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Abstract: Climate change has led to shifts in phenology in many species distributed 
widely across taxonomic groups. It is, however, unclear how we should interpret 
these shifts without some sort of a yardstick. We assessed climate change effects on 
Allagoptera arenaria, a acaulescent palm, using open top chambers (OTCs) and rain 
gutters in the field to mimic expected temperature and rainfall changes in this area. 
In a coastal environment (restinga), using open top chambers (OTCs) and rain gutters 
in the field to mimic expected temperature and rainfall changes in this area, 40 A. 
arenaria individuals were selected and randomly allocated to four treatments: control 
(C), 25% rainfall increase (P), 2 °C temperature increase (T), and 2 °C temperature plus 
25% rainfall increase (TP). For 2 years, every two weeks, we measured changes in growth 
and reproduction phenology to assess whether this species altered allocation patterns 
in response to new environmental conditions. Increases in aboveground biomass were 
higher in the TP than in the T treatment, which in turn had more reproductive cycles 
throughout the experimental period. We conclude that temperature increases may 
shorten the reproductive cycle of A. arenaria.

Key words: Aerial biomass, Allagoptera arenaria, climate change, OTC’s, reproductive 
phenology, restinga.

INTRODUCTION
Evidence showing that global climate is changing 
is now strong and there is growing concern 
about its consequences for natural ecosystems 
(Hof et al. 2011, IPCC 2014, Lacerda et al. 2015, 
Scarano & Ceotto 2015, IPCC 2018). Increasing 
levels of carbon dioxide in the atmosphere 
will rise temperatures 2-5°C over this century, 
with parallel changes in other environmental 
variables, such as rainfall and soil humidity 
(IPCC 2014). The impact of these changes on 
plant phenology have been widely reported 
(e.g., Fang & Chen 2015, Rai 2015, Keyzer et al. 
2017, Mendoza et al. 2017, Prevéy et al. 2017) and 
include changes in life cycles (Parmesan & Yohe 

2003, Menzel et al. 2006, Rosenzweig et al. 2008, 
Gordo & Sanz 2010, Wolkovich et al. 2012) and 
plant reproduction and productivity (De Valpine 
& Harte 2001, Kardol et al. 2010). 

Temperature and rainfall influence overall 
plant growth in terrestrial ecosystems (Kardol 
et al. 2010). Warming impacts plant biomass 
(Shaver et al. 2000, Rustad et al. 2001, Pugnaire 
et al. 2020), increasing (Rustad et al. 2001, Wan 
et al. 2005, Sullivan et al. 2008) or decreasing 
productivity (De Boeck et al. 2008, Sherry et 
al. 2008, Carlyle et al. 2014). There is ample 
evidence showing that plant biomass responds 
positively to increased rainfall (Huxman et al. 
2004, Spence et al. 2016). However, how changes 
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in temperature and rainfall interact with each 
other and their influence on plant growth and 
phenology are less known (Badeck et al. 2004, 
Kardol et al. 2010, Rai 2015). Temperature is 
also one of the main factors controlling plant 
phenology (Estrella & Menzel 2006, Lu et al. 
2006, Menzel et al. 2006) and high temperatures 
speed up the life cycle of plants (Saxe et al. 2001, 
Walther et al. 2002, Badeck et al. 2004, Solomon 
et al. 2007) which are further conditioned by 
rainfall patterns (Badeck et al. 2004, Gordo & 
Sanz 2010).

In the restinga, a coastal ecosystem within 
the Atlantic Forest biome in SE Brazil, low nutrient 
and water contents in the sandy substrate, high 
salinity, and high temperature and irradiance are 
the main factors limiting plant establishment 
and performance (Menezes et al. 2017). In such 
environments, a  acaulescente palm, Allagoptera 
arenaria (Gomes) Kuntze, plays a key role in 
secondary succession, as it is able to colonize 
open areas (Zaluar & Scarano 2000, Scarano et 
al. 2004, Carvalho et al. 2014), acting as facilitator 
for other species (Menezes et al. 2017) by 
providing soil nutrients under its canopy while 
decreasing irradiance and temperature through 
shade (Menezes & Araujo 2000). 

It is true that climate change can bring 
serious risks to the Atlantic forest biome, 
including the vegetation of coastal ecosystems 
such as the restinga (Knupp et al. 2021). 
Projections for 2041-2070 indicate a temperature 
increase of 1.5-2 °C and rainfall of 15-20% for the 
southeastern region of Brazil (Scarano & Ceoto 
2015). Since climate change will affect rainfall 
and temperature patterns (IPCC 2018), we 
need to understand its effects on this species’ 
performance to anticipate its responses to new 
climate conditions (Meineri et al. 2015, Parmesan 
& Hanley 2015, Moran et al. 2016). Combined or 
isolated changes in temperature and rainfall 
may have different effects on A. arenaria 

biomass and phenology, with consequences for 
plant fitness and plant community dynamics. 

Here we report on the variability of 
aboveground growth and reproductive phenology 
patterns of A. arenaria in response to increased 
temperature and rainfall, and analyze how the 
isolated and combined effects of both climatic 
factors influence plant growth and reproductive 
output in this species. For this purpose, we used 
open top chambers (OTCs) and rain gutters to 
manipulate microclimate conditions in the field 
to mimic the expected climate changes for this 
region, including daily and seasonal fluctuations 
(Pritchard & Amthor 2005, Lessin & Ghini 2009). 
We expect that increases in temperature and 
rainfall will influence to the growth of this 
species, whereas increases in just one of these 
factors would have smaller effects on growth 
and phenology.  

MATERIALS AND METHODS 
Field site and species
The experiment was carried out in the Itaúnas 
State Park, Espírito Santo, Brazil (18°24’21” S and 
39°42’8” W) in an open, non-flooded restinga 
shrub formation (Monteiro et al. 2014). The region 
has a tropical humid climate, Aw type in Köppen 
classification, with annual rainfall around 1100 
mm, mean annual temperature of 23.8°C, and 
mean air relative humidity of 84%. The highest 
rainfall occurs in summer, with monthly means 
of 185 mm, and the lowest in winter, with rainfall 
means of 50 mm. The average temperature in 
summer is about 26°C, and 21°C in winter. 

A. arenaria is a palm typical of the Brazilian 
restingas, up to 2.5 m high and 2 m in canopy 
diameter (Menezes & Araujo 2005), which is 
distributed from Sergipe to Paraná States (Moraes 
& Martins 2017), forming dense populations in 
certain parts of the sandy shoreline (Menezes 
& Araujo 1999). This acaulescent palm has 
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an underground stem which makes it able to 
resprout after fire (Menezes & Araujo 2005). 

There is ample information on A. arenaria 
reproductive biology, seed predation (Grenha 
et al. 2008), and its effects on plant community 
structure (Menezes & Araujo 1999, 2000, 2005). A. 
arenaria is the main facilitator species through 
an accumulation of organic matter and nutrients 
in its understory, lowering the temperature in 
soil and air underneath, and decreasing wind 
intensity (Menezes & Araujo 2000). 

Flowering and fruiting of A. arenaria occur 
several times throughout the year, mainly in 
June and July (Menezes & Araujo 2000). Flowers 
appear grouped like spikes, the female inserted 
at the base and the male just above. Male 
flowers open before females. Fruits, usually 
with a single seed, are orange yellow when ripe, 
with very aromatic and sweet pulp (Lorenzi et 
al. 2010). Seeds germinate between 60 and 120 
days and fruiting occurs after 4 years.

Experimental design 
A total of 40 A. arenaria individuals with ca. 2.0 m 
canopy diameter and 1.20 m in height, randomly 
distributed in a ~4 ha plot, were selected in June 
2015. Open top chambers (OTCs) modified from 
Pritchard & Amthor (2005), were constructed to 
induce ~2°C increase in air temperature. OTCs 
were built as trunked cones with ca. 2.5 m 
diameter in the base, 1.0 m at the top, and 1.40 
m in height; they were made of 0.20 mm thick, 
clear PVC with an iron frame. OTCs were kept 5 
cm above the soil to ease pollinators and fruit 
dispersers movement.

To simulate the increase in rainfall expected 
by global circulation models in this region, 244.0 
x 50.0 cm rain collectors were directed to the 
base of A. arenaria individuals to reach a 25% 
increase in rainfall (Pugnaire et al. 2020, Morillo 
et al. 2022). The experiment was conducted 
following a completely randomized design with 

four treatments with ten replicates each; without 
OTC or gutter (control, C); with gutter (P); with 
OTC (T), and with OTC and gutter (TP) (Figures 1a, 
b, c and d).

Monitoring of environmental variables 
Temperature and relative humidity were 
recorded with a data logger (Environment Meter 
4-IN-1, PeakTech, Salerno, Italy) every day at 
noon along August 2016, the month leading up 
to the rainy season. Measurements were taken 
50 cm above the soil surface in a central point 
of the projected A. arenaria canopy, to compare 
temperatures and relative humidity inside and 
outside OTCs. Daily variations in temperature 
and relative humidity were monitored from 8:00 
am to 4:00 pm in October 2016 using 20 external 
data loggers (HOBO U12, Onset, Bourne, MA, 
USA). The devices were placed below A. arenaria 
crowns in all treatments, with 5 replicates per 
treatment. Climate data were obtained from the 
database of the National Institute of Meteorology 
(INMET 2017). 

Aboveground biomass 
Aboveground biomass changes were assessed 
using A. arenaria data from the beginning 
(June 2015) and end (November 2016) of the 
experiment. Biomass was determined using the 
equation of Hay et al. (1982); y = 4.35e2.82x, where 
y is the biomass in grams, and x the largest 
diameter of A. arenaria canopy. 

Reproductive phenology 
To assess the effects of climate alterations on 
A. arenaria phenology, we recorded flowering 
(presence of inflorescences with anthetic 
flowers) and fruiting (presence of green and/
or mature infructescences) monthly between 
June 2015 and November 2016. Fournier (1974) 
intensity percentage was used to estimate 
the intensity of the phenophases, from a 
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semi-quantitative scale from 0 to 4 (Morellato 
et al. 2010). To determine the percentage of 
individuals sampled in each phase, we used the 
activity index proposed by Bencke & Morellato 
(2002). This index was also used to estimate the 
synchrony among sampled individuals (Fournier 
1974), assessing the number of individuals that 
were in the same phenophase at any given time.

Statistical analyses 
Statistical analyses were performed using the 
Infostat software (Di Rienzo et al. 2014). The 
Shapiro-Wilks test was used to check the normal 
distribution of means of all analyzed data. 
Aboveground biomass data were normalized by 
applying a natural log, and ANOVA followed the 
Tukey test (p < 0.05) was used to compare means 
of biomass, temperature, and humidity. For 
phenology, we used the Duncan test (p <0.05) 
to compare means. Data are shown as mean ± 1 
standard error throughout the manuscript.

We applied statistics designed for 
phenological analyses (Zar 1996) and widely 

used (Morellato et al. 2010). The experimental 
period (2015-2016) was represented by a 
circle, and months by 20° sectors. The mean 
angle (µ); mean vector length (r) showing the 
concentration of individuals around the mean 
angle (values between 0 and 1) and the mean 
angle significance were verified by the Rayleigh 
test (Z). Phenophases with significant differences 
in mean angle (p <0.01) were converted to mean 
date, i.e., the peak date of the phenophase 
occurrence during the period recorded. To 
test the occurrence of different seasonal 
phenophases and the degree of seasonality, we 
looked at the significance of the mean angle 
(µ) and r vector length with the Rayleigh test 
(Z). The vector r ranges from 0 (when dates are 
evenly distributed throughout the year) to 1 
(when dates concentrate around a single date) 
(Morellato et al. 2000). Circular distribution 
analyses were obtained with the ORIANA 4.0 
software (Kovach 2009). Using circular statistics, 
it was possible to test the effect of climatic 
variations on phenology.

Figure 1. Allagoptera 
arenaria individuals under 
several environmental 
treatments; control (a), 
25% increase in rainfall 
volume (b), 2°C increase 
in temperature (c), and 
2°C temperature and 25% 
rainfall volume increase (d).
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RESULTS
Environmental variables 
Annual rainfall in 2015 was 797.3 mm and 822.9 
mm in 2016, which are about average. Mean 
temperature ranged 23-28°C in both 2015 and 
2016. Dry periods, where rainfall was less than 
twice the mean temperature, were recorded 

mostly from September to December 2015, and 
in February, April, May, August and September in 
2016 (Figure 2).

Midday air temperature under the canopy of 
A. arenaria was significantly higher in treatments 
T (33.6°C) and TP (33.5°C) than in treatments C 
(31.6°C) and P (30.9°C), reflecting the expected 
increase of ca. 2°C within OTCs (Figure 3). Relative 

Figure 2. Climate diagram from January 2015 to December 2016 for the northern region of Espírito Santo state, 
Brazil. The highlighted regions refer to dry periods (P<2T).

Figure 3. Temperature and relative air humidity under Allagoptera arenaria canopies in control treatments (C); with 
25% increase in rainfall (P); 2°C increase in temperature (T), and 2°C temperature plus 25% rainfall increase (TP), 
estimated in August 2016 at midday. 
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humidity was slight but significantly lower in 
treatments T (38.7%) and TP (39.4%) than in 
treatment P (42.9%). Treatment C (41.6%) did not 
differ significantly from other treatments (Figure 
3). 

The highest temperature and lowest relative 
air humidity were recorded below A. arenaria 
canopies in all treatments usually between 11:00 
a.m. and 01:00 p.m. (Figure 4). 

Aboveground biomass 
The increase in aboveground biomass between 
June 2015 and November 2016 was higher in A. 
arenaria individuals in the TP treatment (6.77 g) 
than in individuals in the T treatment (5.32 g). 
The other treatments were in between (C: 5.49 g; 
P: 5.71 g; Figure 5).

Reproductive phenology
Phenology showed an intra-annual pattern in 
all treatments, with phenology events occurring 
more than once per year. The duration of 
phenophases ranged 5-20 weeks, with shorter 
duration in treatment T. Flowering synchrony 
(i.e., when individuals show inflorescences at 
the same time) was low, being recorded in 20-
40% of cases. Fruiting was not synchronized, and 
only 10% of A. arenaria individuals were in this 
phase at any given time. The highest intensities 
of flowering events, obtained by the Fournier 
Index for A. arenaria individuals, occurred in 
February 2016 for treatment C, April 2016 for P 
and T, and September 2016 for TP treatment. 
For fruiting events, activity peaks were between 
February and April 2016 for individuals in 
treatment C, May 2016 for P, November 2015 for 
T and September 2015 for TP. In treatment T, A. 

Figure 4. Daily variation in temperature and relative humidity below Allagoptera arenaria canopies in control 
treatments (C), with 25% rainfall increase (P); 2°C increase in temperature (T), and 2°C temperature plus 25% in 
rainfall volume increase (TP), between 08:00 am and 04:00 pm in October 2016.
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arenaria individuals presented higher number 
of inflorescences and infructescences than in C 
and TP treatments, not differing from treatment 
P (Table I). Similarly, the frequency of A. arenaria 
individuals recorded in flowering and fruiting 
phenophases per month presented higher 
values in treatment T than in treatments C and 
TP, and did not differ significantly from P (Table 
I). 

The highest number of flowering and 
fruiting events across the study occurred in 
treatment T. For fruiting, the Rayleigh test was 
significant for all treatments, while flowering was 
significant for treatments C, T and TP. With the 
significant Rayleigh test (p> 0.01) it was possible 
to transform mean angles into average dates, 
indicating the peak occurrence of phenophases 
for each treatment, C (05 Mar 2016), T (08 Jan 
2016) and TP (15 Jul 2015) for flowering, and C (13 
Feb 2016), P (24 Feb 2016), T (15 Jun 2016) and TP 
(06 Jul 2016) for fruiting. Mean vector length (r) 
values together with the Rayleigh (Z) test values, 
suggest the influence of seasonality on fruiting 
and flowering. When comparing the treatments, 
it is possible to verify that the A. arenaria 
individuals in TP presented higher seasonality 
intensity for fruiting, since the mean vector (r) 
length value was greater than 0.5 (Figure 6, Table 
II).  

DISCUSSION 
As expected, the combined effect of temperature 
and rainfall increases enhanced A. arenaria 
growth, while increasing only temperature led 
to more frequent, shorter reproductive cycles 
with higher number of flowering and fruiting 
phenophases. Our results showed that OTCs 
induce the expected T increase at midday, the 
time of highest irradiance, along with lower 
relative humidity values inside OTCs than 
outside. Air temperature and relative humidity 
(RH) are inversely related, and therefore the 

Figure 5. Changes in aboveground biomass between 
June 2015 and November 2016 of Allagoptera arenaria 
individuals in control treatments (C); with 25% rainfall 
increase (P); 2°C increase in temperature (T), and 2°C 
temperature plus 25% rainfall increase (TP).

Table I. Number of structures and frequency of phenophases observed per month for flowering and fruiting of 
Allagoptera arenaria individuals under several environmental treatments; control (C), 25% increase in rainfall 
volume (P), 2°C increase in temperature (T), and 2°C temperature and 25% rainfall volume increase (TP), from June 
2015 to November 2016. 

Flowering

C P T TP

Inflorescence number/month 0.4 ± 0.2A 1.1 ± 0.2BC 1.3 ± 0.2C 0.5 ± 0.2AB 

Frequency (%)/month 3.3 ± 2.0A 8.9 ± 2.0AB 10.6 ± 2.0B 4.4 ± 2.0A 

Fruiting

Infructescence number/month 0.4 ± 0.2A 0.7 ± 0.2AB 1.1 ± 0.2B 0.6 ± 0.2A 

Frequency (%)/month 2.8 ± 1.6A 6.7 ± 1.6AB 10.6 ± 1.6B 5.0 ± 1.6A 
Equal superscript letters mean treatments do not differ significantly; Tukey test (p < 0.05).
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increase of T inside OTCs leads to decreases in 
RH (Buriol et al. 2000). This is in fact one of the 
potential drawbacks of this method, since strong 
changes in RH may affect gas exchange and 
the energy balance of leaves, increasing water 
vapour deficit and lowering leaf water potential 
(Hernández-Fuentes et al. 2015).

Aboveground biomass 
The combined effect of temperature and rainfall 
increases led to the highest increase in A. arenaria 
aerial biomass in the TP treatment. Similar field 
manipulations have evidenced the role of rainfall 
in increasing species biomass (Kardol et al. 2010, 
Spence et al. 2016). In our case, the combined 
increase in rainfall and temperature led to large 

Figure 6. Circular 
histograms with the 
activity index of flowering 
and fruiting (green and 
ripe fruit) phenophases 
of Allagoptera arenaria 
in control treatments 
(C), with 25% rainfall 
increase (P), 2°C increase 
in temperature (T), and 
2°C temperature plus 
25% rainfall increase (TP) 
between June 2015 and 
November 2016. 
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increases in aboveground biomass. Growth is 
controlled by the water balance in the plant, 
which reflects the relationship between uptake 
and transpiration. Most likely, in the TP treatment 
water and temperature allowed for a larger 
stomatal opening, increasing photosynthetic 
rates that led to greater growth. By contrast, 
exposure of A. arenaria individuals only to 
increased air temperature led to substantially 
lower biomass than in the TP treatment. 
Previous works also have reported a negative 
effect of temperature increases on biomass 
production in nine grassland species, which they 
attributed to higher abiotic stress (de Boeck 
et al. 2008). A mechanistic explanation would 
be that increased temperatures in treatment T 
increased transpiration rate, causing an internal 
water imbalance that led to stomatal closure, 
reduced photosynthesis and smaller growth.

Reproductive phenology 
The duration of phenological cycles and the 
synchronization of flowering and fruiting in 
A. arenaria individuals were in agreement 
with the data reported by Machado (2013) for 
this species elsewhere. However, we recorded 
a certain amount of inflorescences aborted 
during the monitoring period, most likely 
caused by low rainfall, which was characterized 

by several months of drought (Figure 2). The 
same happened to infructescences, where high 
abortion rates resulted in few mature fruits. The 
lack of fruiting synchronization in A. arenaria 
may have been linked to this high abortion rate.

The highest flowering and fruiting intensities 
given by the Fournier Intensity Index occurred 
in the dry periods for all treatments. This may 
be partly due to the drought period mentioned 
above. Thus, the drought event and its influence 
on the phenophases is not conclusive but 
becomes a starting point for future analysis, 
as longer studies are needed to understand 
responses and preferences of this species.

Allegoptera arenaria in T treatments 
presented more reproductive cycles, with higher 
number of flowering and fruiting phenophases 
over the evaluated period compared to 
treatments C and TP. In addition, the mean 
duration of phenological cycles in this treatment 
was shorter. Most likely, the 2°C temperature 
increase in treatment T led to even more 
limiting conditions for A. arenaria than in other 
treatments, leading individuals to invest more in 
reproductive cycles as a strategy for the species 
survival (Crosby et al. 2015). There are now reports 
showing that high temperatures are accelerating 
the phenological cycles of many species around 
the world (Prevéy et al. 2017), suggesting that 

Table II. Number of observations of phenophases (n), average angle (µ), average vector length (r), Rayleigh 
test (Z) for flowering and fruiting phenophases of Allagoptera arenaria individuals submitted to open-control 
environment treatments (C), 25% increase in rainfall volume (P), 2°C increase in temperature (T), and 2°C 
temperature and 25%  rainfall volume increase (TP) from June 2015 to November 2016. 

 
Flowering Fruiting

C P T TP C P T TP

Number of Observations (n) 6 16 18 8 5 12 19 9

Average angle (µ) 182° 356° 146° 30° 170° 177° 250° 24°

Length of the average vector (r) 0.38 0.11 0.16 0.33 0.46 0.36 0.20 0.62

Rayleigh test (Z) 8.80 * 1.95 4.89 * 8.89 * 10.7 * 15.6 * 7.3* 34.8 *
(*) significant values for the Rayleigh test (p < 0.01).
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climate changes may significantly alter plant 
phenology as temperature increases (Cleland et 
al. 2007).

The recording of phenological events 
(Figure 4 and Table II) allowed us to register the 
distribution of phenophases throughout the year 
and to test their intensity and seasonality. We 
identified A. arenaria seasonal patterns except 
for flowering in the P treatment, as data were 
evenly distributed over the monitoring period 
and there was no seasonal effects on flowering. 
Seasonality was, however, evident for other 
treatments and phenophases. The presence of 
low seasonality in A. arenaria was also reported 
by Machado (2013) in a Rio de Janeiro restinga. 

The individuals of A. arenaria in treatment 
T, under higher stress conditions imposed 
by the temperature increase, invested in 
more reproductive cycles, producing more 
inflorescences and infructescences and less 
aboveground biomass. As mentioned above, 
individuals in treatment T were subjected to 
high temperatures and water pressure deficits 
inside the OTC and tried to regulate water 
loss through stomatal closure, which leads 
to a marked decline in photosynthetic rate 
(Katsoulas et al. 2001, Muraoka et al. 2000, Tucci 
et al. 2010, Zhang et al. 2015). Changes in biomass 
allocation patterns, trying to produce more 
reproductive structures, have been reported 
under stress conditions (Crosby et al. 2015). 
Therefore, A. arenaria individuals in treatment 
T likely invested more on root biomass (which 
unfortunately we did not measured) to secure 
water uptake to meet a larger evaporational 
demand caused by higher temperatures. On 
the other hand, A. arenaria individuals in 
the TP treatment allocated more biomass to 
aboveground parts, maximizing growth instead 
of reproduction, as they had a smaller number 
of reproductive cycles over the evaluated 
period. The biomass allocation patterns, from 

a physiological perspective, generally reflect 
the differential investment of photoassimilates 
induced by abiotic and biotic pressures (Mokany 
et al. 2006, Szabo et al. 2009, Luo et al. 2013). 
Biomass is allocated preferentially to the plant 
organ that harvests the limiting resource (Roa-
Fuentes et al. 2012) and the allocation of biomass 
allows control of resource acquisition. The higher 
the root biomass, the better the acquisition of 
nutrients and water from the soil, while a larger 
photosynthetically active biomass allows for a 
more efficient collection of radiation (Salazar et 
al. 2019). Changes in biomass allocation patterns 
in response to climatic factors can alter the 
competition regimes between coexisting plants, 
resulting in changes in community composition, 
as well as in ecosystem structure and function 
(Luo et al. 2013). 

CONCLUSIONS 
We can conclude that combined temperature 
increases (by 2°C) and rainfall (by 25%) favored 
aboveground biomass production in A. arenaria, 
while increases only in temperature (2°C) 
resulted in less growth and more reproductive 
cycles. Therefore, temperature increases alone 
may shorten the reproductive cycle of A. arenaria 
and decrease growth. If expected climate changes 
in the restinga affect only temperature, the 
environment would turn extreme, threatening 
survival of this species. However, if temperature 
increases are accompanied by higher rainfall, 
the new conditions could secure the species 
future in the restinga environment.
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