terms from the explicit matrix (symmetry case).
(a) element 1; (b) element 2; (c) lower triangular indices; (d) final collection with arrays of elements.

and compression of common variables. This process can be performed both on the CPU and GPU. In
this last case, it is only necessary to replace the conventional matrices for gpuArray type structures.
The computational procedures for the assembly of the W matrix in Figure 5 consist of elaborating
explicit expressions for the terms of the lower triangular part. For linear tetrahedron (with 3 degrees
of freedom per node), this implies 78 unique terms. The terms are organized in a logic that follows

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 11 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

MATLAB’s linear indexing pattern, with columns being read frequently. In the symmetrical option, only
those terms are stored, while in the option without (complete) symmetry, the other terms are obtained
by mirroring the lower part. Figure 5 provides an example for the symmetrical option. A linear index
is assigned to each term of the stiffness matrices element (Figure 5a-b). In sequence, these terms are
allocated to a global collection of terms, where each column corresponds to the contribution of a
given element (Figure 5d). In the end, a matrix is obtained with 78 rows and number of columns equal
to the total number of mesh elements (nelem).

The option with symmetry presents expressive advantages in terms of physical memory. For the
W collection, this implies 46% savings in a linear tetrahedron (only 78 terms out of 144). The same
behaviour is expected for vectors L and C, which contain the global position indices. The reference
code for the suggested procedure is indicated in Algorithm 1.

Algorithm 1: sample code for W computation

1 % computes nodes in a vectorized form

2 node1=conec(:,1);node2=conec(:,2);node3=conec(:,3);node4=conec(:,4);

3 % computes coordinates in a vectorized form

3 X1=coord(node1,1); Y1=coord(node1,2); Z1=coord(node1,3); ...

4 % evaluates auxiliar geometric vectors for the explicit assembly

5 b1=…; c1=…; d1=…; b1b1=b1*b1; c1c1=c1*c1; d1d1=d1*d1;

7 % ---------------------------------------------------------------

8 % computes each individual line of the stiffness collection W

9 % ---------------------------------------------------------------

10 K1= (E.*(2*b1b1*pois + 2*c1c1*pois + 2*d1.∧2*pois - 2*b1b1 -- …

c1c1 - d1d1)). /(72*VV*(2*pois∧2 + pois - 1));

11 % continues for the remaining lines and defines W

12 W=[K1;K2;K3; K4; …

13 V=W(:); % V is the Column-shaped local stiffness matrix

Note: some lines omitted for sake of simplicity.

The calculus of each line in W is vectorized, which means that it is processed simultaneously in
all the mesh elements. This is the main difference in Algorithm 1. An example is given for the first term
K1 of the linear tetrahedron, indicated below:

K1 = (E. ∗ (2 ∗ b1b1 ∗ pois+ 2 ∗ c1c1 ∗ pois+ 2 ∗ d1.2 ∗ pois− 2 ∗ b1b1− c1c1− d1d1)) ./

(72 ∗ VV ∗ (2 ∗ pois2 + pois− 1))

where K1 represents a vector with a dimension equal to the number of elements in the mesh, and
each column corresponds to a term of the stiffness matrix of a specific element. E the Young’s Module,
pois the poison’s ratio. The terms b1, c1, d1 and their products b1b1, c1c1 and d1d1 indicate constants
associated with the nodal coordinates and vectors. The same occurs for VV in line 10 of algorithm

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 12 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

1, which specifies a vector with the volume of all elements in the mesh. That way, K1 is an algebraic
operation between vectors, resulting in a new vector, and it is also used to define the columns in the
terms Ke (1,1) of the stiffness matrix of the elements in the mesh. The same logic could be applied to
the remaining terms of the stiffness matrix of the elements.

There is still the evaluation of vectors L and C responsible for indexing the global stiffness matrix
values. The construction of these vectors can be easily vectorized, and the logic is the recovery of
global positions associated with each degree of local freedom. For the linear tetrahedron, with 3
degrees of freedom per node, the following relations are effective:

[3ni − 2 3ni − 1 3ni] → for each node ni

Algorithm 2: sample code for L and C computation

1 % computes global indexes in a vectorized fashion

2 % GL is a collection of 12 global indexes in each line

3 GL=[3*node1-2 3*node1-1 3*node1 3*node2-2 3*node2-1 3*node2 …

3*node3-2 3*node3-1 3*node3 3*node4-2 3*node4-1 3*node4];

4 % ---------------------------------------------------------------

5 % Option 1 - full computation (without symmetry)

6 % ---------------------------------------------------------------

7 GL=permute(GL,[3 2 1]); % organize in 3d slices for each element

8 aux=repmat(GL,1,12,1); % repeat each slice in 12 columns

9 L=aux(:); % organize in vector format

10 aux=repmat(GL,12,1,1); % repeat each slice in 12 lines

11 C=aux(:); % organize in vector format

12 % ---------------------------------------------------------------

13 % Option 2 - symmetric computation

14 % ---------------------------------------------------------------

15 % the indexing in the next line follows Figure 5 explanation

16 aux=GL(:,[1:12 2:12 3:12 4:12 5:12 6:12 7:12 8:12 9:12 10:12 …

11:12 12]);

17 L=aux(:);% organize in vector format

% the indexing in the next line follows (See Figure 5)

18 aux=GL(:,[1*ones(1,12) 2*ones(1,11) 3*ones(1,10) 4*ones(1,9) …

5*ones(1,8) 6*ones(1,7) 7*ones(1,6) 8*ones(1,5) 9*ones(1,4) …

10*ones(1,3) 11*ones(1,2) 12]);

19 C=aux(:); % organize in vector format

Note: some lines omitted for sake of simplicity.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 13 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Therefore, each node results in 3 global indexes. There are 12 positions in total for the linear
tetrahedron, which can be obtained by repeating the above rule for each of the 4 nodes of the element
(defined later as lines of GL matrix). The complete definition comes with the permutations of these
terms for each element in the mesh. In the lack of symmetry, each element contributes 144 positions
to the vectors L and C. In the symmetric case, this dimension is reduced to 78. Algorithm 2 indicates the
required procedures for constructing these vectors, which are also valid for the problem of a linear
tetrahedron. After the triplets evaluation, the global stiffness matrix is obtained with a single call of
the sparse command, as discussed in previous sections.

4.3 - M3d – Multidimensional product

This strategy employs the concept of a multidimensional array product and appears as an alternative
to the procedure with explicit matrices. It explores the characteristic that matrices B and D can be
quickly computed in a vectorized function (following the same logic of previous section) and the
product involved in the construction of the elements matrices can be performed synchronously. As
long as individual planes are defined for each element, and a simultaneous operation according to
the Eq. (21) are possible:

(Ke)𝛼 = B𝛼T
u D𝛼B𝛼

u V𝛼 (21)

where the several planes (or pages) 𝛼 are associated with mesh elements as shown in Figure 6.

Figure 6. Interpretation of the concept of multidimensional arrays: (a) several pages of the same index, (b) the
multidimensional product applied to the problem, with evidence for the 𝛼𝛼𝛼 plane.

This procedure avoids two specific problems: (i) the construction of explicit terms presented in the
previous section, which involves tedious algebraic computation; (ii) the serial (and slow) realization of
numerous products among the matrices that integrate the elements in the stiffness matrix (identified
by planes). As a disadvantage, it performs the complete product between the matrices and does not
take any advantage of the problem symmetry.

In this paper, two options are given for the multidimensional product:

1) The compilation of a MEX function called MTIMESX (Tursa 2022), suitable for CPU operations;

2) The application of native pagefun command, which applies operations to each page of a
multidimensional array stored in the GPU.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 14 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

The code structure for any of these options is very similar, and the GPU details are presented
in Algorithm 3 for the case of a linear tetrahedron. It is very easy to create a vector on the GPU and
to transfer data to the GPU, just use the MATLAB function gpuArray. This is easily reached by using
gpuArray type structures.

Algorithm 3: sample code for multidimensional product on GPU

1 % coordinates are converted from CPU to GPU arrays

2 X1=gpuArray(X1); Y1=gpuArray(Y1); Z1=gpuArray(Z1); …

3 % defines 3d arrays for B and D on the GPU

4 B=zeros(6,12,nel,'gpuArray'); D=repmat(D,1,1,nel); D=gpuArray(D);

5 % defines element volumes on the GPU

6 VV=gpuArray(VV);

7 % populates B indexes (sample indexes presented)

8 B(1,1,:)=(1./(6*VV)).*b1;

9 B(1,4,:)=(1./(6*VV)).*b2; …

10 % defines volume vector as pages (slices)

11 Ve=permute(VV', [3 2 1]);

12 % ---------------------------------------------------------------

13 % computes the multidimensional product B'DBV with pagefun on GPU

14 % ---------------------------------------------------------------

15 % first computation B'D

16 BtD=pagefun(@mtimes,pagefun(@ctranspose,B),D);

17 % second computation B'DB

18 BtDB=pagefun(@mtimes,BtD,B);

19 % final computation

20 Ke=pagefun(@mtimes,BtDB,Ve);

Note: some lines omitted for sake of simplicity.

4.4 - Global stiffness matrix assembly (KG)

Once the L, C and V triplets are obtained, the procedure follows with the global stiffness matrix
construction, defined as sparse, for better storage efficiency. For large scale problems, two important
characteristics must be considered: (i) the size occupied in RAM by the triplets; (ii) the time required to
construct the sparse matrix. Item (i) and the possible alternatives for RAM reduction have already been
discussed in the previous section. Operations with native solvers in MATLAB require the explicit storage
of matrices. This way, emphasis will be given to the options for the solution in item (ii). The numerical
experiments of this work employ the native sparse function of MATLAB v. 2020a. Furthermore, analyses
are performed with alternatives proposed by other authors in MEX functions.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 15 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

MATLAB’s native sparse function produces a sparse matrix from the triplets through the following
logic: a pair of indexes (k) and C(k) defines a V(k) value. Common terms (collisions) are added together,
and the final size of the matrix corresponds only to the space allocated to the non-zero terms of these
++goooperations. This step is indicated in Eq. (22)

KG = sparse(L, C, V,ndof ,ndof ); (22)

where ndof is the total degree of freedom of the problem.
In large scale problems, computation of the vectors L, C and V indicated in Eq. (22) may be

unfeasible, with the occurrence of insufficient VRAM memory in the GPU (unlike in RAM). Even the
storage of the triplets in the GPU does not guarantee success in assembly, which may result in
insufficient memory allocation and error in building the sparse array in GPU, even though the final
size of the global array is smaller than the VRAM memory. In this case, two solutions may apply:

� The construction of the sparse array in CPU, and later sending it to the GPU with the gpuArray
command. Here is an important consideration: in the CPU the performance of the sparse
command is now compromised with the use of swap memory. This occurs as triplets increase
relative to RAM. The performance is also lower than with the accelerator card;

� The assembly is divided in the GPU, with the progressive assembly of smaller arrays, obtained
by the partial construction of triplets in GPU, which use only a fraction of these vectors, with
adequate size for allocation in VRAM, and which can be allocated in the device. This can be
obtained through repetition structures, which clean the variables already used in the previous
stages and allow new allocation in the GPU. The same fractioning considerations described for
the GPU also apply to the case of CPU construction, in limited RAM scenarios.

According to the considerations above, any efficient strategy use of the sparse command must
observe the following criteria: RAM, VRAM memory, integer numerical format for the L and C vectors
and possible symmetry of the element stifffnessglo matrix.

4.5 - Iterative solver using the conjugate gradient

An alternative to the direct solver appears with iterative methods, such as the conjugate gradient
method. In this case, the user experience is crucial for defining the convergence and accuracy of
the results. Memory consumption is often less than necessary for using direct solvers. However,
the convergence process can be slow, depending on the starting vector for finding solutions. In
the transient phenomenon, this can be minimized using the previous time solution as the starting
point for the next solution. For a few iterations, the method presents excellent performance. The
possibility of GPU acceleration is also an advantage of iterative solvers since they require small
memory requirements and make it possible to allocate in accelerator cards. Among all MATLAB
functions, the pcg function was used in both CPU and GPU. No type of pre-conditioner was used.

The Eigen library solvers are also explored in the CPU as an alternative to the MATLAB solvers. The
interface of this library with MATLAB is made through the MEX language. The library also allows shared
memory parallel computing with the Open Multi-Processing (OpenMP) structure. The pcg function was
used with and without parallelization. The global stiffness matrix assembly occurs internally and it is
enough to supply the triplets: line, column, and values.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 16 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

5 - RESULTS AND DISCUSSIONS

To evaluate the performance of the developed code, a comparison of the solutions obtained by
the developed code with a reference solution was performed. In all simulations MATLAB version 9.8
(R2020a) was used on an Intel(R) Core (TM) i7-8700 CPU 3.19 GHz, with 32 GB of RAM, 6 processors and
an NVIDIA TITAN Xp GPU with 12 GB of VRAM memory.

5.1 - Validation Exercises

The problem addressed, for the validation of the developed code, was presented by (Dean et al.
2006), who studied coupling techniques between the flow and mechanical problem and its effects
on reservoir fluid production, presented in Figure 7. The reservoir region (R2) is located in the central
region of the model, where depletion occurs through a vertical well. The adjacent rocks represent the
region R1, as illustrated in Figure 7. Table I presents the geometric properties of the problem.

Figure 7. Geometry of problem 3 (Dean et al. 2006). (a) topo view (b) front view and (c) 3d view.

The boundary conditions of the problem are arranged as follows: on the lateral and base faces
of the model, the nodal displacement rates are zero. On the top face, vertical stress of zero (0 MPa)
is imposed so that the vertical stress gradient is approximately 0.0224 MPa/m. This means that the
model initially a uniaxial stress behaviour. The Young modulus for adjacent rocks and reservoir are
6,895 and 68.95 MPa, respectively. For all rocks, the Poisson ratio of 0.25 was admitted. Zero flow is
imposed on the entire contour of the problem. A flow rate of 0.092 m³/s is imposed on the producing
well located in the central region of the reservoir and kept constant throughout the simulation time
(4,000 days). The finite element mesh employed has 31,752 elements and 6,292 nodes and will be
defined ”0 mesh” from now on.

In Figure 8, the mean pressure distribution in the reservoir and the displacement of the central
point at the top of the reservoir over the simulation time are presented. The results show a good
agreement with the results obtained by Dean et al. (2006).

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 17 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Table I. Geometric parameters of the model,
dimensions are in meters.

Lengths of regions in meters

Lenght L1=6098 L2=6705,8 -

Width W1=3048 W2=3352 -

Depth D1=3048 D2=3048 D3=61

Total dimensions

Directions R1 R2

x 2*L1+L2=18897,8 L2=6705,8

y 2*W1+W2=9448,8 W2=3352

z D1+D2+D3=3185,2 D2=76,2

Figure 8. (a) Pressure profile in the reservoir, (b) mean pressure (c) compaction of the reservoir.

5.2 - Study of efficiency of the methodologies

In order to analyze the computational efficiency of the code developed for the geomechanical
problem, different levels of refinement were used, as shown in Table II, and mesh 0 presents the same
degree of refinement used by (Dean et al. 2006) and was used in the validation stage. The computer

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 18 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

setup was able to assemble a KG global stiffness matrix with 14,709,888 elements and solve a linear
equation system with 8,003,151 unknowns due to the exhaustion of the RAM memory that can be seen
in Figures 10b and 12b added together. For the resolution of the system using the conjugated gradient
a tolerance of tol=1e-04 and maximum iteration of maxit=1e05 was used in both CPU and GPU.

Table II. Different meshes analyzed.

meshes Problem configuration

nelem ndof

0 31752 188976

1 1843200 1010919

2 5171328 2822079

3 8323200 4534959

4 14709888 8003151

Focus is given on evaluating the computational efficiency of the geomechanical problem for
meshes 1 to 4. Table III shows a summary of the acronyms with their definition for the techniques
used to build the local stiffness matrices Ke both in the CPU and GPU, and Table IV shows the times
over which all the evaluations were made.

Table III. Some important definitions.

Acronyms Definitions

Imp Mounting Ke Implicitly on CPU

Exp Mounting Ke Explicitly on CPU

ExpS Mounting Ke Explicitly on CPU using symmetry

ImpGPU Mounting Ke Implicitly on GPU

ExpGPUS Mounting Ke Explicitly on GPU Using Symmetry

Table IV shows the times where each nodal pore pressures of the flow problem were obtained
and which are assessed in the mechanical problem.

Table IV. Chosen time steps for calculating the geotechnical problem.

Steps 1 2 3 4 5 6 7 8

Times(days) 13 157 527 853 1214 1630 2155 2534

Steps 9 10 11 12 13 14

Times(days) 2878 3140 3438 3646 3845 3981

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 19 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

5.3 - Calculation of local stiffness matrices Ke

Looking at the construction time graphics of the stiffness Ke matrices and comparing the techniques
used, it is clear that the explicit construction on the GPU, taking advantage of the symmetry, is themost
efficient technique, as shown in Figure 9a. Besides analyzing the graphics globally, it is also interesting
to do local analysis with attention to each technique in the CPU and GPU. The best way to build Ke on
the CPU is the ExpS technique, and ExpGPUS is the most computationally efficient technique on the
GPU. Imp, ExpS and ExpGPUS are techniques for constructing local stiffness matrices implicit in the
CPU, explicit with symmetry in the CPU and explicit with symmetry in the GPU. For this problem, the
least efficient technique to build the Ke matrix is Imp Figure 9b.

Figure 9. Build time of local stiffness matrices that (a) on the GPU (b) on the CPU.

All the considerations made previously can be seen in the graph of Figure 10a, where the ExpGPUS
technique was the most efficient, having a SpeedUp 140 times faster than Imp. Another interesting
observation that can be made in Figure 10b is that the memory consumption for the storage of the
vectors are very similar both for the calculation of the matrices mounted explicitly and implicitly.

5.3.1 - Assembly of KG global stiffness matrix

Another crucial segment in the study is the assembly of the global stiffness matrices, which several
techniques were used, which where previously described in section 3. It can be seen in Figure 11a as
follows that the sparseGPUS technique was the most efficient in the GPU. It is worth noting that there
was a loop for the assembly of KG on the GPU. In the CPU, the sparse_create had a better performance
Figure 11b because it consumes less RAM due to the absence of the triplets (I, J, V) Figure 12b, but which
are necessary for the other techniques. On the other hand, it can be seen in Figure 12b on the CPU
that the sparse2 strategy had a very expressive consumption of RAM, managed to assemble meshes
in the order of 5 million elements, up to mesh 2. The empty cells of Figure 12a are due to the lack of
memory.

The performance in Figure 11b can be justified by the memory consumption of the KG assembly
shown in Figure 12b together with the memory of the Ke shown in Figure 10b. They clearly show that
there was an excessive consumption in the assembly of KG and Ke.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 20 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Figure 10. (a) Speedup of the construction of arrays of elements in relation to the Imp technique (b) Comparison of
percentage of memory used by Ke assembled explicitly and implicitly.

Figure 11. KG global stiffness matrix build time: (a) on GPU and (b) on CPU.

Figure 13a shows the most efficient technique through SpeedUp compared to the CPU sparse
technique. It can also be observed that the assembly of the KG on the GPU using the native sparse
function of MATLAB is the most efficient. Plot for the sparseGPU and sparse-createS are quite close,
which means, for a machine that does not have a GPU equipped architecture, that the sparse_create
is an excellent alternative.

Figure 13b shows how excessive memory consumption compromises CPU time.

5.3.2 - Calculation of the solution time of linear of the system in linear equations

A last segment that was the object of analysis is linear equation system solution strategies, a crucial
point that needed special attention both in CPU and GPU versions. First, it can be seen in Figure 14a
that in the GPU, the best way to solve the problem is to use the symmetry in the assembly of the KG
and later the use of the native function of MATLAB pcg with initial displacement vector as a part of

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 21 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Figure 12. (a) Vector memory vs nelem (b) Percentage of memory consumed by KG versus available memory.

Figure 13. (a) Speedup of global KG array assembly in relation to CPU sparse (b) memory consumption versus CPU
time.

solution. It can be seen in Figure 14a that with larger meshes the symmetry in the KG assembly has an
influence on the system solution. This observation applies to the system solution in the CPU as well
as in the GPU.

In the CPU version, the most efficient technique was pcgEigenOMP. In the CPU version, the most
efficient technique was pcgEigenOMP. The solution time presented in the graphics is average, taking
into account the 14 times steps presented in Table IV. Figure 15 shows the speedup in the problem for
grid 4, presented in Table IV. It can be observed that the PCGGPUS technique had the best performance
compared to other techniques. It obtained a speedup of more than 14 times compared to the PCG
technique on the CPU.

In the Figure 16 illustrates interesting information about the comparative construction times of
Ke and Kg added to the execution time in solution of the problem. To understand Figure 16, four
observations can be made:

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 22 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

Figure 14. Comparison of the processing times of solvers (a) on the GPU and (b) on the CPU.

Figure 15. Speedup in relation to solution times using
pcg.

Figure 16. Comparisons in Percentage in the total time
of the sum of the Ke and KG times against the solver in
the CPU and in the GPU for each mesh.

1. The first one is the first 5 meshes named 0 for mesh 0, 1 for mesh 1 and so on;

2. In the second observation, each mesh is evaluated the participation in the total time of Ke and
KG together in front of the solver both in CPU and GPU;

3. The third interesting observation that can be observed is the percentage of the added time of
Ke and KG that in the total decreases as the size of the mesh increases. In GPU, this observation
is different: with larger meshes, the percentage of time of the solution tends to decrease for a
certain size, and the presence of a loop in the construction of KG compromises the efficiency of
the assembly, which can justify this behaviour differs from the construction in CPU. For linear
elastic problems in the CPU, where there is no need for global loop reconstruction, efficient
assembly in record time does not seem to bring great advantages for large-scale meshes.
However, for non-linear problems or problems where reconstruction of the Ke and KG arrays

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 23 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

becomes mandatory, the construction time of a Ke and KG in cases of sparse-createS in the CPU
and sparseS in the GPU can be interesting in total time;

4. Finally, the fourth observation is in the time steps, this type of problem in which there may be
larger or smaller time steps, the percentage of the average solution time will suffer effects in the
total time.

6 - CONCLUSIONS

In this article, alternatives for simulation of the geomechanical problem partially coupled to fluid
flow, both in the CPU and in the GPU, present in subsurface problems, with Finite Element Method
in the elastic and linear analysis, using MATLAB, were presented. Three segments of the code were
evaluated in terms of computational efficiency: (i) the calculation of local stiffness matrices Ke, (ii)
the assembly of the global stiffness matrix KG and (iii) alternatives for solution of the linear system.
In the first part of the analysis, the proposed code was able to calculate in the GPU the stiffness
matrices Ke for a mesh of 14,709,888 elements in a time of 3.79 seconds, a technique named ExpGPUS,
the great exploitation of this technique was the utilization of the symmetry of the matrix Ke for being
elastic and linear. The best technique in the CPU is the explicit assembly using the symmetry, the
ExpS that assembled the same mesh in 49.25 seconds, comparing these two techniques obtained a
local speedup in about 13 times and globally ExpGPUS had a speedup of more than 140 compared
to the assembly in the implicit CPU. Another critical point was the assembly of the global matrix KG.
The best technique observed was sparseGPUS, which uses the native function of MATLAB sparse on
the GPU. The developed geomechanical code was able to assemble this technique in the previous
mesh in 48.47 seconds, compared with this same technique. However, on the CPU, our machine was
unable to affect the assembly for this amount of elements, due to the comparison effect on the CPU
set up a smaller mesh of 8,323,200 with one has much higher that was 1,459.20 seconds. In the CPU,
the best technique was using the function sparse_create that obtained 56.24 seconds for the mesh of
14,709,888 elements. The last analyzed segment was the solution time for the different system solution
strategies presented previously. The best strategy observed in best computational performance was
the gradient conjugated in the GPU with KG mounted using symmetry, known as pcgGPUS, that solved
this same in 20.40 minutes 14 time steps with an average of 1,457 minutes for each time step. On
the CPU, the best technique was pcgEigenOMP which achieved a performance of 64.05 minutes with
an average of 4,575 minutes for each time step. In this study, the solution of the equation system
consumes a good part of the analysis time. An analysis in the GPU for this geomechanical problem
using the combination of KeExpGPUS to calculate the Ke, sparseGPUS to mount KG and pcgGPUS for
the solution of the problem. The triplets (ExpGPUS, sparseGPUS, pcgGPUS) was the best combination
of the analyses made in this article. For a CPU analysis, the best combination was (ExpS, sparse_create,
pcgEigenOMP). Finally, the total time to solve the problem proposed in this article was critical and a
function of some parameters, mainly the mesh size and time steps. In this article, for the mesh with
14,709,888 elements and 8,323,200 degrees of freedom, it was necessary, using the best techniques of
each segment in the global, of a total time of 21.27 minutes for the 14 time steps. Graph 16 shows an
interesting observation about the participation of the times of the calculation of the local stiffness
matrices and the construction of KG added in front of the solution time, it was observed that in the

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 24 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

CPU, for Ke and KG, their participation in the total time decreases the measure the mesh increases and
for mesh 4 they consumed approximately together only 21% of the total time, considering an average
solution time. In the GPU, the participation of the time of the matrices Ke and KG together is more
significant in the total time due to the loop in the construction of KG, representing approximately 37%
of the total time necessary to solve the problem. The use of the GPU did not require any knowledge
of programming codes in CUDA to obtain all the advantages mentioned above. The article brings
the possibility of accelerating geomechanical simulations with modern GPU type devices without
programming in low-level languages besides the excellent possibility in CPU with EIGEN integration.
This confers to the article innovative characteristics in terms of an overview of several techniques
applied to the reservoir simulation problem, going beyond the global matrix construction process
and with an effective discussion of strategies that minimize the solution time of this problem. In
this context, the current proposal arises, which seeks the efficient solution of one-way simulations in
geomechanics of oil reservoirs using programming structures in MATLAB.

Acknowledgments
The author of this article would like to thank the CENPES-PETROBRAS (SIGER - the Petrobras Network on Simulation
and Management of Petroleum Reservoirs), the Pernambuco Foundation for the Support of Science and Technology
and the Energi Simulation Foundation grants 53/2020 for funding this research.

REFERENCES

ALMEIDA AS, LIMA STC, ROCHA PS, DE ANDRADE AM,
BRANCO CC & PINTO AC. 2010. CCGS opportunities in the
Santos basin pre-salt development. In: SPE International
Conference on Health, Safety and Environment in Oil and
Gas Exploration and Production, volume 2, p. 840-849.

ANDERSEN J, REFSGAARD JC & JENSEN KH. 2001.
Distributed hydrological modelling of the Senegal
River Basin - Model construction and validation. J Hydrol
247(3-4): 200-214.

BEAR J 1988. Dynamics of Fluids in Porous Media. New
York: Dover Publications.

BELL JD & ERUTREYA OE. 2015. Estimating Properties
of Unconsolidated Petroleum Reservoirs using Image
Analysis. J Geol Geophys 5: 1-4.

BINNING P & CELIA MA. 1999. Practical implementation
of the fractional flow approach to multi-phase flow
simulation. Adv Water Resour 22(5): 461-478.

BIOT MA. 1941. General theory of three-dimensional
consolidation. J Appl Phys 12(2): 155-164.

BIRD RE, COOMBS WM& GIANI S. 2017. Fast native-MATLAB
stiffness assembly for SIPG linear elasticity. Comput Math
Appl 74(12): 3209-3230. Disponível em: http://dx.doi.org/
10.1016/j.camwa.2017.08.022.

COUSSY O. 2004. Poromechanics. Chichester: J Wiley &
Sons.

CUISIAT F, GUTIERREZ M, LEWIS RW & MASTERS I.
1998. Petroleum reservoir simulation coupling flow
and deformation. In: European Petroleum Conference.
OnePetro 2: 63-72.

CUVELIER F, JAPHET C & SCARELLA G. 2016. An efficient way
to assemble finite element matrices in vector languages.
BIT Numer Math 56(3): 833-864.

DABROWSKI M, KROTKIEWSKI M, SCHMID DW. 2008.
MILAMIN: MATLAB-based finite elementmethod solver for
large problems. Geochem Geophys Geosyst 9(4): 1-24.

DEAN RH, GAI X, STONE CM & MINKOFF SE. 2006. A
comparison of techniques for coupling porous flow and
geomechanics. SPE J 11(1): 132-140.

DURAN O, SANEI M, DEVLOO PRV & SANTOS EST. 2020. An
enhanced sequential fully implicit scheme for reservoir
geomechanics. Comput Geosci 24(4): 1557-1587.

ENGBLOM S & LUKARSKI D. 2016. Fast Matlab compatible
sparse assembly on multicore computers. Parallel
Comput 56: 1-17.

FERRARI A, PIZZOLATO A, PETROSELLI S, MONACO S &
OTTAVIANI D. 2021. A consistent framework for coupling
modern reservoir flow simulator with mechanics. In:
IOP Conference Series: Earth and Environmental Science.
Bristol: IOP Publishing, p. 012113.

GASPARINI L ET AL. 2021. Hybrid parallel iterative sparse
linear solver framework for reservoir geomechanical and

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 25 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

flow simulation. J Comput Sci. https://doi.org/10.1016/j.
jocs.2021.101330.

GOMES AFC, MARINHO JLG & SANTOS JPL. 2019. Numerical
Simulation of Drilling Fluid Behavior in Different Depths
of an Oil Well. Braz J Pet Gas 13(4): 309-322.

GRIFFITHS DV, HUANG J & SCHIERMEYER RP. 2009. Elastic
stiffness of straight-sided triangular finite elements by
analytical and numerical integration. Commun Numer
Methods Eng 25(3): 247-162. DOI: https://doi.org/10.1002/
cnm.1124.

INOUE N & FONTOURAS ABDA. 2009. Explicit Coupling
Between Flow and Geomechanical Simulators. In:
International Conference on Computational Methods for
Coupled Problems in Science and Engineering, p. 2-5.

KEYES DE ET AL. 2013. Multiphysics simulations:
Challenges and opportunities. Int J High Perform
Comput Appl 27(1): 4-83.

KIM J, TCHELEPI HA & JUANES R. 2011. Stability, accuracy,
and efficiency of sequential methods for coupled flow
and geomechanics. SPE J 16(2): 249-262.

LI X, ZHANG Y, WANG X & GE W ET AL. 2013. GPU-based
numerical simulation of multi-phase flow in porous
media using multiple-relaxation-time lattice Boltzmann
method. Chem Eng Sci 102: 209-219. Disponível em: https:
//dx.doi.org/10.1016/j.ces.2013.06.037.

LYUPA AA, MOROZOV DN, TRAPEZNIKOVA MA,
CHETVERUSHKIN, CHURBANOVA NG & LEMESHEVSKY
SV. 2016. Simulation of Oil Recovery Processes with the
Employment of High-Performance Computing Systems.
Math Models Comput Simul 8(2): 129-134.

MANDAL P, SAROUT J & REZAEE R. 2020. Geomechanical
appraisal and prospectivity analysis of the Goldwyer
shale accounting for stress variation and formation
anisotropy. Int J Rock Mech Min Sci. 135: 104513.
10.1016/j.ijrmms.2020.104513.

MATHWORKS. 2021. Disponível em: https://www.
mathworks.com/products/matlab.html. Acesso em:
7 maio 2021.

MENA H, PFURTSCHELLER LM & STILLFJORD T. 2020. GPU
acceleration of splitting schemes applied to differential
matrix equations. Numer Algorithms 83(1): 395-419.

NAGEL NB. 2001. Compaction and subsidence issues
within the petroleum industry: From Wilmington to
Ekofisk and beyond. Physics and Chemistry of the Earth,
Part A: Solid Earth and Geodesy 26(1-2): 3-14.

PEREIRA LC, GUIMARÃES LJN, HOROWITZ B & SÁNCHEZ
M. 2014. Coupled hydro-mechanical fault reactivation

analysis incorporating evidence theory for uncertainty
quantification. Comput Geotechnics 56: 202-215.

SETTARI A & WALTERS DA. 2001. Advances in coupled
geomechanical and reservoir modeling with applications
to reservoir compaction. SPE J 6(3): 334-342.

SHIAKOLAS PS, LAWRENCE KL & NAMBIAR RV. 1994.
Closed-form expressions for the linear and quadratic
strain tetrahedral finite elements. Comput Struct 50(6):
743-747.

SOLTANZADEH H & HAWKES CD. 2009. Assessing fault
reactivation tendency within and surrounding porous
reservoirs during fluid production or injection. Int J Rock
Mech Mining Sci 46(1): 1-7.

TURSA J. 2022. MTIMESX - Fast Matrix Multiply with
Multi-Dimensional Support (https://www.mathworks.
com/matlabcentral/fileexchange/25977-mtimesx-
fast-matrix-multiply-with-multi-dimensional-support),
MATLAB Central File Exchange. Retrieved July 31, 2022.

ZAYER R, STEINBERGER M & SEIDEL HP. 2017. Sparse matrix
assembly on the GPU through multiplication patterns. In:
IEEE High Performance Extreme Computing Conference
(HPEC), p. 1-8.

ZHANG F, YIN Z, CHEN Z, MAXWELL, ZHANG L & WU Y.
2020. Fault reactivation and induced seismicity during
multistage hydraulic fracturing: Microseismic analysis
and geomechanical modeling. SPE J 25(2): 692-711.

ZHENG D, XU H, WANG J, SUN J, ZHAO K, LI C, SHI L & TANG
L. 2017. Key evaluation techniques in the process of gas
reservoir being converted into underground gas storage.
Pet Explor Dev 44(5): 840-849.

ZIENKIEWICZ OC, TAYLOR RL & TAYLOR RL. 2000.
The finite element method: solid mechanics. UK:
Butterworth-Heinemann.

ZOBACK M & KOHLI A. 2019. Unconventional
Reservoir Geomechanics. In: Unconventional Reservoir
Geomechanics: Shale Gas, Tight Oil, and Induced
Seismicity. Cambridge: Cambridge University Press.

How to cite
JOSEPH JB, VIEIRA RIBEIRO PMV, GUIMARÃES LJN, CHAVES JUNIOR
CV & TEIXEIRA JC. 2022. Acceleration strategies for Tridimensional
Coupled hydromechanical problems based on CPU and GPU
programming in MATLAB. An Acad Bras Cienc 94: e20211024. DOI
10.1590/0001-3765202220211024.

Manuscript received on July 18, 2021;
accepted for publication on November 17, 2021

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 26 | 27



JEAN B. JOSEPH et al. ACCELERATION STRATEGIES BASED ON CPU AND GPU

JEAN B. JOSEPH
https://orcid.org/0000-0002-5625-8487

PAULO MARCELO V. RIBEIRO
https://orcid.org/0000-0002-9261-8953

LEONARDO J.N. GUIMARÃES
https://orcid.org/0000-0001-6803-6024

CICERO VITOR CHAVES JUNIOR
https://orcid.org/0000-0002-1690-4544

JONATHAN DA C. TEIXEIRA
https://orcid.org/0000-0003-4271-1479

Universidade Federal de Pernambuco, Av. Prof. Moraes Rego,
1235, 50670-901 Recife, PE, Brazil

Correspondence to: Jean Baptiste Joseph

E-mail: jean.baptiste@ufpe.br

Author contributions
Jean Baptiste Joseph: Software development, Validation,
Investigation, Data Curation, Writing - Original Draft, Writing –
Review and Editing, Visualization. Paulo Marcelo Vieira Ribeiro:
Conceptualization, Methodology, Supervision, Writing -
Original Draft, Review and Editing. Leonardo J. N. Guimarães:
Conceptualization, Methodology, Supervision, and Review.
Cicero Vitor Chaves Junior: Software development, Investigation
and Data Curation. Jonathan da Cunha Teixeira: Formal Analysis,
Supervision, Writing – Review and Editing.

An Acad Bras Cienc (2022) 94(Suppl. 4) e20211024 27 | 27


