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Abstract: Forest fragments are susceptible to environmental shifts and this demands 
high phenotypic plasticity of the species growing in these areas. In this context, 
the objective of the present work was to study the phenotypic plasticity of copaíba 
(Copaifera langsdorffii Desf.) based on morphological and anatomical metrics of the 
leaflets of plants from six forest fragments. The leaflets of C. langsdorffii individuals 
of the different fragments did not show qualitative differences, nonetheless, they 
demonstrated quantitative plasticity. Stomatal density (p = 0.017), specific leaf area (p = 
0.009), palisade parenchyma (p = 0.008) and relative water content (p = 0.002), indicated 
a high luminous, water and nutritional influence on the development of leaflets. Based 
on the dry mass of the leaflets and the thickness of the palisade parenchyma, the 
principal component analysis explained 57.43% of the differences found between the 
variables. The data presented here provides evidence of the phenotypic plasticity of C. 
langsdorffii which, although occurring in similar soils, showed significant quantitative 
differences in its morphoanatomical characters.

Key words: Atlantic forest, Forest fragments, leaf anatomy, morphoanatomy, Tropical for-
ests, vegetation types.

INTRODUCTION
Much of the current knowledge about phenotypic 
plasticity comes from plant studies that 
document the variety of phenotypes that can be 
produced by individual genotypes in response 
to contrasting conditions (Sultan 2000). Species 
with high phenotypic plasticity have higher 
survival chances in unstable, heterogeneous or 
transitional environments due to their ability to 
acclimate morphologically, physiologically and 
biochemically, and to overcome environmental 
stressors (Olguin et al. 2020). The data obtained 
so far have been instrumental in understanding 
not only the high number of ecosystem 
environmental factors (Gratani 2014), but also 

how the impacts associated with climate change 
can be decisive to select the genotypes more 
adapted to a new condition (Arnold et al. 2019).

Plasticity studies may involve functional, 
morphological, physiological and phenological 
characterization (Violle et al. 2007). In a broader 
concept, functional characteristics are those 
associated with species’ responses to changes 
(e.g. climate, soil resources, fire, etc.) in the 
environment in which they live (Lavorel & 
Garnier 2002). Leaf-related characteristics, for 
example, play crucial roles in their physiology 
and phenology because they are to constant 
biotic and abiotic pressures in the environment 
in which the plant grows (Pringle et al. 2011).
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Water seasonality and accentuated 
irradiation are the dominant ecophysiological 
parameters in tropical forests, which results 
in physiological, phenological, structural and 
biochemical acclimation of plants (Lüttge 2008). 
Thus, leaf deciduity in species in these regions 
is a strategy to withstand prolonged periods of 
drought or heat, significantly reducing water loss 
through transpiration (Lüttge 2008, Tomlinson et 
al. 2013).

Another determining factor in the 
composition of plant communities is the 
availability of nutrients in the soil, over which 
plants play an important role in the cycling of 
organic compounds (Gmach et al. 2020). Plant-
nutrient relations have been intensively studied 
(e.g., Aerts & Chapin 2000, Pereira-Silva et al. 
2012), and analyses of variation in phenotypic 
characteristics along gradients in communities, 
especially temperate ones, have led to the 
recognition of characteristic profiles of rich and 
poor soils (Paoli 2006). Climate and soil are 
important factors in phenotypic plasticity of 
trees (Souza et al. 2018), and their continuous 
quantification is essential for the development 
of new models to assess the effects of climate 
changes (Ordoñez et al. 2009).

One of the main tools for the study of 
phenotypic plasticity in plants that suffer 
different environmental pressures is the 
morphological and anatomical analysis of 
the leaves (Castro et al. 2009). Studies on leaf 
morphology and anatomy have described a 
great variation in leaf tissues of tree species 
related to light variations, soil nutrients and 
the effects of seasonality (Rossatto et al. 2008, 
Somavilla & Ribeiro 2011). The evaluation of such 
characteristics is based on the understanding 
of the relationship between the environment 
and the leaf structure (Vieira et al. 2014), with 
the objective of identifying ecophysiological 

responses to environmental stress within a 
given community or landscape (Gratani 2014).

Despite the high deforestation rates, São 
Paulo state houses forest fragments of high 
floristic diversity (Mangueira et al. 2021). The 
midwest part of the state is characterized by 
the occurrence of physiognomies of the two 
phytogeographic domains found in São Paulo 
– the Cerrado (Central Brazilian Savanna) and 
Floresta Atlântica (Atlantic Rainforest), where 
important transitional areas are found (SMA 
2017). The forest fragments in this region are 
represented by patches of Cerradão and Floresta 
Estacional Semidecidual (Semideciduous 
Seasonal Forest), their distribution being 
related mostly to edaphic factors (Oliveira-Filho 
& Ratter 1995), but they are both characterized 
by an expressive leaf deciduity in individuals 
of certain species during part of the year (IBGE 
2012).

Transitional areas are poorly studied 
in plant ecology, leading to a scarcity in data 
regarding acclimation processes of species. 
Indeed, the factors related to phenotypic 
plasticity in transitional areas are still very 
poorly known, and are in general related to 
climate and geomorphology, including edaphic 
characteristics such as fertility, granulometry 
and drainage (Askew et al. 1970, Ruggiero et al. 
2002, Cavassan 2013). Studies that produce data 
about phenotypic plasticity of widely distributed 
species in areas such as the Cerrado might help 
the comprehension of the extension of such 
plasticity (Goulart et al. 2011).

Copaifera langsdorffii Desf. (Fabaceae) 
is a tree species with a broad geographical 
distribution, with medicinal importance and 
a valuable element in the restoration of 
degraded areas. “Copaíba” – as it is popularly 
known – is particularly frequent in savannas 
and seasonal forests but is also found in 
several physiognomies of nearly all Brazilian 
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phytogeographic domains (Costa 2020), thus 
suggesting a great capacity for acclimatization 
of the most diverse environmental conditions. 
For this reason, the species was chosen for 
an analysis of phenotypic plasticity, based 
on the observation of the morphological and 
anatomical differences of the leaflets, with 
the objective of providing subsidies in the 
understanding of how the species responds to 
different environmental pressures.

MATERIALS AND METHODS
Description of the area and collection of 
samples
Sampling took place in the midwest region of 
São Paulo state (southeastern Brazil) in areas of 
Semideciduous Seasonal Forest (a physiognomy 
of the Atlantic Forest domain) and its transitions 
to Cerradão (a physiognomy of the Cerrado 

phytogeographic domain). These domains 
are two Brazilian hotspots for biodiversity 
conservation (Myers et al. 2000). The climate 
is humid tropical with dry winters and hot 
summers, with air temperatures in the hottest 
month above 22°C; the average rainfall is less 
than 60 mm in at least one of the months of the 
season (Alvares et al. 2013). The sampled areas 
comprised secondary, regenerating and ecotone 
forests from six forest fragments in public and 
private areas, located in four municipalities of 
the state: Agudos, Bauru, Gália and Pederneiras 
(Figure 1). The Bauru Botanical Garden (BBG), 
Legal Reserve of UNESP - campus Bauru (LRU) 
and Pederneiras State Forest (PSF) fragments are 
covered by patches of Cerradão and Seasonal 
Semideciduous Forest, thus corresponding to 
important ecotone regions. The other sampled 
areas (Aimorés Forest Park - AFP, Caetetus 
Ecological Station - CES and Duratex Legal 

Figure 1. Collection sites of samples of copaíba (Copaifera langsdorffii) in four municipallities of midwestern São 
Paulo state (BBG: Bauru Botanical Garden; LRU: Legal Reserve of UNESP – campus Bauru; AFP: Aimorés Forest Park; 
PSF: Pederneiras State Forest; DLR: Duratex Legal Reserve; CES: Caetetus Ecological Station). 
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Reserve - DLR) comprise only Semideciduous 
Seasonal Forests, and DLR stands out for being 
a private area in process of natural regeneration 
(Table I; Figure 1). 

Five fully expanded leaves were collected 
in the median region (between the 3rd and 4th 
nodes) of the lower branches of the canopy 
of adult individuals of C. langsdorffii, and the 
leaflets were fixed in FAA50 and preserved in 
ethanol 70%. A total of 95 adult trees from 6 
populations were sampled between May and 
June 2015, prioritizing reproductive individuals 
with a minimum distance of 10 m between 
them and with different environmental growing 
conditions (Figure 1, Table I).

Biometric analyses
Fresh weight, dry weight and area of leaflets 
were evaluated from 475 samples. The total fresh 
mass and the total dry mass (g) were obtained 
by weighing material on an analytical balance 
(Shimadzu, model AY220) from the recently 
collected leaflets and after drying at 120˚C for 
48 hours in an oven (FANEM, model 315 SE). The 
leaf area (cm2) was obtained using the Image J 
software (Schneider et al. 2012) from scanned 
images of the leaflet. The specific leaf area (AFE) 
was determined through the ratio between the 
leaf area and the dry mass found in the leaflets 
(Wilson et al. 1999). The relative water content 

(%) was calculated using the formula proposed 
by Barrs (1968).

Anatomical and micromorphometric analyses
The material for anatomical analysis was fixed 
in FAA70 (formalin, glacial acetic acid and 70% 
ethanol in the proportion of 1:1:18) and stored in 
70% ethanol (Johansen 1940).

Transverse sections from the middle region 
of the leaflets and paradermic sections of the 
abaxial and adaxial surfaces of the epidermis 
were obtained freehand and clarified in sodium 
hypochlorite (20%), washed several times in 
distilled water and stained with 0.05% Toluidine 
Blue in acetate buffer, pH 4.7 (O’Brien et al. 1964, 
modified). Slides mounted in glycerin water were 
analyzed and photographed using a Nikon® 
eclipse 80i optical photomicroscope.

Two slides per leaflet were used for 
micromorphometric analyses. The evaluated 
parameters were stomatal density, stomatal 
index, polar and radial diameter of the 
stomata, thickness of epidermis on adaxial 
and abaxial surfaces, palisade (PP) and spongy 
(SP) parenchyma and mesophyll. For the 
measurement of stomata (polar and radial 
diameter), two measurements were obtained by 
photomicrography, using two photomicrographs 
per leaflet; for stomata counting (density and 
stomatal index) four photomicrographs per 

Table I. Collection sites of C. langsdorffii in midwestern São Paulo state (Ce: Cerradão; SSF: Semideciduous 
Seasonal Forest).

Colletion sites Geographic coordinates Area 
(ha)

Number of 
individuals 

sampled
Vegetation

Bauru Botanical Garden (BBG) 22°20’30’’S, 49°00’30’’W 321 29 Transition Ce/SSF

Legal Reserve of UNESP - campus Bauru (LRU) 22°20’46’’S, 49°01’05’’W 132 20 Transition Ce/SSF

Pederneiras State Forest (PSF) 22°06’46”S, 48°55’00”W 430 14 Transition Ce/SSF

Aimorés Forest Park (AFP) 22°17’55’’S, 49°01’33’’W 5.424 11 SSF

Caetetus Ecological Station (CES) 22°24’11’’S, 49°42’05’’W 2.178 10 SSF

Duratex Legal Reserve (DLR) 22°06’49’’S, 49°55’00’’W 2.000 11 SSF
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leaflet were used; for the measurement of the 
epidermis, palisade and spongy parenchyma 
and mesophyll, two photomicrographs per 
leaflet were used. The quantitative anatomical 
parameters were analyzed using the Image-pro 
Plus 5.1 software.

Soil analyses
Soil samples were collected at 20 and 40 cm 
depth, at 10 different points of each sampled 
area, in a way that best represented the 
fragment. The extraction points were determined 
in areas with registers of C. langsdorffii without 
human disturbance. The pH was determined 
and the contents of organic matter (O.M.), 
calcium (Ca), potassium (K) and magnesium 
(Mg) were quantified for chemical analysis; soil 
texture was identified for physical analysis. The 
respective samples were analyzed according to 
the methods referring to the IAC Soil Analysis 
System (Malavolta et al. 1997, Raij et al. 2001).

Statistical analyses 
The data obtained were subjected to the 
calculation of the mean of the respective 
morphological and anatomical variations. The 
data collected in the vegetation fragments 
were compared to each other by means of 
analysis of variance and Tukey’s post-hoc test 
at the 5% significance level. Subsequently, the 
results passed the Pearson correlation test at 
1% significance for analysis of the correlation 
between the morphological and anatomical 
components of the leaflets.

The analysis of variance and the Tukey and 
Pearson correlation tests were performed using 
the Past 3.24 software (Hammer et al. 2001). 
Analysis of variance of the main components 
was performed using the Origin 2018 software 
(OriginLab Corporation, Northampton, MA, 

USA.) using the morphological and anatomical 
variables of the leaflets and the chemical 
variables of the soils of the fragments.

RESULTS 
Morphoanatomical analyses
The epidermis is uniseriate on both surfaces, 
with the thickest cuticle on the adaxial surface 
(Figures 2a-c). The epidermal cells on the abaxial 
surface are smaller than those on the adaxial 
surface, which are cubic to rectangular. The 
leaflet is hypoestomatic with paracitic stomata 
(Figures 2a and d). There are a few single-celled 
tector trichomes (Figure 2e).

The mesophyll is of the dorsiventral type, 
with a single layer of palisade parenchyma and 
two to five layers of spongy parenchyma with 
irregularly shaped cells (Figure 2a).

Secretory structures were observed in 
the mesophyll, with its round-shaped cavity 
in cross section, delimited by a single layer of 
secretory cells. They are located between the 
two parenchyma constituents of the mesophyll, 
occupying a median position (Figure 2a).

Collateral vascular bundles were found 
immersed in the mesophyll, surrounded by 
lignified thick-walled fibers, and crystalline 
idioblasts containing prismatic calcium oxalate 
crystals (Figure 2f). In the highest caliber leaf 
vein region, in addition to these characteristics, 
there is a uniseriate epidermis on both surfaces 
and two or three layers of collenchyma internally 
to the epidermis on both surfaces.

Observing these results, it is noted that in 
all forest fragments the leaflets of C. langsdorffii 
were anatomically similar.
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Micromorphometric analyses
The soil collected in the fragments presented 
mainly the sandy texture, except for the soil of 
the CES fragment, which presented a sandy-clay 
texture. The analysis of the environmental data 
showed that the type soils Red Latosol and Dark 
Red Latosol are predominant in the sampled 
areas. From the pH results, the soils of the six 
fragments are acidic, with an average value of 
3.6 (Table II). The highest pH, organic matter and 
magnesium value was found in the DLR fragment 
(Table II). The analysis of the main components 
of the soil (Figure 4) explains 93.18% of the 
variance found between the studied fragments.

Stomatal density in C. langsdorffii 
individuals differed significantly between forest 
fragments (Table II). The highest stomatal density 
was observed in the leaflets of BBG individuals 
(92 stomata/mm²), while the lowest density 
was observed in PSF individuals (79 stomata/
mm²). The equatorial and polar diameters of the 
stomata did not differ significantly between the 
areas (Table II).

Correlation tests showed an average 
negative relationship (Cohen 1988) between 
stomata density and the equatorial diameter in 
the CES fragment (r = - 0.37), and only in that 
fragment there was no relationship between the 

Figure 2. Anatomy of Copaifera 
langsdorffii leaflets. Cross sections 
(a-c; e-f). Paradermal section (d). 
Caetetus Ecological Station (a; f). 
Bauru Botanical Garden (b-d; f). 
Legal Reserve of UNESP – campus 
Bauru (E). a. General aspect. b. 
Detail of the epidermis and cuticle 
of adaxial surface. c. Detail of the 
epidermis and cuticle of abaxial 
surface. d. Paracytic stomata 
(arrow). e. Detail of the epidermis 
with tector trichome. f. Vascular 
bundle surrounded by fibers and 
prismatic crystals (arrow). (cu = 
cuticle; ep = epidermis; st = stomata; 
fi = fiber; vb = vascular bundle; 
sp = spongy parenchyma; pp = 
palisade parenchyma; ss = secretory 
structure; tt = tector trichome).
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equatorial diameter and the polar diameter in 
the analyzed stomata (r = - 0.19).

The specific leaf area (SLA) showed a 
significant difference between the fragments 
analyzed. BBG had a higher mean (133.2 cm² / 
g) and was significantly different from the AFP, 
PSF and DLR fragments (Table II). From Pearson’s 
correlation analysis at 1%, it was possible to 
observe that the SLA of the forest fragment BBG 
was negatively correlated with the dry mass (r 
= - 0.90) and the mesophyll (r = - 0.67) found in 
the leaflets of this fragment.

The thickness of the mesophyll and the 
spongy parenchyma did not show significant 
variations, differently from the palisade 
parenchyma (PP) (Table II). The thickness of 
the palisade parenchyma among the six forest 
fragments showed significant differences 
between BBG (50 μm) and DLR (62 μm). In the 
DLR fragment, the individuals of C. langsdorffii 
presented PP with the highest thickness 
values found among the fragments (62 μm) 
and is negatively related (r = - 0.73) to the 
spongy parenchyma. In addition, the palisade 
parenchyma showed an average positive 

Table II. Means of micromorphometric analyses performed on Copaifera langsdorffii leaflets. Means indicated 
by the same lowercase letter on the line do not differ by Tukey’s test at 5% significance. (BBG: Bauru Botanical 
Garden; LRU: Legal Reserve of UNESP – campus Bauru; AFP: Aimorés Forest Park; PSF: Pederneiras State Forest; 
DLR: Duratex Legal Reserve; CES: Caetetus Ecological Station; 1: component 1 - dry mass of the leaflets; 2: 
component 2 - thickness of the palisade parenchyma).

PLANT VARIABLES

COLECTION SITES
ANOVA PCA

Transition Ce/SSF SSF

BBG LRU PSF AFP DLR CES F value p- value 1 2

Fresh mass (g) 0.095 0.116 0.146 0.140 0.139 0.141 1.065 0.404 (>0.05) -0.430 0.253

Dry mass (g) 0.049 0.076 0.071 0.070 0.076 0.087 1.316 0.290 (>0.05) -0.449 0.035

Leaf area (cm²) 5.871 7.475 6.784 5.768 6.286 9.755 1.501 0.226 (>0.05) -0.339 -0.317

Specific leaf area (cm² g-1) 133.23 a 98.0 ab 96.73 b 81.99 b 83.295 b 105.049 ab 4.336 0.009 (<0.05) 0.293 -0.411

Relative water content (%) 0.49 ab 0.34 c 0.52 a 0.51 a 0.46 abc 0.35 bc 5.228 0.002 (<0.05) 0.174 0.249

Adaxial surface of epidermis (μm) 13 16 14 14 14 14 0.795 0.556 (>0.05) -0.158 0.166

Abaxial surface of epidermis (μm) 12 13 12 12 13 13 0.460 0.805 (>0.05) 0.271 -0.264

Palisade parenchyma (μm) 50 b 58 ab 53 ab 58 ab 62 a 53 ab 3.382 0.008 (<0.05) -0.123 0.447
Spongy parenchyma (μm) 74 72 69 72 79 78 1.264 0.287 (>0.05) 0.171 0.355

Mesophyll (μm) 129 127 123 132 141 126 0.869 0.505 (>0.05) 0.179 0.336

Stomata density (mm²) 92 a 84.5 ab 79 ab 90.5 
ab 90.5 ab 80 b 2.888 0.017 (<0.05) 0.435 0.255

Equatorial diameter of the stomata 
(μm) 15 16 13 14 14 14 1.233 0.298 (>0.05) 0.059 0.098

Polar diameter of the stomata (μm) 21 21 18 20 20 21 0.832 0.529 (>0.05) 0.119 0.016

SOIL VARIABLES BBG LRU PSF AFP DLR CES F value p-value 1 2

pH 3.55 3.6 3.5 3.55 4.1 3.7 1.583 0.18 (>0.05) 0.363 -0.659
Organic matter (g dm³ -1) 14.5 19 13 11.5 14.5 20 2.757 0.027 (<0.05) 0.361 0.566

K (mmolc dm³ -1) 0.85 ab 0.95 ab 0.95 ab 0.65 b 1.05 ab 1.75 a 2.434 0.046 (<0.05) 0.466 0.375

Ca (mmolc dm³ -1) 3.5 3 2 1.5 9.5 14.5 2.682 0.030 (<0.05) 0.520 0.039

Mg (mmolc dm³ -1) 1.5 1.5 1 1 6 4.5 2.305 0.057 (>0.05) 0.500 -0.320

Texture sandy sandy sandy sandy sandy sandy-clay
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relationship with the equatorial diameter of 
the stomata (r = + 0.31). In the BBG fragment, 
the thickness of the palisade parenchyma 
correlated with the organic matter index of the 
soil (r = + 0.52), different from that found in the 
DLR fragment where such correlation was not 
verified.

The relative water content of the leaflets 
varied significantly between the fragments. Using 
the Tukey test (5%), LRU differed from BBG, AFP 
and PSF. PSF was the one that most statistically 
distanced itself from LRU. CES differed from AFP 
and PSF, and AFP was more distant from CES. 
However, LRU and CES were similar to each 
other and had the lowest values of relative 
water content in the leaflets, 0.34% and 0.35%, 
respectively (Table II). AFP and PSF obtained the 
highest relative water content, with 0.51% and 
0.52%, respectively (Table II), and demonstrated 
a negative relationship with the leaf area and 
dry mass, as verified in the correlation tests.

Principal component analysis (PCA) 
indicated a 57.43% correlation between the 
morphological and anatomical characteristics of 
the leaflets between vegetation fragments from 
two main components: dry weight of the leaflets 
(1) and thickness of the palisade parenchyma 
(2). The first component (dry mass of leaflets) 

showed a correlation between dry weight, 
fresh weight, leaf area, thickness of the adaxial 
surface of the epidermis and thickness of the 
palisade parenchyma with the morphological 
and anatomical characteristics of the leaflets 
(Figure 3).

As observed in the correlation analysis, the 
CES fragment is at the opposite end of the vector 
that represents the density of stomata found in 
the leaflets. In addition, it is the only vegetation 
fragment where a negative correlation is found 
between the density of the stomata and the 
equatorial diameter of the stomata. This finding 
is evident in Figure 3, where C. langsdorffii 
populations at CES have the largest numerical 
distance from stomata density together with the 
equatorial diameter of the stomata. The BBG 
forest fragment showed a positive relationship 
with the specific leaf area and opposite the 
quadrant of the dry mass, represented by the 
first component, as previously observed by the 
Pearson correlation test at 1% (Figure 3).

Regarding the physical and chemical 
characteristics of the soils (Table II), the CES 
fragment showed a soil that was richer in 
potassium, which significantly differentiated it 
from AFP. The K and Ca ions are positively related 
to the dry mass (r = + 0.48 and r = + 0.44) and to 

Figure 3. Principal Components Analysis of 
morphological, anatomical and physical 
characteristics of Copaifera langsdorffii 
leaflet (LA: leaf area; SLA: specific leaf area; 
ED: equatorial diameter; DEN: density of 
stomata; PD: polar diameter; ABE: abaxial 
surface of epidermis; ADE: adaxial surface 
of epidermis; DM: dry mass; ML: mesophyll; 
FM: fresh mass; PP: palisade parenchyma; 
SP: spongy parenchyma, WC: water contest) 
distributed in six fragments (BBG: Bauru 
Botanical Garden; LRU: Legal Reserve of 
UNESP – campus Bauru; AFP: Aimorés 
Forest Park; PSF: Pederneiras State Forest; 
DLR: Duratex Legal Reserve; CES: Caetetus 
Ecological Station). PC1: dry mass of leaflets 
and PC2: thickness of palisade parenchyma.
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the leaf area (r = + 0.75 and r = + 0.60) found in 
the fragment, and negatively with the relative 
water content (r = - 0.58 and r = - 0.49).

The variance found in the main components 
shows that the soil of the CES fragment has a 
higher content of organic matter, potassium 
ions and calcium ions. These characteristics are 
opposite to those found in fragments BBG and 
AFP. The DLR showed a greater variance of pH, 
magnesium, potassium and calcium, opposite 
to what was found in the LRU and PSF forest 
fragments (Figure 4).

DISCUSSION
The anatomy described for the C. langsdorffii 
leaflets is similar reported for the same species 
by Moreira-Coneglian & Oliveira (2006) and 
Nascimento et al. (2014), and the anatomical 
organization of the leaflets is similar to that 
found in other species of the Fabaceae family 
(Metcalfe & Chalk 1950, Mendes & Paviani 1997, 
Duarte & Debur 2003, Lima et al. 2003, Francino 
et al. 2006).

The presence of thick cuticle on the adaxial 
surface of the epidermis and stomata restricted 

to the abaxial surface of the epidermis of the 
leaflets are mechanisms involved in decreasing 
water loss (Müller & Riederer 2005, Esposito-
Polesi et al. 2011, Simioni et al. 2017). This is the 
most common pattern of stomata distribution in 
terrestrial plants and is considered an important 
adaptation to water savings due to the greater 
exposure to the sun on the adaxial surface of 
the epidermis (Lleras 1977, Smith & McClean 
1989), which also explains the thicker cuticle on 
this surface.

The variation in stomatal density observed 
in individuals from the different fragments 
analyzed in this study may be related to water 
availability and luminosity (Pearce et al. 2006, 
Gobbi et al. 2011). The high stomatal density 
observed in the leaflets of C. langsdorffii of the 
BBG fragment is generally observed in leaves 
of plants exposed to environmental stresses 
and may be an indication of the acclimation 
mechanism of these plants to the conditions 
of low water availability in the soil, which may 
help to increase control over the rates of water 
loss and carbon dioxide absorption (Souza et 
al. 2019). A higher stomatal frequency per unit 
area has been observed in regions with low 

Figure 4. Principal Components 
Analysis of physico-chemical 
characteristics of soil (OM: 
organic material; K: potassium; 
Ca: calcium; Mg: magnesium, 
pH) in six vegetation fragments 
(BBG: Bauru Botanical 
Garden; LRU: Legal Reserve 
of UNESP – campus Bauru; 
AFP: Aimorés Forest Park; PSF: 
Pederneiras State Forest; DLR: 
Duratex Legal Reserve; CES: 
Caetetus Ecological Station). 
PC1: dry mass of leaflets and 
PC2: thickness of palisade 
parenchyma.
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water availability (Lleras 1977, Souza et al. 2010, 
Machado et al. 2015), which has been associated 
with a more efficient gas exchange in periods of 
higher humidity, when the stomata can remain 
open without the risk of excessive dehydration, 
and this might explain the higher stomatal 
density in the transition areas between SSF and 
Cerradão.

Although there are differences in stomatal 
density, there are no significant differences 
between the polar diameter and the equatorial 
diameter of the stomata of the leaflets of the 
individuals analyzed in the different vegetation 
fragments. However, the polar and equatorial 
diameters of the stomata of the leaflets of 
individuals located in BBG and LRU (transition 
areas between SSF and Cerradão and, therefore, 
drier) are numerically higher. As the size of 
the stomata is related to its functionality, 
larger diameters can mean more efficient gas 
exchange, which favors photosynthesis and the 
existence in drier places, where the opening of 
the stomata can lead to excessive water loss 
(Lleras 1977, Souza et al. 2010), justifying the 
larger diameters found in individuals from the 
BBG and LRU fragments.

The similarity of the values of stomata 
functionality, that is the relationship polar 
diameter/equatorial diameter, points to 
similarity between the transition and SSF areas. 
According to Rocha (2005), the relationship 
between the polar and equatorial diameters 
provides a good indication of the shape of the 
stomata, being that the greater this relationship, 
the more ellipsoid is the stomatal shape and 
the greater its functionality, as well as, the 
smaller this relationship is less ellipsoid and 
less functional is the stomata, indicating that, 
although there are differences in stomatal 
density, there are no differences in stomata 
functionality between the individuals of C. 
langsdorffii in the different fragments.

There were no significant variations in the 
thickness of the mesophyll and the spongy 
parenchyma of the leaflets between individuals 
of C. langsdorffii in the different fragments, 
but significant differences were found in the 
thickness of the palisade parenchyma. The 
difference in thickness between the BBG (50 
μm) and DLR (62 μm) fragments corroborates 
the indication of low light incidence in the BBG 
compared to the other vegetation fragments. 
The negative correlation (r = - 0.73) between 
the PP and the SP found in the DLR fragment 
shows a strong indication of a decrease in the 
intracellular spaces of the leaflet, resulting 
from the plastic adaptability of plants to 
drier environments (Esau 1974). The positive 
correlation of PP with the equatorial diameter 
of the stomata (r = + 0.52), indicates that there 
is a change in the shape of the stomata due 
to the favorable conditions for photosynthetic 
efficiency, which may indicate an increase in 
their functionality, once the more ellipsoid the 
stomata shape, the greater functionality, since 
increases in polar and equatorial dimensions 
promote greater stomatal conductance (Martins 
et al. 2009, Aragão et al. 2014, Eburneo et al. 2017).

The highest value of specific leaf area and 
the lowest thickness of the palisade parenchyma 
found in the leaves of C. langsdorffii collected 
in the BBG fragment in relation to the values 
observed in the individuals of DLR and CE 
fragments, may be related to the lower light 
incidence. According to Esau (1974) and Dickison 
(2000), in environments with high luminosity the 
leaves tend to be smaller and thicker to regulate 
the light radiation and the diffusion of carbon 
dioxide. Oguchi et al. (2003), Justo et al. (2005), 
Aragão et al. (2014) and Fernandes et al. (2014), 
also described an increase in the thickness of 
the limbus due to the increase in luminosity.

Melo Júnior et al. (2012) explained the 
structural variations found in the mesophyll 
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of the individuals of C. langsdorffii studied as 
resulting from different conditions of exposure 
to the sun, which was also reported by Voltan 
et al. (1992) for Coffea arabica in which it was 
concluded that under high radiation conditions 
there is leaf thickening induced by the expansion 
of mesophyll cells and by the cell elongation of 
the palisade parenchyma. This also explains the 
greater thickness of the palisade parenchyma 
in trees located in DLR, where individuals were 
more exposed to the sun than in BBG, where 
they were under more shading conditions.

According to Nascimento et al. (2014), the 
temperature can also interfere in the stomatal 
density and thickness of the mesophyll and 
palisade and spongy parenchyma, however, the 
distance in which the sampled fragments are 
found suggest that there is not a significant 
temperature differences to the point of reflecting 
in the anatomy of the individuals.

As for the leaf area, although there were no 
significant differences between the individuals 
of the different fragments, there was a greater 
leaf area in the individuals of CES and a smaller 
leaf area in individuals of BBG, which may be 
related to the different degrees of exposure 
to solar radiation, since, according to Dickison 
(2000) and Larcher (2000), a reduction in leaf 
area is expected in plants more directly exposed 
to the sun, which was also observed by Melo 
Júnior et al. (2012) for C. langsdorffii.

Leaf area reduction can also be a water 
conservation strategy in plants growing in 
soils with lower water holding capacity and 
low nutrient availability (Brünig 1973), which 
may also explain the smaller leaf area found 
in BBG, which presents sandy soil and with a 
lower amount of organic matter, K, Ca and Mg 
than the CES soil, where the leaf area found in C. 
langsdorffii was much larger.

Considering that phenotypic plasticity 
is the ability of a single genotype to produce 

different phenotypes in multiple environmental 
conditions (Sultan 2000), the data presented here 
provide support regarding the high phenotypic 
plasticity of C. langsdorffii which has significant 
quantitative differences in the specific leaf area, 
in the thickness of palisade parenchyma and in 
the stomata density. This phenotypic plasticity 
is probably related to the wide distribution of 
C. langsdorffii and its versatility in occupying 
different environments.
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