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On a continuous Gale-Berlekamp switching game
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Abstract: We propose a continuous version of the classical Gale–Berlekamp switching
game. The main results of this paper concern growth estimates for the corresponding
optimization problems.
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INTRODUCTION

Designed independently by Elwyn Berlekamp and David Gale in the 1960’s, the Gale–Berlekamp
switching game – also known as the unbalancing lights problem – represents a classic in the field
of combinatorics and its applications, with deep connections to theoretical Computer Science. This
single-player game consists of an n × n square matrix of light bulbs set-up at an initial light
configuration. The goal is to turn off as many lights as possible using n row and n column switches,
which invert the state of each bulb in the corresponding row or column.

For an initial pattern of lights Θ, let i(Θ) denote the smallest final number of on-lights achievable
by row and column switches starting from Θ. The smallest possible number of remaining on-lights
Rn, starting from the worst initial pattern, is then

Rn = max{i(Θ) ∶ Θ is an n× n light pattern}.

Sometimes this optimization problem is posed as finding the maximum of the difference between
the number of lights that are on and the number that are off, often denoted by Gn. Obviously both
problems are equivalent as Rn = 1

2 (n
2 − Gn).

The original problem introduced by Berlekamp asks for the exact value of R10 and it was proved
in Carlson & Stolarski (2004) that R10 = 35 (and thus G10 = 30). Several related questions pertaining
to the original problem have been investigated in depth, see e.g. Brualdi & Meyer (2015), Carlson &
Stolarski (2004), Fishburn & Sloane (1989) and Schauz (2011); in particular the hardness of solving the
Gale-Berlekamp switching game was studied in Roth & Viswanathan (2008).

In this paper we propose a continuous version of the Gale–Berlekamp switching game. We are
interested in a continuous version of the game for which vectors replace light bulbs and knobs
substitute the discrete switches used to invert the state of the bulbs in the original problem. In our
approach, we also allow the game–board not to be square.
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To explain the new proposed game, we initially notice that by associating +1 to the on–lights and
−1 to the off–lights from the array of lights (aij)

n
i,j=1

the goal of the original game can be understood
mathematically as to determine

Gn = min{ max
xi,yj∈{−1,1}

∣
n

∑
i,j=1

aijxiyj∣ ∶ aij = −1 or + 1},

where xi and yj denote the switches of the row i and of the column j, respectively.
The new optimization problem herein proposed involves a matrix (aij) with n1 rows and n2

columns whose elements are unit vectors of the plane, ℝ2. The initial direction pattern of each n1n2
vectors is set up at the beginning of the game. In each row i and each column j there are knobs xi
and yj, respectively. Rotating the knob xi by an angle 𝜃i, it rotates all vectors aij of the row i by the
same angle 𝜃i. Analogously, when the knob yj is rotated by an angle 𝜃j, the same happens with all the
vectors aij of the column j (see Figure 1).

Figure 1. Continuous version of the Gale-Berlekamp switching game for n=10.

The game consists of maximizing the Euclidean norm of the sum of all vectors in the final stage.
More precisely, for an initial pattern Θ of unit vectors, let s(Θ) be the supremum of the (Euclidean)
norms of the sums of all n1n2 vectors achievable by row and column adjusts. The extremal problem
is to determine

G(1)
n1n2 ∶= min{s(Θ) ∶ Θ an n1 × n2 pattern}.

Our main result estimates the asymptotic growth of G(1)
n1n2 :

Theorem 1. For all positive integers n1,n2, we have

0.886 ≤
G(1)
n1n2√n1n2max{
√n1,

√n2}
≤ 1. (1)

We conclude this introduction by commenting on the ideas and techniques used to prove Theorem
1, which are of particular interest. We observe that due to the combinatorial complexity of this kind
of problems, growth estimates as in Theorem 1 are often obtained by non-deterministic techniques,
see for instance Alon & Spencer (1992), Araújo & Pellegrino (2019) and Bennett et al. (1975). A main
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novelty proposed in this article regards a deterministic approach to estimating G(1)
n1n2 , which yields

improved, more precise estimates than those obtained by non-deterministic methods. We believe
that the methods herein developed are likely to be applicable in an array of other problems and
to exemplify the depth of these new ideas, we also prove analogues of (1) in higher-dimensional
configurations.

PROOF OF THEOREM 1

Initially, it is more convenient to conceive the vectors in the game as complex numbers aij with
modulus 1, which represent the elements of the array (aij)

n1,n2
i,j=1

. In this case, when the player rotates a
knob, the action is modeled by the multiplication by unimodular complex numbers.

There is no loss of generality in supposing that n1 ≤ n2. We start off the proof of Theorem 1 by
reminding that a consequence of the Krein–Milman Theorem assures that for all A ∶ ℓn1∞ × ℓn2∞ → ℂ,
defined by

A(ej1 , ej2) = aj1j2 ,

where ek ∶= (0,… , 0, 1, 0,… , 0), with 1 exactly at the k-th position, there holds

‖A‖ = sup
∣x(1)
j1

∣=∣x(2)
j2

∣=1
∣
n1,n2
∑
j1,j2=1

aj1j2x
(1)
j1
x(2)
j2

∣ ,

i.e., the supremum norm of A is attained at the extreme points of the closed unit balls of ℓn1∞ and ℓn2∞.
Thus we can easily observe that

G(1)
n1n2 = inf{‖A‖ ∶ ∣aj1j2 ∣ = 1}

and our task is then to estimate the infimum of ‖A‖ over all bilinear forms A ∶ ℓn1∞ × ℓn2∞ → ℂ with
unimodular coefficients.

Once the problem has been described as above, the upper bound in Theorem 1 can be obtained
by means of an argument from the seminal paper of Bohnenblust & Hille (1931), Theorem II, page 608.
We shall explain the necessary adaptations when we deliver the proof of Theorem 2.

As for the lower estimate, we shall make use of Khinchin inequality, which we revise for the sake
of completeness.

Khinchin inequality

To motivate, let’s state the following question: suppose that we have n real numbers a1,… ,an and a
fair coin. When we flip the coin, if it comes up heads, you choose 𝛽1 = a1, and if it comes up tails, you
choose 𝛽1 = −a1. When we play for the second time, if it comes up heads, you choose 𝛽2 = 𝛽1 + a2
and, if it comes up tails, you choose 𝛽2 = 𝛽1 − a2. Repeating the process, after having flipped the coin
k times we have

𝛽k+1 ∶= 𝛽k + ak+1,

if it comes up heads and
𝛽k+1 ∶= 𝛽k − ak+1,
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if it comes up tails. After n steps, what should be the expected value of

|𝛽n| = ∣
n

∑
k=1

±ak∣ ?

Khinchin’s inequality, see for instance Diestel et al. (1995), page 10, shows that the “average”

1
2n

∑
𝜀∈Dn

∣
n

∑
j=1

𝜀jaj∣ ,

where Dn = {−1, 1}n and 𝜀 = (𝜀1,… , 𝜀n), behaves as the ℓ2-norm of (aj)
n
j=1

. More precisely, it asserts
that for any p > 0 there are constants Ap,Bp > 0 such that

Ap(
n

∑
j=1

∣aj∣
2)

1
2

≤ ( 1
2n

∑
𝜀∈Dn

∣
n

∑
j=1

𝜀jaj∣
p

)

1
p

≤ Bp(
n

∑
j=1

∣aj∣
2)

1
2

for all sequences of scalars (aj)
n
j=1
and all positive integers n. The natural counterpart for the average

1
2n ∑

𝜀∈Dn
∣∑n

j=1 𝜀jaj∣ in the complex framework is

( 1
2𝜋

)
n
∫

2𝜋

0
…∫

2𝜋

0
∣
n

∑
j=1

ajeitj ∣dt1⋯dtn.

It is well known that in this new context we also have a Khinchin-type inequality, called Khinchin
inequality for Steinhaus variables, which asserts that there exist constants Ãp and B̃p such that

Ãp(
n

∑
j=1

∣aj∣
2)

1
2

≤ (( 1
2𝜋

)
n
∫

2𝜋

0
…∫

2𝜋

0
∣
n

∑
j=1

ajeitj ∣
p

dt1⋯dtn)

1
p

≤ B̃p(
n

∑
j=1

∣aj∣
2)

1
2

(2)

for every positive integer n and all scalars a1,… ,an.
Back to the proof of Theorem 1, for the purpose of establishing a lower estimate for the growth

of G(1)
n1n2 , we are interested in the case p = 1 and only in the left hand side of (2). In König (2014) it is

proven that Ã1 =
√
𝜋/2. For a bilinear form A ∶ ℓn1∞ × ℓn2∞ → ℂ given by

A (ej1 , ej2) = aj1j2

with
∣aj1j2 ∣ = 1,

we have

(
n1
∑
j1=1

∣A (ej1 , ej2)∣
2
)
1/2

≤ ( 2√
𝜋
)( 1

2𝜋
)
n1
∫

2𝜋

0
…∫

2𝜋

0
∣
n1
∑
j1=1

A (ej1 , ej2) e
itj1 ∣dt1⋯dtn1

= ( 2√
𝜋
)( 1

2𝜋
)
n1
∫

2𝜋

0
…∫

2𝜋

0
∣A(

n1
∑
j1=1

eitj1ej1 , ej2)∣dt1⋯dtn1 .
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Since

∫
2𝜋

0
…∫

2𝜋

0

n2
∑
j2=1

∣A(
n1
∑
j1=1

eitj1ej1 , ej2)∣dt1⋯dtn1

≤ (2𝜋)n1 max
t1,…,tn1∈[0,2𝜋]

n2
∑
j2=1

∣A(
n1
∑
j1=1

eitj1ej1 , ej2)∣ ,

denoting the topological dual of ℓn∞ by (ℓn∞)∗ and its closed unit ball by B(ℓn∞)∗ , we have

n2
∑
j2=1

(
n1
∑
j1=1

∣A (ej1 , ej2)∣
2
)
1/2

≤ ( 2√
𝜋
)( 1

2𝜋
)
n1
∫

2𝜋

0
…∫

2𝜋

0

n2
∑
j2=1

∣A(
n1
∑
j1=1

eitj1ej1 , ej2)∣dt1⋯dtn1

≤ ( 2√
𝜋
) max
t1,…,tn1∈[0,2𝜋]

n2
∑
j2=1

∣A(
n1
∑
j1=1

eitj1ej1 , ej2)∣

≤ ( 2√
𝜋
)‖A‖ sup

𝜑∈B
(ℓn2∞)

∗

n2
∑
j2=1

∣𝜑 (ej2)∣

= ( 2√
𝜋
)‖A‖ ,

where in the last equality we have used the isometric isomorphism

ℓn1 ⟶ (ℓn∞)∗

(aj)
n
j=1

⟼ 𝜑,

with 𝜑 ∶ ℓn∞ → ℂ defined by
𝜑((xj)

n
j=1

) =
n
∑
j=1
ajxj.

Finally, since ∣A (ej1 , ej2)∣ = 1, we conclude that

‖A‖ ≥ (
√
𝜋
2

)n2n
1
2
1 .

Hence, as n2 ≥ n1, we have

(
√
𝜋
2

) ≤
G(1)
n1n2√n1n2max{
√n1,

√n2}
.

THE GAME IN HIGHER DIMENSIONS

The Gale–Berlekamp switching game has a natural extension to higher dimensions. Let m ≥ 2 be
an integer and let an n × ⋯ × n array (aj1⋯jm) of lights be given, each either on (aj1⋯jm = 1) or off
(aj1⋯jm = −1). Let us also suppose that for each k = 1,… ,m and each jk = 1,… ,n there is a switch
x(k)
jk
so that if the switch is pulled (x(k)

jk
= −1) all of the corresponding lights aj1…jm (with jk fixed) are
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switched: on to off or off to on. The goal is to maximize the difference between the number of lights
that are on and the number of lights that are off. As in the two-dimensional case, maximizing the
difference between the number of on-lights and off-lights is equivalent to estimating

max
x(1)
j1

,…,x(m)
jm

∈{−1,1}
∣

n
∑

j1,…,jm=1
aj1…jmx

(1)
j1

⋯ x(m)
jm

∣

and the extremal problem consists of estimating

Sn = min{ max
x(1)
j1

,…,x(m)
jm

∈{−1,1}
∣

n
∑

j1,…,jm=1
aj1…jmx

(1)
j1

⋯ x(m)
jm

∣ ∶ aj1…jm = 1 or − 1},

As in the bilinear case,
Sn = min ‖A ∶ ℓn∞ ×⋯× ℓn∞ → ℝ‖ ,

with
A (x(1),… , x(m)) =

n
∑

j1,…,jm=1
aj1…jmx

(1)
j1

⋯ x(m)
jm

.

The anisotropic case allows to consider n1 ×⋯× nm arrays, not necessarily square arrays and, in this
case, we write

Sn1…nm = min{ max
x(1)
j1

,…,x(m)
jm

∈{−1,1}
∣
n1,…,nm
∑

j1,…,jm=1
aj1…jmx

(1)
j1

⋯ x(m)
jm

∣ ∶ aj1…jm = 1 or − 1}.

From a recent result of Albuquerque & Rezende (2019), we can easily obtain

1

m (
√
2)

m−1 ≤
Sn1…nm√n1⋯nmmax{

√n1,… ,√nm}
≤ 8m

√
m!√log(1+ 4m).

Following the notation of Araújo and Pellegrino (2019), let m ≥ 2 be an integer and (ai1⋯im) be an
n×⋯× n array of complex scalars such that ∣ai1⋯im ∣ = 1. For p ∈ (1,∞], let

gℂ
m,n(p) = max ∣

n
∑

i1,…,im=1
ai1⋯imx

(1)
i1

⋯ x(m)
im

∣ ,

where the maximum is evaluated over all x(j)
ij

∈ ℂ such that ‖(x(j)
ij
)nij=1‖p = 1 for all j. It is not difficult to

prove that
gℂ
m,n(p) = ∥A ∶ ℓnp ×⋯× ℓnp → ℂ∥ ,

with
A (x(1),… , x(m)) =

n
∑

i1,…,im=1
ai1⋯imx

(1)
i1

⋯ x(m)
im

.

Denoting

Gm,n(p) = mingℂ
m,n(p), (3)

where minimum is evaluated over all unimodular m-linear forms A ∶ ℓnp × ⋯ × ℓnp → ℂ, the best
information we can collect (combining results from Araújo & Pellegrino (2019) and Pellegrino et al.
(2020)) is the following:
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∣
∣
∣
∣
∣
∣

1
1.3m0.365 ≤ Gm,n(p)

n
mp+p−2m

2p
≤ 8

√
m!√log(1+ 4m) for p ∈ [2,∞]

1 ≤ Gm,n(p)

n1−
1
p

≤ Cm,p for p ∈ (1, 2],

where Cm,p is obtained by interpolation (via the Riesz–Thorin Theorem) of the constant 1 (the constant
when p = 1) and 8

√
m!√log(1+ 4m) (the constant when p = 2).

The above solution rests in a non-deterministic tool. We shall show in what follows that for p = ∞
we can find deterministic solutions with better constants.

We begin with a matrix (aj1…jm)
n1,…,nm

j1,…,jm=1
whose elements are unit vectors in the Euclidean space ℝ2.

The initial direction pattern of each n1⋯nm vectors is set up at the beginning of the game. For each
k ∈ {1,… ,m}, we have nk control knobs x

(k)
1 ,… , x(k)

nk . When the knob x
(k)
jk
is rotated by an angle 𝜃(k)

jk
, the

same happens with all the vectors aj1…jm with jk fixed. Defining Θ and s(Θ) as in the two-dimensional
case, the extremal problem is to determine

G(1)
n1…nm ∶= min{s(Θ) ∶ Θ an n1 ×⋯× nm pattern}.

It is worth mentioning that, as a consequence of the Krein-Milman Theorem, we know that G(1)
n…n

coincides with Gm,n(∞), as defined in (3). We prove the following:

Theorem 2. For all positive integers m ≥ 2, n1,… ,nm ≥ 1 we have

(0.886)m−1 ≃ (
√
𝜋
2

)
m−1

≤
G(1)
n1…nm√n1⋯nmmax{

√n1,… ,√nm}
≤ 1.

Moreover, the universal upper bound 1 cannot be improved.

The proof that, in general, the upper bound 1 cannot be improved is trivial — just consider n2 =
⋯ = nm = 1 and note that in this case

G(1)
n1…nm = n1 =

√
n1⋯nmmax{

√
n1,… ,

√
nm}.

The case n1 = ⋯ = nm was investigated in Araújo & Pellegrino (2019), but the techniques
used by the authors do not provide good estimates for the upper constants: for instance, if we
follow the arguments from Araújo & Pellegrino (2019) we just obtain 8

√
m!√log(1+ 4m), due to

Kahane–Salem–Zygmund inequality, instead of the universal sharp constant 1.

Proof of Theorem 2

Our task is to estimate inf{‖A‖ ∶ ∣aj1…jm ∣ = 1}, where the infimum runs over all m-linear forms A ∶
ℓn1∞ ×⋯× ℓnm∞ → ℂ with unimodular coefficients.

With no loss of generality, we suppose n1 ≤ ⋯ ≤ nm. For the upper bound, consider, for all
k = 1,… ,m− 1, a nk+1 × nk+1 matrix (a

(k)
rs ) with

a(k)
rs = e2𝜋i

rs
nk+1 .
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A simple computation shows that

⎧{
⎨{⎩

n2
∑
t=1

a(1)
rt a

(1)
st = n2𝛿rs.

|a(1)
rs | = 1.

⋮

⎧{
⎨{⎩

nm
∑
t=1

a(m−1)
rt a(m−1)

st = nm𝛿rs.

|a(m−1)
rs | = 1.

All the matrices are completed with zeros (if necessary) in order to get a square matrix nm×nm. Define

A ∶ ℓn1∞ ×⋯× ℓnm∞ → ℂ

by

A (x(1),… , x(m)) =
n1,…,nm
∑

i1,…,im=1
a(1)
i1i2
a(2)
i2i3

⋯a(m−1)
im−1im

x(1)
i1

⋯ x(m)
im

and note that, since n1 ≤ ⋯ ≤ nm, the coefficients

ci1⋯im ∶= a(1)
i1i2
a(2)
i2i3

⋯a(m−1)
im−1im

of all monomials x(1)
i1

⋯ x(m)
im

with ik ∈ {1,… ,nk} are unimodular. For x(1) ∈ Bℓn1∞
,… , x(m) ∈ Bℓnm∞

, consider
y(1) ∈ Bℓnm∞

,… , y(m) ∈ Bℓnm∞
defined by

y(1) = (x(1)
1 ,… , x(1)

n1 , 0,… , 0)

and so on. We have

∣A (x(1),… , x(m))∣

= ∣
nm
∑

i1,…,im=1
a(1)
i1i2
a(2)
i2i3

⋯a(m−1)
im−1im

y(1)
i1

⋯ y(m)
im

∣

≤
nm
∑
im=1

∣
nm
∑

i1,…,im−1=1
a(1)
i1i2
a(2)
i2i3

⋯a(m−1)
im−1im

y(1)
i1

⋯ y(m−1)
im−1

∣ |ymim |

≤ (
nm
∑
im=1

|y(m)
im

|2)
1/2

⋅ ⎛⎜
⎝

nm
∑
im=1

∣
nm
∑

i1,…,im−1=1
a(1)
i1i2
a(2)
i2i3

⋯a(m−1)
im−1im

y(1)
i1

⋯ y(m−1)
im−1

∣
2
⎞⎟
⎠

1/2

≤ n1/2m
⎛⎜⎜⎜
⎝

nm
∑
im=1

nm
∑

i1,…,im−1=1
j1,…,jm−1=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−1)
im−1im

a(m−1)
jm−1im

y(1)
i1
y(1)
j1

⋯ y(m−1)
im−1

y(m−1)
jm−1

⎞⎟⎟⎟
⎠

1/2

.
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Thus

∣A (x(1),… , x(m))∣

≤ n1/2m
⎛⎜⎜⎜
⎝

nm
∑
im=1

nm
∑

i1,…,im−1=1
j1,…,jm−1=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−1)
im−1im

a(m−1)
jm−1im

y(1)
i1
y(1)
j1

⋯ y(m−1)
im−1

y(m−1)
jm−1

⎞⎟⎟⎟
⎠

1/2

= n1/2m
⎛⎜⎜⎜
⎝

nm
∑

i1,…,im−1=1
j1,…,jm−1=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−2)
im−2im−1

a(m−2)
jm−2jm−1

y(1)
i1
y(1)
j1

⋯ y(m−1)
im−1

y(m−1)
jm−1

nm
∑
im=1

a(m−1)
im−1im

a(m−1)
jm−1im

⎞⎟⎟⎟
⎠

1/2

.

Since

nm
∑
im=1

a(m−1)
im−1im

a(m−1)
jm−1im

= nm𝛿im−1jm−1
,

we have

∣A (x(1),… , x(m))∣

≤ n1/2m
⎛⎜⎜⎜
⎝

nm
∑
im−1=1

nm
∑

i1,…,im−2=1
j1,…,jm−2=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−2)
im−2im−1

a(m−2)
jm−2im−1

y(1)
i1
y(1)
j1

⋯ y(m−2)
im−2

y(m−2)
jm−2

y(m−1)
im−1

y(m−1)
im−1

nm
⎞⎟⎟⎟
⎠

1/2

= nm
⎛⎜⎜⎜
⎝

nm
∑
im−1=1

nm
∑

i1,…,im−2=1
j1,…,jm−2=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−2)
im−2im−1

a(m−2)
jm−2im−1

y(1)
i1
y(1)
j1

⋯ y(m−2)
im−2

y(m−2)
jm−2

∣y(m−1)
im−1

∣
2⎞⎟⎟⎟
⎠

1/2

≤ nm
⎛⎜⎜⎜
⎝

nm
∑

i1,…,im−2=1
j1,…,jm−2=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−3)
im−3im−2

a(m−3)
jm−3im−2

y(1)
i1
y(1)
j1

⋯ y(m−2)
im−2

y(m−2)
jm−2

nm
∑
im−1=1

a(m−2)
im−2im−1

a(m−2)
jm−2im−1

⎞⎟⎟⎟
⎠

1/2

.

Thus

∣A (x(1),… , x(m))∣

≤ nm
⎛⎜⎜⎜
⎝

nm
∑

i1,…,im−2=1
j1,…,jm−2=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−3)
im−3im−2

a(m−3)
jm−3im−2

y(1)
i1
y(1)
j1

⋯ y(m−2)
im−2

y(m−2)
jm−2

nm
∑
im−1=1

a(m−2)
im−2im−1

a(m−2)
jm−2im−1

⎞⎟⎟⎟
⎠

1/2

.
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Since

⎛⎜⎜⎜
⎝

nm
∑

i1,…,im−2=1
j1,…,jm−2=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−3)
im−3im−2

a(m−3)
jm−3im−2

y(1)
i1
y(1)
j1

⋯ y(m−2)
im−2

y(m−2)
jm−2

nm
∑
im−1=1

a(m−2)
im−2im−1

a(m−2)
jm−2im−1

⎞⎟⎟⎟
⎠

1/2

= n1/2m−1
⎛⎜⎜⎜
⎝

nm
∑
im−2=1

nm
∑

i1,…,im−3=1
j1,…,jm−3=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−3)
im−3im−2

a(m−3)
jm−3im−2

y(1)
i1
y(1)
j1

⋯ y(m−2)
im−2

y(m−2)
im−2

⎞⎟⎟⎟
⎠

1/2

= n1/2m−1
⎛⎜⎜⎜
⎝

nm
∑
im−2=1

|y(m−2)
im−2

|2
nm
∑

i1,…,im−3=1
j1,…,jm−3=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−3)
im−3im−2

a(m−3)
jm−3im−2

y(1)
i1
y(1)
j1

⋯ y(m−3)
im−3

y(m−3)
jm−3

⎞⎟⎟⎟
⎠

1/2

,

we conclude that

∣A (x(1),… , x(m))∣

≤ nmn
1/2
m−1

⎛⎜⎜⎜
⎝

nm
∑
im−2=1

nm
∑

i1,…,im−3=1
j1,…,jm−3=1

a(1)
i1i2
a(1)
j1j2

⋯a(m−3)
im−3im−2

a(m−3)
jm−3im−2

y(1)
i1
y(1)
j1

⋯ y(m−3)
im−3

y(m−3)
jm−3

⎞⎟⎟⎟
⎠

1/2

and repeating this procedure we finally obtain

∣A (x(1),… , x(m))∣ ≤ nmn
1
2
m−1⋯n

1
2
2 (

nm
∑
i1=1

y(1)
i1
y(1)
i1
)

1
2

= n
1
2
mn

1
2
m⋯n

1
2
2 (

n1
∑
i1=1

|x(1)
i1
|2)

1
2

≤ n
1
2
m (n

1
2
m⋯n

1
2
1 ) .

Thus
G(1)
n1…nm√n1⋯nmmax{

√n1,… ,√nm}
≤ 1.

The lower estimate is an adaptation of the bilinear case, using this well-know extension of
inequality (2), in the case p = 1, to multiple sums as follows:

(
n1,…,nm
∑

j1,…,jm=1
∣aj1…jm ∣

2
)
1/2

≤ ( 2√
𝜋
)
m
( 1
2𝜋

)
n1+⋯+nm

∫
2𝜋

0
…∫

2𝜋

0
∣
n1,…,nm
∑

j1,…,jm=1
aj1…jme

it(1)j1 ⋯ eit
(m)
jm ∣dt,

where dt ∶= dt(1)1 ⋯dt(1)n1 ⋯dt
(m)
1 ⋯dt(m)

nm .
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