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Abstract: Poisson distribution is a popular discrete model used to describe counting
information, from which traditional control charts involving count data, such as the c
and u charts, have been established in the literature. However, several studies recognize
the need for alternative control charts that allow for data overdispersion, which can
be encountered in many fields, including ecology, healthcare, industry, and others. The
Bell distribution, recently proposed by Castellares et al. (2018), is a particular solution
of a multiple Poisson process able to accommodate overdispersed data. It can be used
as an alternative to the usual Poisson (which, although not nested in the Bell family,
is approached for small values of the Bell distribution) Poisson, negative binomial,
and COM-Poisson distributions for modeling count data in several areas. In this paper,
we consider the Bell distribution to introduce two new exciting, and useful statistical
control charts for counting processes, which are capable of monitoring count data with
overdispersion. The performance of the so-called Bell charts, namely Bell-c and Bell-u
charts, is evaluated by the average run length in numerical simulation. Some artificial
and real data sets are used to illustrate the applicability of the proposed control charts.

Key words: average run length, Bell charts, count data, overdispersion.

INTRODUCTION

Count data arise in many fields, including biology, ecology, healthcare, marketing, economics, and
industry. Overdispersion (variance > mean) in count data is quite common (Hougaard et al. 1997,
Okamura et al. 2012, Coly et al. 2016) and can occur for several reasons, including mechanisms that
generate excessive zero counts or censoring (Avcı et al. 2015). In the presence of overdispersed count
data, the Poisson model, which is the most popular distribution for analyzing count data and assumes
equidispersion (variance = mean), may result in incorrect inference about parameter estimates,
standard errors, tests, and confidence intervals (Avcı et al. 2015). Particularly in Statistical Process
Control (SPC), a misspecified Poisson model (c or u chart) may increase the false alarm rate (Saghir
& Lin 2015). Indeed, when dealing with the application of control charts to data that show excessive
dispersion, several works (Spiegelhalter 2005, Mohammed & Laney 2006, Albers 2011) express concern
about the use of such a structure. This concern is because increased variationmay causemultiple data
values to be falsely detected as out of control when they are merely false positive.

An Acad Bras Cienc (2023) 95(2)



LAION L. BOAVENTURA et al. NEW STATISTICAL PROCESS CONTROL CHARTS

Sheaffer & Leavenworth (1976) and Kaminsky et al. (1992) considered the negative binomial
distribution, while Sellers (2012) used the Conway–Maxwell–Poisson (COM-Poisson) model (cmpc and
cmpu charts) as flexible alternatives to the Poisson control charts (c and u charts). In particular,
Kaminsky et al. (1992) also developed control charts that plot the total or the average number of
events based on the geometric distribution (g and h charts, respectively). However, as pointed out
by Saghir & Lin (2015), there are still very few articles on monitoring dispersed count data. Other
proposals involve using compound distributions, e.g., the Poisson-gamma mixture (Cheng & Yu 2013),
the shifted (or zero-truncated) generalized Poisson distribution (Famoye 1994), among others.

Recently, Castellares et al. (2018) introduced a one-parameter discrete probability distribution
named the Bell distribution. It is infinitely divisible and capable of modeling count data with
overdispersion, and with many other attractive properties, e.g., it is a single parameter distribution
that belongs to the exponential family of distributions. Although the Poisson distribution is not
nested in the Bell family, the Bell distribution approaches the Poisson distribution for small values
of the parameter. That is, the Poisson distribution is a limiting case of the Bell distribution which
arises when the Bell parameter tends to zero. The Bell distribution motivated us to propose two new
statistical control charts to describe the total and the average number of events per inspection unit.
The so-called Bell charts, namely Bell-c and Bell-u charts, represent interesting and useful alternatives
to the charts mentioned above when monitoring counting processes with overdispersed data. It is
worth pointing out that, in a typical Shewhart control chart, such as the ones proposed in this paper,
the main aim is to detect significantly massive shifts in the process parameter. This kind of control
chart also ignores historical data, which is why it is called “without memory”.

The remainder of this paper is organized as follows. The “Bell distribution” section revises the
Bell distribution and some of its basic properties. The “New control charts” section presents the new
attribute control charts based on the Bell distribution. The “Performance evaluation” section provides
simulation studies to assess the performance of the proposed Bell charts, even when compared to
some traditional control charts. The “Applications” section illustrates the usefulness of the Bell charts
through several examples. Finally, the “Final remarks” section concludes the paper with a few remarks
and discussions on future works.

BELL DISTRIBUTION

In this section, we present a brief review of the Bell distribution and some of its properties. We also
discuss point estimation via the maximum likelihood estimator for its parameter.

Introduced by Castellares et al. (2018), a random variable Y is said to be Bell distributed with
parameter 𝜃 > 0, denoted by Y ∼ Bell(𝜃), if its probability mass function (PMF) is given by

P (Y = y|𝜃) =
𝜃ye−e𝜃+1By

y!
, for y = 0, 1, 2, … , (1)

where By = 1
e ∑∞

k=0
ky
k! , y = 0, 1, 2, …, are the Bell numbers1 (Bell 1934a, b), which can be computed via

the bell(.) function of the “numbers” package (Borchers 2018) in R software (R Core Team 2018).

1It is worth noting that the Bell number By is the y-th moment of a Poisson distribution with parameter equal to one;
see Remark 1 of Castellares et al. (2018).
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If Y ∼ Bell(𝜃), then the mean and variance of Y are given, respectively, by

E[Y] = 𝜃e𝜃 and Var[Y] = 𝜃(1+ 𝜃)e𝜃. (2)

Note that Var[Y]/E[Y] = 1+𝜃 > 1, ∀ 𝜃 > 0. Therefore, the Bell distribution may be a suitable distribution
for modeling count data with overdispersion, although it may not accommodate all possible forms of
overdispersion; see Remark 5 of Castellares et al. (2018).

Regarding pseudo-random sample generation from Y ∼ Bell(𝜃), we resort to Proposition 3 of
Castellares et al. (2018), which stated that the random variable Y has the same distribution as the
sum of N independent and identically distributed (IID) zero-truncated Poisson (ZTP) random variables
with parameter 𝜃 > 0, whereN is Poisson distributed with parameter e𝜃−1. In other words, if Xi

IID∼ZTP(𝜃),
for i = 1, … ,N, with N ∼ Poisson(e𝜃 −1) and independent of {X1, … , XN}, then Y = X1+…+XN ∼ Bell(𝜃).
In R software, we can generate pseudo-random observations from the ZTP distribution by using the
rztpois(.) function of the “actuar” package (Dutang et al. 2008).

We can easily estimate the parameter 𝜃 via the maximum likelihood method. By considering the
observed sample y = (y1, y2, … , yn)

′
of size n from Y ∼ Bell(𝜃), we obtain the likelihood function

L (𝜃|y) =
n

∏
i=1

𝜃yie−e𝜃+1Byi
yi!

=
𝜃∑n

i=1 yien(−e𝜃+1) ∏n
i=1 Byi

∏n
i=1 yi!

∝ 𝜃∑n
i=1 yie−ne𝜃 . (3)

Castellares et al. (2018) showed that the maximum likelihood estimator (MLE) ̂𝜃 of 𝜃 has a closed-form
expression and is given by

̂𝜃 = W0 ( ̄Y) , (4)

whereW0(.) is the LambertW function (Corless et al. 1996), which can be computed via theW(.) function
of the “LambertW” package (Goerg 2011, Goerg 2016) in R, and ̄Y = ∑n

i=1 Yi/n is the sample mean.
Castellares et al. (2018) also presented an alternative and useful (mainly in a regression modeling

framework, in which it is very common to model the mean of the response variable as a function of
several other variables, also called explanatory variables or regressors) reparametrization of the Bell
distribution, where 𝜇 = E[Y] = 𝜃e𝜃 and, hence, 𝜃 = W0(𝜇). In this case, the PMF, mean and variance of
Y ∼ Bell(𝜇), 𝜇 > 0, are written, respectively, as

P (Y = y|𝜇) = exp{−eW0(𝜇) + 1}
[W0(𝜇)]y By

y!
, for y = 0, 1, 2, … ,

E[Y] = 𝜇 and Var[Y] = 𝜇 [1+W0(𝜇)] .

Furthermore, it can be easily shown that the MLE ̂𝜇 of 𝜇 is the sample mean, i.e., ̂𝜇 = ̄Y = ∑n
i=1 Yi/n.

NEW CONTROL CHARTS

Suppose that a process (e.g., an industrial process) generates events (e.g., nonconformities or defects)
according to a Bell(𝜃) distribution. Letting Y denote the number of events per process unit, the PMF
of Y is given by (1). Also, let Y1, Y2, … , Yn be a random sample of size n from Y ∼ Bell(𝜃), and consider
T = ∑n

i=1 Yi and
̄Y = T/n = ∑n

i=1 Yi/n, which represent, respectively, the total number of events and
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the average number of events per unit. Hence, it follows from Equation (2), using the properties of the
expected value and variance operators, that the exact mean and variance of T and ̄Y are given by

E[T] = n𝜃e𝜃, Var[T] = n𝜃(1+ 𝜃)e𝜃,

E[ ̄Y] = 𝜃e𝜃, Var[ ̄Y] = 𝜃(1+ 𝜃)e𝜃

n
.

(5)

The above quantities can be used to construct the proposed control charts in the usual manner
for Shewhart charts. Assuming that a standard value for 𝜃 is available, the center lines and L𝜎 control
limits 2 for each chart - namely, the Bell-c (total number of events per unit) and Bell-u (average number
of events per unit) charts - are shown in Table I. It is worth pointing out that since the Bell distribution
approaches the Poisson distribution for small values of 𝜃, the control limits presented in Table I
also approach the control limits for special cases of the c and u charts derived from the Poisson
distribution. Moreover, similar to the c chart, the Bell-c chart should not be used in the cases where
the sample sizes are unequal, because both the center line and the control limits of the Bell-c chart
will vary with the sample size. Therefore, the Bell-u chart is recommended over the Bell-c chart for
variable sample size as the former is easier to interpret for this scenario (the center line of the Bell-u
chart will not vary across samples).

Table I. Control limits for the Bell-c and Bell-u charts
(standards given). UCL = upper control limit,
CL = center line, LCL = lower control limit.

Bell-c chart Bell-u chart

UCL n𝜃e𝜃 + L√n𝜃(1+ 𝜃)e𝜃 𝜃e𝜃 + L√𝜃(1+ 𝜃)e𝜃

n

CL n𝜃e𝜃 𝜃e𝜃

LCL n𝜃e𝜃 − L√n𝜃(1+ 𝜃)e𝜃 𝜃e𝜃 − L√𝜃(1+ 𝜃)e𝜃

n

In order to build the so-called Bell charts, considering the lack of knowledge about 𝜃, we can
apply, for example, the MLE (4), using all the availablem samples, in the place of 𝜃 (plug-in approach)
in the control limits shown in Table I. In this case, the obtained control limits are commonly treated
as trial control limits (Montgomery 2013).

Since the 𝜃 parameter contains little or no direct interpretation, it can be difficult for industry
professionals, such as engineers and technicians, to provide a standard (or reference) value. In order
to overcome this difficulty, we can use a convenient reparametrization of the Bell distribution in terms
of the mean 𝜇 = E[Y] = 𝜃e𝜃. This parametrization was described at the end of the previous section.
The derived control limits for the proposed Bell charts, considering this alternative reparametrization,
are displayed in Table II. When no standard is given, then 𝜇 can be estimated by the overall sample
mean, that is, ̂𝜇 = ̄̄Y = 1

mn ∑m
j=1 ∑n

i=1 Yij (in the cases of the Bell-c and Bell-u charts with equal sample

2In the usual Six Sigma quality control program, L = 3.
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sizes) or ̂𝜇 = ̄̄Y =
∑m

j=1 ∑
nj
i=1 Yij

∑m
j=1 nj

(in the case of the Bell-u chart with unequal sample sizes 3), where Yij
denotes the number of events for the i-th inspection unit of the j-th sample. Both estimators may be
easily proved to be unbiased estimators for 𝜇.

Therefore, because of their practical advantage as well as simplicity, we shall hereafter consider
the control limits provided in Table II.

Table II. Control limits for the Bell-c and Bell-u charts,
considering a different reparametrization of
the Bell distribution (standards given).

Bell-c chart Bell-u chart

UCL n𝜇 + L√n𝜇 [1+W0(𝜇)] 𝜇 + L√𝜇 [1+W0(𝜇)]
n

CL n𝜇 𝜇

LCL n𝜇 − L√n𝜇 [1+W0(𝜇)] 𝜇 − L√𝜇 [1+W0(𝜇)]
n

PERFORMANCE EVALUATION

In this section, we conduct Monte Carlo (MC) simulation studies to assess the performance of the
proposed Bell charts, as well as of some existing/traditional control charts for count data (namely,
the Poisson-based c and u charts, and the COM-Poisson-based cmpc and cmpu charts) when the true
data-generating process is Bell distributed. All simulations and computations were performed using
the R software version 3.6.1. Interested readers can email the authors for the corresponding R codes.

The average run length (ARL) is a measure commonly used to evaluate the performance of control
charts. The in-control ARL, also denoted as ARL0, is defined as the average number of samples (or
monitoring points) before a signal is given (that is, a single point falls outside the control limits),
assuming that the process is in control; while the out-of-control ARL (or ARL1) is the average number
of samples that are taken until a mean shift is observed when the process is out of control (Saghir &
Lin 2015).

Let us assume that Y ∼ Bell(𝜇) comes from a process with in-control average nonconformities,
and let 𝜇s be the shiftedmean nonconformities parameter after a shift occurs in 𝜇, that is, Y ∼ Bell(𝜇s).
For the proposed Bell charts, the ARL0 is defined as

ARL0 = 1
𝛼

,

3Note that, in this case, the control limits of the Bell-u chart will also vary with the sample size, since we should replace
n by nj in their expressions. But alternatively, Montgomery (2013) suggested to base the control limit calculations on
an average sample size ̄n, which results in constant limits and is particularly helpful if the charts will be presented to
management.
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where 𝛼 = 1− P(LCL < Y < UCL|𝜇). While the ARL1 is given by

ARL1 = 1
1− 𝛽

,

with 𝛽 = P(LCL < Y < UCL|𝜇s).
For instance, in the usual Six Sigma programs, 𝛼 = 0.0027 and, thus, ARL0 = 1/0.0027 ≈ 370. That

is, even if the process is in control, an out-of-control signal will be given every 370 samples, on average
(Montgomery 2013). On the other hand, ARL1 values near one are desirable, mainly for large-size shifts
in a process mean (Shewhart control charts).

In-control ARL

Without loss of generality, in this subsection we consider a Bell process with mean nonconformities
rates: 𝜇 = 3 and 15, as well as two different values for the probability of false alarm: 𝛼 = 0.01 and 0.1.
These 𝛼 values correspond, respectively, to ARL0 = 100 and 10. We also assume three sample sizes for
the process: n = 50, 100 and 500 (or ̄n = 50, 100 and 500, in the case of the Bell-u chart with variable
sample size 4), even as processes with three different sample quantities in phase 1: m = 20, 50 and
100.

Figures 1-4 and A1-A4 (see Appendix A) show the results obtained from 1, 000 MC simulations
(or replicates) with m∗ = 5, 000 phase 2 samples each 5, performed for each scenario studied. That
is, by varying the number of phase 1 samples, the sample size, the Bell distribution parameter, and
the probability of false alarm. In particular, the ARL0 results in Figures 1-4 concern the Bell-c chart
with equal sample sizes, while Figures A1-A4 contain the ARL0 values of the Bell-u chart with unequal
sample sizes. In all these figures, the dashed line represents the nominal ARL0 value, and the asterisk
inside the boxplot indicates the average ARL0 estimate of the 1, 000 simulations.

Despite some slight to moderate discrepancies from the target ARL0 value in some cases, which
is indeed expected due to the parameter estimation effect 6, the results presented in Figures 1-4 and
A1-A4 seem to indicate the good performance of the proposed Bell charts. Note that, in general, the
results improve, i.e., the ARL0 values approach the nominal one when both m and n (or ̄n) increase.

Out-of-control ARL

In this subsection, we evaluate the detection ability of the proposed Bell charts by means of ARL1, for
the same scenarios as in the “In-control ARL” subsection. Due to space constraints, we consider only
shifts at three levels that represent percentage increases p in the nonconformities rate 𝜇 of the Bell
process. The hypothesized levels are as follows: p = 0.5% (𝜇s = 3.015 and 15.075), 1% (𝜇s = 3.03 and
15.15) and 10% (𝜇s = 3.3 and 16.5).

4Here, each sample size nj is obtained by nj = ̄n + kj, for j = 1, … ,m, where kj is a random integer constant ranging
over the interval [−n̄/5; n̄/5].
5As pointed out by Montgomery (2013), the phases 1 and 2 of control chart application have different and distinct
objectives. In phase 1, a set of process data is gathered and analyzed at once, constructing trial control limits to
determine whether the process was in control when the initial m samples were collected (retrospective analysis). On
the other hand, in phase 2, the chart built from a “clean” set of process data exhibiting control (reliable control limits),
is used for monitoring future production (prospective process monitoring).
6For a further discussion on this relevant issue, see, e.g., the review paper by Jensen et al. (2006).
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Figure 1. The ARL0 values of the Bell-c chart for variousm and n (𝜇𝜇𝜇 = 3 and 𝛼𝛼𝛼 = 0.01).

Figure 2. The ARL0 values of the Bell-c chart for variousm and n (𝜇𝜇𝜇 = 15 and 𝛼𝛼𝛼 = 0.01).
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Figure 3. The ARL0 values of the Bell-c chart for variousm and n (𝜇𝜇𝜇 = 3 and 𝛼𝛼𝛼 = 0.1).

Figure 4. The ARL0 values of the Bell-c chart for variousm and n (𝜇𝜇𝜇 = 15 and 𝛼𝛼𝛼 = 0.1).
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The ARL1 values from the 1, 000 MC simulations with m∗ = 5, 000 samples each, are presented in
Tables III and AI (see Appendix A) for the Bell-c chart with equal sample sizes and the Bell-u chart with
unequal sample sizes, respectively. From these tables, it can be clearly seen that the ARL1 on average
decreases with increasing p. Note also that, for both control charts based on the Bell distribution, the
ARL1 values are quite close to one when p ≥ 1%, and regardless of the m, n (or ̄n), 𝜇 and 𝛼 values.

Table III. Mean (standard deviation in parentheses) values of ARL1 of the Bell-c chart, for the different scenarios
studied.

n = 50 n = 100 n = 500

p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10%

m = 20

𝜇 = 3

𝛼 = 0.1
12.442 1.272 1.013 12.942 1.178 1.015 14.331 1.251 1.011

(0.112) (0.011) (0.023) (0.132) (0.011) (0.024) (0.111) (0.012) (0.011)

𝛼 = 0.01
117.212 1.244 1.021 112.732 1.162 1.016 110.213 1.267 1.013

(0.223) (0.011) (0.024) (0.263) (0.011) (0.023) (0.314) (0.012) (0.011)

𝜇 = 15

𝛼 = 0.1
17.131 1.151 1.063 12.622 1.265 1.011 11.972 1.145 1.023

(0.114) (0.012) (0.022) (0.211) (0.011) (0.022) (0.111) (0.010) (0.011)

𝛼 = 0.01
119.634 1.242 1.092 117.000 1.171 1.027 118.303 1.263 1.018

(0.411) (0.010) (0.021) (0.410) (0.011) (0.023) (0.382) (0.012) (0.014)

m = 50

𝜇 = 3

𝛼 = 0.1
13.721 1.127 1.043 17.092 1.264 1.018 19.191 1.233 1.006

(0.110) (0.011) (0.023) (0.111) (0.014) (0.023) (0.112) (0.011) (0.012)

𝛼 = 0.01
123.232 1.257 1.021 117.500 1.265 1.016 112.621 1.237 1.002

(0.411) (0.014) (0.022) (0.332) (0.011) (0.024) (0.373) (0.012) (0.011)

𝜇 = 15

𝛼 = 0.1
12.202 1.171 1.033 12.210 1.227 1.018 11.993 1.221 1.011

(0.111) (0.013) (0.024) (0.104) (0.011) (0.023) (0.214) (0.013) (0.012)

𝛼 = 0.01
112.532 1.103 1.092 119.124 1.174 1.019 112.6 1.249 1.014

(0.311) (0.014) (0.023) (0.282) (0.011) (0.024) (0.423) (0.012) (0.010)

m = 100

𝜇 = 3

𝛼 = 0.1
11.922 1.114 1.005 11.961 1.097 1.008 10.992 1.281 1.009

(0.111) (0.014) (0.023) (0.102) (0.012) (0.024) (0.113) (0.012) (0.011)

𝛼 = 0.01
112.124 1.194 1.032 101.812 1.267 1.018 101.924 1.152 1.011

(0.410) (0.012) (0.024) (0.352) (0.011) (0.024) (0.253) (0.012) (0.012)

𝜇 = 15

𝛼 = 0.1
12.304 1.113 1.042 11.994 1.154 1.009 12.261 1.219 1.004

(0.110) (0.012) (0.024) (0.213) (0.012) (0.021) (0.224) (0.012) (0.013)

𝛼 = 0.01
117.311 1.124 1.008 116.223 1.227 1.009 102.172 1.107 1.000

(0.182) (0.013) (0.024) (0.213) (0.012) (0.022) (0.214) (0.014) (0.012)

The impact of Bell data on some standard control charts

The Bell control chart theory introduced here may be applied in practical situations as a useful and
exciting alternative to the well-known c and u charts developed via the Poisson assumption, and
the cmpc and cmpu charts derived from the COM-Poisson distribution, among others, when data are
overdispersed. Hence, in-control count data with overdispersion can bemodeled well via the proposed
Bell charts.

In this subsection, we apply the above-mentioned Poisson- and COM-Poisson-based control
charts to sample data generated from the Bell distribution. The aim is to investigate, employing
simulations, the performance (in terms of ARL0 and ARL1) of these well-known control charts when
they are applied to the Bell processes. For comparison purposes, we also use the Bell-c and Bell-u

An Acad Bras Cienc (2023) 95(2) e20200246 9 | 22



LAION L. BOAVENTURA et al. NEW STATISTICAL PROCESS CONTROL CHARTS

charts for the cases when the samples are of equal and unequal sizes. The simulations were conducted
using the same settings as described in the previous subsections. However, due to space and time
limitations, we consider only m = 100 and n = 100 (or ̄n = 100). Of course, it may also be of interest
to examine further the performance of the Bell-based control charts to analyze count data generated
from other distributions, including the Poisson and COM-Poisson distributions with some level of
dispersion. Although we provide some preliminary results (indeed, based on a single artificial sample
only) in the “Poisson data” and “COM-Poisson data” subsubsections, this issue will be better addressed
in our future work.

Tables IV and V display, respectively, the ARL0 and ARL1 results for the control charts with equal
sample sizes (or c-type control charts). While the performance measures for the control charts with
unequal sample sizes (or u-type control charts) are shown in Tables AII and AIII of Appendix A. From
these tables, it can be seen that, regardless of the scenario configuration, the Poisson-based control
charts produced poor results (i.e., gave many false alarms) for the in-control Bell samples. This result
is in agreement with some authors, e.g., Saghir & Lin (2015). On the other hand, the COM-Poisson-based
control charts generally provided reasonable to good results for both the in-control and out-of-control
Bell samples (notice that such results are sometimes close to the ones obtained from the Bell-based
control charts). This finding is somewhat expected as the COM-Poisson distribution has one extra
parameter which adds some flexibility to the model and, consequently, the corresponding control
chart.

Finally, it is worth pointing out that we obtained the CL and control limits (UCL and LCL) by
finding the respective mean and standard deviation (SD) for each case, thus calculating the limits
by the “Mean ± L × SD” rule of thumb. For the Poisson and Bell distributions, the mean is easily
determined. Meanwhile, the COM-Poisson summary statistics have complicated formulas, but can be
readily computed using the “compoisson” package (Dunn 2012) in R.

Table IV. Mean (standard deviation in parentheses) values of ARL0 of the competitor c-type control charts when the
true data-generating process is Bell(𝜇𝜇𝜇) distributed, for some 𝜇𝜇𝜇 and 𝛼𝛼𝛼 values (m=100 and n=100).

𝜇 = 3 𝜇 = 15

Control chart 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.1

Bell-c 97.0814 9.8157 101.1592 9.9066

(13.4512) (0.4083) (15.0990) (0.3851)

c 13.8551 4.0038 7.3268 2.9126

(0.6888) (0.0965) (0.2633) (0.0558)

cmpc 117.8809 10.6975 105.1765 9.4851

(17.9508) (0.4711) (16.4531) (0.3732)
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Table V. Mean (standard deviation in parentheses) values of ARL1 of the competitor c-type control charts when the
true data-generating process is Bell(𝜇𝜇𝜇) distributed, for some 𝜇𝜇𝜇, 𝛼𝛼𝛼 and p values (m=100 and n=100).

𝜇 = 3

𝛼 = 0.01 𝛼 = 0.1

Control chart p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10%

Bell-c 91.2050 74.9862 12.6206 9.7069 9.2611 2.8119

(12.6312) (9.7344) (0.6236) (0.3904) (0.3662) (0.0549)

c 13.5571 12.4846 4.1535 3.9747 3.8935 1.8493

(0.6768) (0.6042) (0.1048) (0.0929) (0.0908) (0.0243)

cmpc 113.8549 86.4678 14.4834 10.9720 10.2203 3.0474

(17.8464) (12.2304) (0.7670) (0.4775) (0.4228) (0.0633)

𝜇 = 15

𝛼 = 0.01 𝛼 = 0.1

Control chart p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10%

Bell-c 91.9277 50.3049 2.6450 9.8956 8.3245 1.5320

(12.4999) (5.2314) (0.0472) (0.4038) (0.3101) (0.0158)

c 7.1346 5.5831 1.3094 2.9266 2.7210 1.1663

(0.2476) (0.1671) (0.0105) (0.0573) (0.0505) (0.0066)

cmpc 102.9636 27.0492 2.8850 9.8275 9.1967 1.5444

(15.3876) (2.0920) (0.0543) (0.4035) (0.3691) (0.0160)

APPLICATIONS

It is well-known that there are practical situations in which the nature of the production process
allows an item or product to contain several nonconformities (defects) and not be classified as
nonconforming. For example, the manufacture of personal computers might have one or more very
minor flaws in the cabinet finish, but since these flaws do not seriously affect the unit’s functional
operation, it could be classified as conforming (Montgomery 2013). Thus, in this section, we apply SPC
charts to inspect the total or average number of defects per sample, and determine if the process is
in control.

Simulated data examples

Here, we consider three artificial data sets containing some levels of overdispersion to illustrate the
usefulness of the Bell-c and Bell-u charts, as well as their ability to produce bounds comparable to
those established by the classical SPC theory.

In the cases where the samples are of equal sizes, the control charts chosen for comparison were
the traditional c chart and the cmpc chart. The c chart assumes that the Poisson distribution well

An Acad Bras Cienc (2023) 95(2) e20200246 11 | 22



LAION L. BOAVENTURA et al. NEW STATISTICAL PROCESS CONTROL CHARTS

models the number of defects per inspection unit. However, according to Sellers (2012), the c chart,
while having a better performance for large samples, does not work well in the cases of overdispersion.
Thus, the author developed a control chart using a more general count distribution that relaxes
the equidispersion assumption of the Poisson distribution. The so-called cmpc chart, based on the
assumption of a COM-Poisson distribution, has shown excellent results when fitting overdispersed
count data. Therefore, it can also be used as a reference tool to compare the performance of the
Bell-c chart in this work. For the cases when the samples are of unequal sizes, the control charts
selected for the comparison were the u chart and the cmpu chart.

Similar to the “Performance evaluation” section, all the analyses were done using the R
programming language, and it was assumed L = 3.

Poisson data

In this application, we generated m = 50 samples of size n = 100 from a Poisson distribution with
parameter 𝜆 = 3. The idea here was to compare the performance of the Bell-c and c charts, mainly
in phase 2. More specifically, in phase 1, we calculated the control limits of both charts from the
aforementionedm = 50 samples. While in phase 2 we simulated newm∗ = 70 samples of size n = 100
from the same distribution (Poisson), but with the last 20 samples disturbed by 𝜆s = 3.3. Then, for
both estimated control charts, the occurrence (or not) of false alarms in the first 50 samples and the
number of runs until the first of the 20 nonconforming samples could be detected.

Figure 5. Performance comparison of Bell-c and c charts, both constructed from Poisson distribution samples
(phase 2).

Figure 5 illustrates this application, where the points (samples) to the right of the blue dashed
vertical line are the disturbing observations (out-of-control samples). Furthermore, the red solid
horizontal lines represent the UCL and LCL, the blue solid horizontal line indicates the CL, and the
green points correspond to the out-of-control signals.

This figure points out for this particular artificial example that the Bell-based control chart
produced better results than the Poisson-based control chart for the in-control samples, even though
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the true data-generating process is not Bell distributed. This was due to the fact that the Bell-c chart
identified a single false alarm, while the c chart itself found three.

Finally, for the samples that are known to be out-of-control, both charts performed similarly,
showing that the Bell-c chart may be a useful alternative to the traditional c chart.

COM-Poisson data

As in the “Poisson data” subsubsection, in this application we generatedm = 50 samples of equal size
n = 100, but this time, from a COM-Poisson distribution with parameters 𝜆 = 1.5 and 𝜈 = 0.5. Here,
the idea also was to compare the performance of the Bell-c and cmpc charts in phase 2 monitoring.
Phases 1 and 2 analyses were carried out in the same way as before, with the exception that the last
20 samples (in a total of m∗ = 70 new samples) were perturbed by 𝜈s = 0.75.

Figure 6 shows the estimated control charts applied to the phase 2 samples, from which it
can be observed that similar to the previous subsubsection, the Bell-based control chart provided
better results than the COM-Poisson-based control chart for the in-control samples. Although the
COM-Poisson represents the true data-generating distribution, the Bell-c chart gave a single false
alarm, while the cmpc chart itself found three. Such excellent performance of the Bell-c chart is
maintained when analyzing out-of-control samples, showing that the Bell-c chart can also be a useful,
as well as simpler alternative to the cmpc chart.

Figure 6. Performance comparison of Bell-c and cmpc charts, both constructed from COM-Poisson distribution
samples (phase 2).

Bell data

In this last application, we simulated m = 50 samples of unequal sizes (with ̄n = 100, and each
sample size obtained by following the same approach described in footnote 4) from a Bell distribution
with parameter 𝜇 = 3, and compared the performance of the Bell-u chart against the u chart
and cmpu chart. Once again, as in the previous subsubsections, we considered the application to
phase 2 samples. The idea here was to evaluate both Poisson- and COM-Poisson-based control
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charts, compared to the Bell-based control chart performance when the data are actually from a
Bell distribution.

From the analysis of Figure 7, it can be noticed that, in the case of conforming (in-control) samples,
the Bell-u chart did not produce false alarms as the cmpu chart, while the u chart identified four false
alarms. However, the Bell-based control chart performed slightly better than the COM-Poisson-based
control chart when in the presence of nonconforming samples, where the Bell out-of-control samples
were generated with 𝜇s = 3.3.

Figure 7. Performance comparison of Bell-u, u and cmpu charts, all constructed from Bell distribution samples
(phase 2).

Real data example

In this subsection, we considered the Bell-c, cmpc and c charts to analyze the real data set related to
the number of nonconformities in samples of 100 printed circuit boards; see Chapter 7 of Montgomery
(2013). The data analysis initially comprehends 20 samples with overdispersion (variance/mean≈ 1.21),
which suggests that the process can be described by a COM-Poisson distribution with 𝜆̂ = 2.87 and

̂𝜈 = 0.37 (Sellers 2012). Further, Alevizakos & Koukouvinos (2022) considered 20 additional samples,
also with overdispersion (variance/mean ≈ 2.00), simulated from a COM-Poisson distribution with
𝜆 = 3.09 and 𝜈 = 0.37, which implies a deterioration in the process; for more details, see Table
10 of Alevizakos & Koukouvinos (2022). Here, we checked the goodness-of-fit of the Bell distribution
( ̂𝜇 ≈ 20) through the Pearson’s 𝜒2 test application with the first 20 samples, where we found p-value
= 0.57. We also used the same test procedure for the last 20 samples, in which we obtained a p-value
= 0.98 ( ̂𝜇 ≈ 24).

Figure 8 shows the estimated Bell-c, cmpc, and c charts, applied to the printed circuit boards
data set, with control limits calculated from the initial 20 samples. That is, the left part of the green
dashed vertical line is precisely the monitoring of the first 20 samples (phase 1), while the right part
of this line represents the monitoring of the remaining 20 samples, which did not participate in the
construction of the control limits (phase 2).
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It can be observed from Figure 8 that the Bell-c chart 7 detected the process mean shift upwards as
soon as it occurred. This detection was unlike the cmpc chart, which did not identify any nonconformity
in the process, neither on the left side nor on the right side of the green dashed vertical line. The c
chart, as expected, produced false alarms just to the left of this line. This result is because, as we know,
the c chart is not flexible enough to accommodate overdispersed data. Furthermore, it is essential to
note that Alevizakos & Koukouvinos (2022) also considered the data set analyzed by Sellers (2012);
they had already observed that the proposed chart did not point to declines over the UCL, which is
undesirable. In our case, with the Bell-c chart, the first warning appeared on unit#22, with three units
outside the UCL correctly showing process deterioration. This result confirms that the Bell-c chart is
an excellent alternative to usual control charts, such as the cmpc and c charts.

Figure 8. Performance comparison of Bell-c, cmpc and c charts, constructed from the printed circuit boards data set.

FINAL REMARKS

The one-parameter discrete Bell distribution, introduced by Castellares et al. (2018), has been
established as a viable alternative to the Poisson distribution for analyzing count data with
overdispersion. As demonstrated by the examples, we provided in the “Applications” section. The
Bell-based control charts can be useful choices/alternatives to the traditional ones (e.g., the c and
u charts derived from the Poisson distribution) for process monitoring of overdispersed count data.
Notably, the proposed Bell charts provided satisfactory results (few false alarms and fast process
change/shift detection) even when the sample data were generated from the two-parameter (and
thus, more complex) COM-Poisson distribution.

In the “Performance evaluation” section, simulation results also demonstrated the excellent
performance of the proposed Bell charts under different scenarios (i.e., by varying the number of
phase 1 samples, the sample size, the Bell distribution parameter and the probability of false alarm).
In this case, the ARL criterion was used to measure control chart performance.

In the applications provided in the “Applications” section, we determined the control limits
based on the standard three-sigma rule (Six Sigma program). Nevertheless, alternatively, like in the
“Performance evaluation” section, one can obtain the UCL and LCL via a specified type I error rate 𝛼,
so that the probability of finding sample points outside the control region is equal to 𝛼. Finally, we
considered a real data set related to the number of nonconformities in samples of 100 printed circuit

7The R code used for generating this Bell-c chart is available in Appendix B.
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boards, which demonstrated that our proposed Bell-c chart outperformed the standard charts when
showing process deterioration.

There are many extensions of the current work. For instance, following Braun (1999), Chakraborti &
Human (2008), Castagliola & Wu (2012), and Castagliola et al. (2014), we intend to develop optimization
designs in order to increase the performance of the Bell control charts when estimating the unknown
process parameter 𝜇 using phase 1 data.
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APPENDIX A -

Figure A1. The ARL0 values of the Bell-u chart for variousm and n̄n̄ ̄n (𝜇𝜇𝜇 = 3 and 𝛼𝛼𝛼 = 0.01).

Figure A2. The ARL0 values of the Bell-u chart for variousm and ̄nn̄n̄ (𝜇𝜇𝜇 = 15 and 𝛼𝛼𝛼 = 0.01).
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Figure A3. The ARL0 values of the Bell-u chart for variousm and n̄ ̄n ̄n (𝜇𝜇𝜇 = 3 and 𝛼𝛼𝛼 = 0.1).

Figure A4. The ARL0 values of the Bell-u chart for variousm and ̄n ̄nn̄ (𝜇𝜇𝜇 = 15 and 𝛼𝛼𝛼 = 0.1).
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Table AI. Mean (standard deviation in parentheses) values of ARL1 of the Bell-u chart, for the different scenarios
studied.

n̄ = 50 ̄n = 100 ̄n = 500

p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10%

m = 20

𝜇 = 3

𝛼 = 0.1
14.233 1.172 1.013 13.242 1.228 1.015 15.233 1.151 1.011

(0.142) (0.024) (0.012) (0.271) (0.024) (0.022) (0.111) (0.011) (0.014)

𝛼 = 0.01
111.223 1.214 1.011 106.024 1.162 1.016 121.242 1.227 1.011

(0.282) (0.022) (0.024) (0.482) (0.021) (0.024) (0.261) (0.022) (0.014)

𝜇 = 15

𝛼 = 0.1
11.631 1.124 1.046 17.261 1.242 1.011 14.242 1.224 1.024

(0.124) (0.013) (0.022) (0.113) (0.023) (0.022) (0.111) (0.014) (0.010)

𝛼 = 0.01
113.224 1.174 1.072 112.424 1.161 1.024 115.222 1.262 1.012

(0.212) (0.014) (0.014) (0.213) (0.013) (0.011) (0.222) (0.013) (0.014)

m = 50

𝜇 = 3

𝛼 = 0.1
12.274 1.156 1.022 13.292 1.245 1.018 12.262 1.232 1.005

(0.114) (0.012) (0.013) (0.112) (0.014) (0.024) (0.112) (0.014) (0.011)

𝛼 = 0.01
116.142 1.246 1.026 113.524 1.244 1.026 111.263 1.235 1.002

(0.211) (0.013) (0.014) (0.222) (0.011) (0.022) (0.203) (0.014) (0.012)

𝜇 = 15

𝛼 = 0.1
11.242 1.151 1.045 12.561 1.213 1.018 12.291 1.121 1.011

(0.091) (0.011) (0.014) (0.113) (0.012) (0.023) (0.102) (0.012) (0.014)

𝛼 = 0.01
118.524 1.193 1.032 112.100 1.171 1.018 114.100 1.159 1.004

(0.314) (0.022) (0.024) (0.222) (0.014) (0.020) (0.202) (0.014) (0.011)

m = 100

𝜇 = 3

𝛼 = 0.1
12.522 1.104 1.005 16.120 1.197 1.007 13.692 1.126 1.009

(0.112) (0.013) (0.023) (0.214) (0.012) (0.024) (0.142) (0.012) (0.014)

𝛼 = 0.01
118.124 1.163 1.012 115.242 1.197 1.018 103.024 1.151 1.006

(0.292) (0.014) (0.012) (0.262) (0.014) (0.014) (0.412) (0.022) (0.014)

𝜇 = 15

𝛼 = 0.1
12.392 1.102 1.041 16.221 1.151 1.009 12.224 1.222 1.004

(0.114) (0.010) (0.023) (0.210) (0.012) (0.024) (0.113) (0.012) (0.011)

𝛼 = 0.01
115.224 1.183 1.008 116.524 1.126 1.008 119.503 1.206 1.000

(0.432) (0.014) (0.022) (0.330) (0.012) (0.024) (0.332) (0.013) (0.010)

Table AII. Mean (standard deviation in parentheses) values of ARL0 of the competitor u-type control charts when
the true data-generating process is Bell(𝜇𝜇𝜇) distributed, for some 𝜇𝜇𝜇 and 𝛼𝛼𝛼 values (m=100 and n̄n̄n̄=100).

𝜇 = 3 𝜇 = 15

Control chart 𝛼 = 0.01 𝛼 = 0.1 𝛼 = 0.01 𝛼 = 0.1

Bell-u 96.3690 10.2200 96.5712 9.7825

(13.5892) (0.4345) (13.6545) (0.4296)

u 13.7370 4.0295 7.2248 2.8840

(0.6982) (0.0972) (0.2526) (0.0551)

cmpu 112.8635 10.6225 76.3384 7.1528

(17.3837) (0.4540) (9.3869) (0.2550)
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Table AIII. Mean (standard deviation in parentheses) values of ARL1 of the competitor u-type control charts, when
the true data-generating process is Bell(𝜇𝜇𝜇) distributed, for some 𝜇𝜇𝜇, 𝛼𝛼𝛼 and p values (m=100 and n̄n̄ ̄n=100).

𝜇 = 3

𝛼 = 0.01 𝛼 = 0.1

Control chart p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10%

Bell-u 90.8468 84.1567 13.4427 10.1559 9.9885 3.0521

(12.3245) (11.6707) (0.6791) (0.4489) (0.4074) (0.0619)

u 13.5156 13.1820 4.2784 4.0293 3.9949 1.9329

(0.6548) (0.6323) (0.1085) (0.0989) (0.0984) (0.0267)

cmpu 108.1874 89.3612 15.3133 10.6599 10.5533 3.2587

(16.5333) (12.5799) (0.8142) (0.4826) (0.4375) (0.0693)

𝜇 = 15

𝛼 = 0.01 𝛼 = 0.1

Control chart p = 0.5% p = 1% p = 10% p = 0.5% p = 1% p = 10%

Bell-u 93.6208 83.0078 3.0950 10.0302 9.1960 1.4209

(12.9182) (10.8026) (0.0612) (0.4335) (0.3735) (0.0131)

u 7.2176 6.9502 1.3911 2.9273 2.8343 1.1289

(0.2531) (0.2402) (0.0123) (0.0584) (0.0562) (0.0055)

cmpu 69.3032 82.7237 3.0015 7.4049 9.7473 1.4464

(8.0359) (10.6946) (0.0575) (0.2543) (0.4111) (0.0138)
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APPENDIX B

# y = vector with the total number of defects per sample (including
# phases 1 and 2 samples, in this order)
# m = number of phase 1 samples
# n = sample size (all the phases 1 and 2 samples are of the same size n)
# L = "distance" between the CL and the control limits (in the usual
# Six Sigma quality control program, L = 3)

Bell.Chart.TOTAL = function(y, m, n, L){
require(LambertW)
mu = mean(y[1:m])/n
UCL = n*mu+L*sqrt((n*mu*(1+W(mu))))
CL = n*mu
LCL = n*mu-L*sqrt((n*mu*(1+W(mu))))
UCL = rep(UCL, length(y))
CL = rep(CL, length(y))
LCL = rep(LCL, length(y))
plot(UCL, main="Bell Chart", xlab="Sample", ylab="Total Number of Events",

ylim=c(min(LCL, y), max(UCL, y)), col="red", type="l", lwd=3)
lines(CL, col="blue", lwd=2)
lines(y, col="black", lwd=1.5)
lines(LCL, col="red", lwd=3)
abline(v=m+0.5, col="green", lty=2, lwd=1.5)
points(y, col= ifelse(y>UCL | y<LCL, "green", "black"), pch=19)
out = matrix(round(c(UCL[1], CL[1], LCL[1]), 4), nrow=1, ncol=3)
rownames(out) = c(" ")
colnames(out) = c("UCL", "CL", "LCL")
out

}

x = c(16,18,12,15,24,21,28,20,25,19,18,21,16,22,19,12,14,9,16,21,27,27,
34,31,19,29,17,35,20,18,12,34,13,25,23,24,20,27,16,28)

Bell.Chart.TOTAL(y=x, m=20, n=100, L=3)
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