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Abstract: Understanding the spatial pattern of a particular geographic phenomenon such 
as deforestation is a key issue to establish monitoring programs to prevent the depletion 
of natural resources. Thus, the goal of this study was to assess the spatial pattern of 
deforested areas in the Pardo and Jequitinhonha River basins using Ripley’s K function. 
First, we mapped all deforested areas in these basins using Landsat multispectral 
imagery from 2007 to 2015. Then, we used the Ripley’s K function to test for spatial 
interactions between deforestation events. Our results showed that deforestations 
predominantly occur in a clustering spatial pattern in these basins. Spatial statistical 
analyses as Ripley’s K function may provide a baseline for deforestation monitoring, 
as well as allowing us to understand the spatial pattern of deforestation in different 
natural ecosystems, especially in countries like Brazil, where the territorial dimension 
presents a great difficulty for the effectiveness of deforestation monitoring.
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INTRODUCTION
Biodiversity loss and climate changes are major 
concerns regarding the increasing rates of 
deforestation in natural ecosystems (Vié et al. 
2008, Françoso et al. 2015). It is well documented 
that deforestation affects soil nutrient dynamics, 
species diversity, vegetation composition, and 
results in warmer, drier conditions at the local 
scale, whereas it increases the atmospheric 
carbon dioxide levels and affects the 
temperature and rainfall patterns at the global 
scale (Lawrence & Vandecar 2015, Kamlun et al. 
2016).

Despite the development of advanced 
techniques concerning land use/land cover 
change detection, deforestation in tropical 
regions has expanded continuously. The rate 
of global forest loss has hit 13 million ha per 
annum (World Bank 2009, Hansen et al. 2013) 

with major forest cover losses occurring in South 
America and Africa countries (FAO 2010). This 
is particularly true in Brazil, where most of the 
deforested areas are caused by anthropogenic 
activities such as agriculture and cattle ranching 
(Miles et al. 2006, Jusys 2016).

Several studies have shown that the 
deforestation in the Amazon Biome has 
increased in the last years (Ferreira Filho & 
Horridge 2017). In 2018, there was an increase of 
13.7% of the deforestation in the Legal Amazon 
(a political-administrative area located within 
the limits of the Amazon River Basin) in relation 
to 2017, which corresponds to an area of 7,900 
km² (INPE 2018). Following the same tendency 
concern the rates of deforestation, the Cerrado 
biome reached a peak of 0.75 Mha deforested 
in 2012, which was higher than the annual 
deforested area in the Amazon biome for the 
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same period, which was equal 0.43 Mha (Ferreira 
Filho & Horridge 2017).

Monitoring forest cover changes is 
essential to track ecosystem dynamics and 
to provide basis for reducing deforestation 
and forest degradation (Wulder et al. 2012, 
Kamlun et al. 2016). Understanding the impact 
of deforestation requires detailed knowledge 
about where these events occur, which can be 
detected using remotely-sensed imagery. In fact, 
satellite remote sensing technologies along with 
Geographic Information Systems (GIS) have been 
increasingly used for mapping and monitoring 
deforestation (Reddy et al. 2016, Grecchi et al. 
2017, Taubert et al. 2018).

Recently, efforts have been placed to 
integrate spatial statistical analysis with 
remotely-sensed data to improve deforestation 
detection and monitoring (Anwar & Stein 2015, 
Hamunyela et al. 2016). In general, spatial 
analysis is a technique of geographic data 
analysis based on the spatial distribution of 
a geographic phenomenon (Druck et al. 2004, 
Pereira et al. 2013). Since most of the deforested 
areas identified using remotely-sensed imagery 
are quantified in the form of event data, spatial 
point pattern analysis has a great potential to be 
used to identify deforestation patterns (Anwar & 
Stein 2015).

Ripley’s K function (Ripley 1977) is a spatial 
distance-based statistical approach used to 
investigate pairwise interactions between events 
at different spatial scales (Fuentes-Santos et 
al. 2013), providing great flexibility over other 
methods of spatial analysis (Ripley 1977, Rode 
& Filho 2010, Machado et al. 2012). This function 
evaluates the second-order property of point 
patterns by taking into account the number and 
the distance between point events over a given 
area of interest (Hohl et al. 2017). Moreover, the 
Ripley’s K function allows for quantitatively 
evaluating how much the observed point pattern 

deviates from randomness at multiple spatial 
scales (Ripley 1977).

The Ripley’s K function has been used 
for analysing spatial patterns of a range of 
phenomena such as tree species distribution (Lv 
et al. 2019, Scalon et al. 2012), sprinkler irrigation 
system (Zeilhofer & Mara 2011), forest mortality 
(Hatala et al. 2010). In the study of Pu & Bell (2017), 
Ripley’s K function was applied to investigate 
the spatial distribution of submerged aquatic 
vegetation. Pereira et al. (2013) used the Ripley’s 
K function to analyse the spatial distribution of 
burned areas, and found that the spatial pattern 
of burned areas is affected by its area extent.

Thus, the goal of this study was to test 
for spatial interactions between deforestation 
events in the Pardo and Jequitinhonha River 
basins, Minas Gerais State, Brazil, using Ripley’s 
K function.

MATERIALS AND METHODS
Study area
The Pardo and Jequitinhonha River basins 
are located in the northeast of Minas Gerais 
State, Brazil (Figure 1). The Pardo River basin 
is located in both Minas Gerais (12,729.55 km²) 
and Bahia (19,738.53 km²) States, whereas the 
Jequitinhonha River basin covers a large part of 
the northeast of Minas Gerais State (65,660 km²) 
and a small part of southeastern of Bahia State 
(4,655 km²), totalling an area of 70,315 km². Both 
basins are located at the transition between 
Atlantic Forest and Brazilian savanna (known as 
Cerrado) biomes (Scolforo & Carvalho 2006).

Change detection
Landsat 5 TM (Thematic Mapper) and Landsat 
8 OLI (Operational Land Imager) multispectral 
imagery were acquired for the agricultural years 
(from July to June) 2007-2008, 2008-2009, 2009-
2010, 2010-2011 and 2014-2015.
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Landsat 5 TM scenes were obtained from the 
INPE (Instituto Nacional De Pesquisas Espaciais) 
database (available at: http://www.inpe.br), 
whereas Landsat 8 OLI scenes were obtained 
from the USGS (United States Geological Survey) 
database (available at: https://earthexplorer.
usgs.gov/) as Level 1 Terrain Corrected (L1T) 
product.

The NDVI (Normalized Difference Vegetation 
Index) image differencing was applied to detect 
land cover changes for all Landsat imagery over 
the years. NDVI differencing is a useful method 
to detect the changes occurring in vegetated 
areas (Acerbi Júnior et al. 2015, Silveira et al. 
2017). In this study, only deforested areas larger 
than 1 hectare were considered as deforestation 
events. For each of these events, we calculated 
the centroid of the deforested area to be used 

as inputs in the following spatial interactions 
analysis. The change detection analyses were 
carried out using the softwares ENVI Version 4.7 
(Exelis Visual Information Solutions 2015), and 
ArcGis version 10.1 (Esri 2010).

Ripley’s K function analysis
A spatial point process is a particular kind of 
stochastic process in which the realizations 
consist in countable sets of point in the plane 
(Ripley 1977). Spatial point pattern is defined as 
a particular realization of such a process, and 
the point locations are generally referred to as 
events of the process or pattern (Diggle 1983). 
A spatial point process may be homogeneous 
and inhomogeneous. In a homogeneous spatial 
point process, the point events are uniformly 
distributed in the study area. Therefore, the 
first- order intensity (the number of points per 

Figure 1. Location of the Pardo and Jequitinhonha River basins in Minas Gerais State, Brazil.
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unit area) is constant. On the other hand, in 
an inhomogeneous spatial point process, the 
point events are not uniformly distributed in the 
study area and are distributed according to the 
intensity function of the process.

The first step in analysing a spatial 
point pattern is to test the complete spatial 
randomness (CSR) hypothesis. This hypothesis 
indicates that is equally likely that an event will 
happen anywhere within the study area (Diggle 
2003). The homogeneous and inhomogeneous 
K-functions (Ripley 1977, Baddeley et al. 2000) 
may be used to analyse the CSR hypothesis. 
These functions analyse and describe the 
spatial structure of a point process (the second 
order property) and are based on the analysis of 
pair of points.

In this study, the deforestation events 
identified in the Pardo and Jequitinhonha River 
basins can be seen as a realization of a spatial 
point process. First, we estimated the intensity 
(𝜆) of the deforestation events using the kernel 
smoothed estimator of intensity, and the edge 
correction described by Jones (1993) and Diggle 
(2010) (Equation 1). The kernel estimator allows 
the spatial distribution characterization of the 
events under study (Fuentes-Santos et al. 2020).

( ) ( )
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x k x x w e x 	 (1)

Where k is the Gaussian smoothing kernel, 
e(xi) is an edge correction factor and wi are the 
geographical weights of the ith observations.

The kernel estimator was generated using 
the density.ppp function in the spatstat package 
in R (Baddeley & Turner 2005). To select the 
smoothing bandwidth (τ) for the kernel k, we 
used a cross-validation method using the 
bw.diggle function. This function minimizes the 
mean-square error criterion defined by Diggle 
(1983). The kernel weights (wi) are determined 
by the Euclidian distance from xi, with the weight 

reducing as the distances increases. The edge 
correction described by Jones (1993) and Diggle 
(2010) was applied to avoid edge-effect bias, 
considering the study region D (Equation 2).

( )1  -
( )

= ∫ i
i D

k x x dx
e x

	 (2)

To test the CSR hypothesis, both the 
homogeneous and the inhomogeneous K 
function may be applied. When the events are 
uniformly and independently distributed in the 
study area, its first-order intensity is constant, 
and the spatial point process is homogeneous. 
In this case, the homogeneous K function is 
used. The homogeneous K- function with an 
edge correction can be estimated as in Equation 
3, where r is the distance between the events.
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Where |A| is the area of the observation 
domain; n is the number of observed events; 
dij is the Euclidian distance between points i 
and j, i ≠ j; Ir

(dij
) is an indicator function whose 

value is equal to 1 if (dij
) ≤ r and equal to 0 if 

(dij
) ≥ r and wij is an edge corrector factor that 

represents the proportion of the circumference 
around an event i, passing over the event j that 
is within|A|.

When the first-order intensity is not 
constant, the homogeneous K-function can 
overstate the departure from CSR. In this case, 
the inhomogeneous K-function (Baddeley et 
al. 2000) is used to overcome this difficulty 
(Equation 4)
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Where A is the area of the observation 
domain, that represents the area, dij is the 
distance between points i and j, i ≠ j, e(xi, xj, 
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r) is an edge corrector factor (Equation 5), λ is 
the estimated intensity obtained by the kernel 
smoothed estimator.

( ) ( )
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Where bi and bj are the distance from xi and 
xj to the boundary of the window, respectively.

The homogeneous and inhomogeneous 
K-functions can be transformed to an L- function 
to directly compare with distance x in a linear 
manner (Equation 6).
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In this study, the Monte Carlo test envelops 
were obtained for either the homogeneous 
or inhomogeneous L-functions from s – 1 = 
99 simulations under the corresponding null 
hypothesis. In this case, if the observed values (L 
(r)) are within the limits of the reliable envelops, 
the spatial pattern is classified as random, 
whereas values below or above this threshold 
indicate regular and clustering patterns between 
events at distance r, respectively.

Data analysis for this study was performed 
using the spatstat package in R (R Core Team 
2016) (Baddeley & Turner 2005).

RESULTS
The number of deforestations and their 
respective areas detected in the Pardo and 
Jequitinhonha Rivers basins, for each agricultural 
year during the period between 2007 and 2015 
are shown in Table I. Figure 2(a to e) shows the 
spatial distribution of the deforested areas in 
the study region, between 2007 to 2015. We could 
not identify the deforested areas in a small part 
of the northeast of Jequitinhonha River basin 
due to the lack of cloud-free images for this 
basin region for all the analysed years.

The kernel estimates of the first-order 
intensity (Figure 3) indicated distinct spatial 
patterns in the study region in all analysed years. 
The hotspots show regions with high intensity of 
deforestation events. Therefore, the presence 
of hotspots in our study area is an indicative 
that the first-order intensity is not constant, and 
deforestation occurrence is dependent on the 
spatial location.

In addition, we noticed that the intensity of 
the events increased over the years, with more 
hotspots observed in different locations within 
the basins. The 2007-2008 agricultural year shows 
that the deforestation events occurred with an 
intensity higher than 8 x 10-7 deforestations/m² 
in the hotspots. In 2008-2009, the intensity of the 
events was lower than in 2007-2008, with 1.5 x 
10-8 deforestations/m² in the hotspots. Visually, 
the 2014-2015 agricultural year presented the 
highest number of deforestation hotspots in the 
Pardo and Jequitinhonha Rivers basins.

Since the kernel estimates of the first 
order intensity shows that the intensity of 
the deforestation events is not constant, we 
applied the Monte Carlo test envelops under 
the inhomogeneous hypothesis to check the 
second-order structure of the deforestation 
events (Figure 4).

The inhomogeneous L-function provide 
evidence of clustering, randomness, and regular 

Table I. Deforested areas detected in Pardo and 
Jequitinhonha Rivers basins, Minas Gerais State, Brazil, 
for each agricultural year during the period between 
2007 and 2015.

Agricultural 
Year

N° of 
deforestations

Deforested area 
(ha)

2007-2008 661 17,096.83

2008-2009 132 9,808.47

2009-2010 426 12,590.81

2010-2011 369 13,723.14

2014-2015 1,788 9,922.09

Total 3,376 63,141.34
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spatial patters during the analysed periods. In 
the agricultural year 2007-2008, this function 
detected clustering with an interaction radius 
close to 50 km and randomness between 50 
km and 70 km. The agricultural year 2008-2009 
showed a clustering patter up to 65 km, after 
that, a randomness patter was observed. 

We observed a pattern of clustering, 
randomness, and regularity in sequence for the 
agricultural years of 2009-2010, 2010-2011, 2014-
2015, and for all deforestation events occurred 
between 2007 and 2015, again with some 
variation between the distance limit of spatial 
patterns.

Although the inhomogeneous L-function 
have identified patterns of regularity for large 
distances, these results should be interpreted 
carefully since the variability of the empirical 
estimator of the K and L-functions increases in 
large distances.

DISCUSSION
In this study, we applied the spatial point 
process analyses for an improved understanding 
of the spatial pattern of the deforested areas in 
Pardo and Jequitinhonha Rivers basins, located 
in Minas Gerais State, Brazil, during the period 

Figure 2. Deforested 
areas mapped in Pardo 
and Jequitinhonha 
Rivers basins, Minas 
Gerais State, Brazil, 
for each agricultural 
year during the period 
between 2007 and 2015: 
a) 2007-2008, b) 2008-
2009, c) 2009-2010, 
d) 2010-2011, and e) 
2014-2015.
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between 2007 and 2015. Our study demonstrates 
that the Ripley’s K function was successfully able 
to determine the spatial pattern of deforested 
areas at different scales in the study region.

The inhomogeneous K-function identify 
the clustering pattern around small distances 
from a given event. However, at large scales, 
the behaviour of inhomogeneous K-function 
indicates that the point process is closer to 
CSR and regularity. This behaviour was also 
observed by Hering et al. (2009) analysing the 
spatio-temporal wildfire ignition point patterns.

From 2007 to 2015, the agricultural year 2008-
2009 showed the lowest number of deforested 

areas identified in our study. For this same year, 
Chen et al. (2015) observed that the deforestation 
rate fell drastically in the Amazon basin. The 
authors considered the 2008 global economic 
crisis, that affected many economic activities 
such as wood production and logging (Canova 
& Hickey 2012), as one of the major causes of 
the deforestation decline in this year. Besides 
that, they also considered as another cause of 
this decline the enforcement of the Brazilian 
Law of Environmental Crimes that began in July 
2008 and aim to protect wildlife and plants from 
environmental crimes (Brazil 2008).

Figure 3. Kernel estimates 
of the deforestation event 
intensity in Pardo and 
Jequitinhonha Rivers basins, 
for each agricultural year 
during the period between 
2007 and 2015.
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The clustering spatial pattern observed for 
small scales may be related to small deforested 
areas, especially for the agricultural year 2014-
2015. In this agricultural year, we observed an 
increase in the number of deforested area 
(Table I and Figure 2). In 2012, the Brazilian 
Forest Code (BFC) was modified by Brazilian 
government. This new code resulted in a weaker 

protection for natural vegetation and less 
requirement for restoration (Soares-Filho et al. 
2014). Besides that, the BFC granted amnesty 
for small farmers that have deforested their 
lands, and consequently have insufficient Legal 
Reserve areas in their farms, providing them the 
exemption from having to perform restoration 
(Sparovek et al. 2015). Legal Reserve is the 

Figure 4. 
Inhomogeneous 
K-function transformed 
to the L-function for the 
deforestation events 
in each agricultural 
year during the period 
between 2007 and 2015.
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percentage of the farm total area which need to 
be preserved, and now with BFC modifications, 
the farmers do not have to perform restoration of 
those areas, resulting in increased vulnerability 
of the remaining vegetation to agriculture 
expansion (Rajão & Soares-Filho 2015). Thus, the 
increase in the number of deforested areas in 
the agricultural year 2014-2015 observed in this 
study may be related to BFC modification.

Deforestation causes can be direct or indirect 
and can be due to natural events or human 
interference (Geist & Lambin 2001). The direct 
causes are related to land use and land cover 
changes, where forest areas are replaced mainly 
by agriculture and livestock expansion (Reddy et 
al. 2016), whereas the indirect causes are related 
to social processes, where population dynamics 
and various other technological, economic, and 
political factors influence practices such as 
deforestation (Geist & Lambin 2002).

Furthermore, deforestation pattern can be 
compared to fire pattern, mainly due to the fact 
that in many regions, fires are associated with 
initial land clearance (Aragão & Shimabukuro 
2010). Both fires and deforestation occur in 
specific areas, related to factors such as region 
characteristics, prevention practices, and 
management of native vegetation areas, which 
make their spatial distribution difficult to be 
random (Fuentes-Santos et al. 2013, Mateus et 
al. 2014). Pereira et al. (2013) analysed the spatial 
pattern of fires in protected areas and verified 
that the spatial pattern may be related to the 
use of fire in soil management, which explain the 
clustering pattern in some regions. In addition, 
in many regions, soil management is carried out 
with deforestation practices followed by fires, 
corroborating the association between fires and 
deforested areas.

Zeilhofer & Klemp (2011) observed a 
clustering spatial pattern for sprinkler irrigation 
(an agricultural production system) in the upper 

Rio das Mortes basin, located in Mato Grosso 
State, using the Ripley’s K function. In the 
Amazon forest, Anwar & Stein (2012) used the 
distance-based G-function to analyse selective 
logging detected using Landsat imagery and 
observed that this process also have a clustering 
spatial pattern. Both sprinkler irrigation and 
selective logging are process that can be related 
to deforestation process.

Besides that, deforestation process also is 
related to fragmentation process. Landscape 
modification and habitat fragmentation are key 
drivers of global species loss (Lindenmayer & 
Fischer 2006). Habitat fragmentation implies 
a loss of habitat, reduced patch size, and an 
increasing distance between patches, but also 
an increase of new habitats (Haddad et al. 2015). 
Moreover, according to Lawrence & Vandecar 
(2015), the pattern of deforestation can also 
influence how regional climate is modified. 
These authors also observed that the impacts of 
deforestation vary by region and depend on the 
use of converted forests. 

Considering the increased rate of 
deforestation around the world, it seems sensible 
to invest in further studies that focus on more 
techniques to determine deforestation patterns 
in different natural ecosystem. Our methodology 
presents a quantitative method which has a 
great potential to analyse deforestation patterns 
at multiple scales and it is indispensable for 
analysing and interpreting deforestation patterns 
in terms of multi-date detection in an effective 
manner. Further studies could also investigate 
the influence of geographic and socioeconomic 
factors on the distribution of deforested areas in 
the study region.

CONCLUSIONS
The methodology presented in this study 
provides a useful tool for identifying the spatial 
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interactions between deforestation events in 
the Pardo and Jequitinhonha Rivers basins. The 
combination of remote sensing techniques and 
spatial statistics is a promising way ahead for 
better understanding of and possibly reducing 
deforestation in native vegetation.

The clustering spatial pattern was the 
predominant spatial pattern of deforested areas in 
Pardo and Jequitinhonha Rivers basins during the 
period from 2007 to 2015, mainly in small distances. 
Spatial statistical analyses as first and second-order 
estimation are useful tools to decisions makers 
and may provide a baseline for deforestation 
monitoring. Furthermore, these tools allow us to 
understand the spatial pattern of deforestation 
events in different natural ecosystems, especially in 
countries like Brazil, where the territorial dimension 
presents a great difficulty for the effectiveness of 
deforestation monitoring.
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