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Survival analysis is a non-parametric statistical mo-
del in which the dependent variable is the “time inter-
val” and the independent variable is the “occurrence 
or not” of a given event(1-4). The analysis measures and 
compares the lapsed times from interventions or expo-
sures to given “events.” Understanding the concept of 
median survival, the time interval in which the event 
occurs in 50% of participants, is essential. The median 
survival has a similar meaning to that of the means and 
standard deviation used in classical descriptive statis-
tics. Kaplan-Meier curve estimators are named after the 
creators of this broadly used method in medicine(5) that 
estimates the probability of survival, under different 
conditions and at different time intervals with a graph 
that illustrates the probability over time. 

In medicine, survival analyses are used to predict 
the longevity of surgical interventions such as fistulas or 
transplants, as well as the longevity of disease-free or 
complication-free periods in various forms of chronic 
diseases and malignancies (Box 1). Survival analyses are 
excellent for evaluating outcomes and helping to make 
therapeutic decisions anticipating progressions. These 
analyses may be applied in comparative longitudinal 
studies on the safety and efficacy of clinical or surgical 
treatments. 

Box 1. Examples of relevant observations in general medicine and ophthal-
mology, using survival analysis

Subject 
Conclusion based on 

survival analysis Reference

Prostate cancer 29-year 
survival 

Radical prostatectomy is 
superior than watchful 

waiting

Bill-Axelson, 
Holmberg et al. 2018(6)

Prospective investigation 
to clarify whether 
revascularization reduces 
cardiovascular events 
in patients with heart 
ischemia 

Trial planning to 
compare invasive 

versus medical therapy 
for hearth ischemia, 

since revascularization 
over the conservative 
approach has been 

questioned in other trials

Maron, Harrington et 
al. 2018(7)

Trabeculectomy outcomes 
in a tertiary hospital in 
Brazil

The success rate was 60% 
after 3 years of surgery

Abe, Shigueoka et al. 
2017(8)

Autologous corneal limbal 
transplantation outcomes

The success rate was 
77% after 10 years

Rama, Matuska et al. 
2010(9)

Allogeneic corneal limbal 
transplantation outcomes

The graft survival rate 
was 33% after 2 years in 
patients with Stevens-

Johnson syndrome

Santos, Gomes et al. 
2005(10)

Survival times measure the time interval from a star-
ting point until the occurrence of a given event (e.g., 
death, cure, relapse, incubation, or equipment failure). 
Table 1 shows a comparison between the possible  
outcomes of survival analysis and classical statistics(3) 
when applied to the same problem. Crucially, survival 
analysis values the whole curve and not isolated points.

Over long follow-up periods, events for some parti-
cipants may occur before the analysis period. Moreover, 
many participants get lost to the follow-ups because 
they leave the study for different reasons (e.g., partici-
pants migrate to another city) or the study may end be-
fore the event occurs (events may occur after the study 
period, but research is expensive, and it needs to have 

https://orcid.org/0000-0002-7274-1065
https://orcid.org/0000-0001-9888-7313


Survival analysis (Kaplan-Meier curves): a method to predict the future

VI Arq Bras Oftalmol. 2020;83(2):V-VII

a start and a deadline). While in a classic per protocol 
analysis the above participants get excluded, in survival 
curve analyses, they are designated as censored(11). If 
the event happens before the analysis time period, they 
are censored “on the left,” and if the event does not 
occur even after the analysis period has ended, they 
are censored “on the right.” If participants are lost to 
follow-up in the middle of the study, they constitute the 
interval censorship (the participant’s time interval until 
the event cannot be accurately measured). Censored 
data are represented by crosses or other marks in the 
graphic presentation (Figure 1). Censorship must follow 
the basic premise of not being related to prognosis, be-
cause if some of the censored individuals in one of the 
groups have diseases so advanced that they should not 
be in the study, this will generate a selection bias. Ano-
ther important assumption is that the prognosis should 
be the same for all participants, as the characteristics of 
participants at the beginning and end of the inclusion 
period must be similar to avoid another selection bias.

One of the advantages of survival analysis is that it 
considers both data from participants who develop the 
event and data from those who are censored and can 
compare survival medians between different groups 
when the event occurs in at least 50% of the participants.

The comparisons between groups are based on two 
variables: the survival time interval and the status at the 
end (occurrence or not of the event or censorship). In 
the Kaplan-Meier method, the follow-up time is divided 
into intervals, with limits corresponding to the follow-up 
time between events, with or without censorship. The 
likelihood of participants at the beginning of each in-
terval to develop the event by the end of each interval 
is estimated. Survival at the end of each interval equals 
the product of cumulative survivals to the end of the 
previous interval by conditional survival in that interval. 
Individuals censored in one interval no longer count as 
individuals at risk in the next interval (Table 2).

In survival analyses, groups are compared using some 
tests: In the log-rank test, the null hypothesis (H0) is that 
no difference between the survival curves of the two 
groups exists. If the test shows a P-value <0.05, H0 is 
rejected and the alternative hypothesis (H1) is accepted, 
assuming a statistical difference between the groups. 
Confidence intervals can also be calculated. Hazard is 
the probability that any participant, who did not have 
the event, will have it at that time. The hazard ratio 
compares the instantaneous incidence of events in the 
different groups and is estimated by the Cox regression 
test. The ratio estimates the relative risk of developing 
a particular event within a time interval. The Cox’s pro-
portional hazards are used when the aim is to analyze 
predictive factors (covariates) that may be interfering 
with survival.

Care should be taken when interpreting the survival 
curve in relation to the sample size. For example, from 
the first censored participant, the survival curve beco-
mes an estimate, so estimates in the final observation 
periods are quite inaccurate due to the reduction in 
the number of participants. Another crucial point is 
proportionality, that is, hazards must be proportional 
at different time intervals. If the percentage of censor-
ship is asymmetric, caution should be exercised when 
interpreting results. For example, when comparing two 
types of cancer treatment, one treatment may have 
more events (deaths) at the beginning but longer sur-
vivals at the end, while the other may progress with 
better survival at the beginning and more events at the 
end, showing a disproportionality of events over time, 
for both groups.

Figure 1. Kaplan-Meier cumulative probability curve showing the incidence 
of radiation-induced scleral necrosis (SNEC)(12).

Table 1. Comparison between survival analysis and classic statistics

Survival analysis Classical statistics

Dependent variable Time period to event Occurrence

Association measures Hazard ratio Relative risk, odds ratio

Results presentation Survival table, 
Kaplan-Meier curve

Table, bar graph, 
histogram

Test to compare groups for 
univariate analysis

Log-rank T-test, ANOVA, Kruskal-
Wallis, chi-square

Test for multivariate analysis Cox regression Multivariate regression

Adapted from Botelho et al., 2009(2)
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Table 2. How to calculate survival at each interval

Interval (months)
Numbers of 

events
Numbers of 

censures
Number of 

Individuals at risk Event probability
Survival 

probability Cumulative survival

0-18 1 2 10 1/10 9/10 9/10 = 0.9

19-25 1 1 7 1/7 6/7 0.9*6/7 = 0.77

25-36 1 1 5 1/5 4/5 0.77*4/5 = 0.62

Survival analyses are good for analyzing data behavior 
over time, the Kaplan-Meier curve estimates the survival 
curve (descriptive statistics), the log-rank test compares 
two survival curves, the hazard ratio is a measure of 
association (similar to relative risk), and the Cox regres-
sion allows analysis of the influence of predictive factors 
(covariates). Thus, survival analyses are one of the most 
scientifically accurate methods to preview the future 
among all the imperfect approaches. 
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