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SUMMARY - The principle of minimum work (PMW) is a parametric optimization model for the growth and 
adaptation of arterial trees. A balance between energy dissipation due to frictional resistance of laminar flow (shear 
stress) and the minimum volume of the blood and vessel wall tissue is achieved when the vessel radii are 
adjusted to the cube root of the volumetric flow. The PMW is known to apply over several magnitudes of vessel 
calibers, and in many different organs, including the brain, in humans and in animals. Animal studies suggest 
that blood flow in arteries is approximately proportional to the cube of the vessel radius, and that arteries alter 
their caliber in response to sustained changes of blood flow according to PMW. Remodelling of the retinal 
arteriolar network to long-term changes in blood flow was observed in humans. Remodelling of whole arterial 
networks occurs in the form of increase or diminishing of vessel calibers. Shear stress induced endothelial 
mediation seems to be the regulating mechanism for the maintenance of this optimum blood flow/vessel diameter 
relation. Arterial trees are also expected to be nearly space filing. The vascular system is constructed in such a 
way that, while blood vessels occupy only a small percentage of the body volume leaving the bulk to tissue, they 
also crisscross organs so tightly that every point in the tissue lies on the boundary between an artery and a vein. 
This review describes how the energetic optimum principle for least energy cost for blood flow is also compatible 
with the spatial constraints of arterial networks according to concepts derived from fractal geometry. 
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Optimação energética e espacial de redes arteriais 

RESUMO - Aneurismas intracranianos e vasculopatia de hiperperfusão em pacientes com malformações 
arteriovenosas cerebrais resultam do elevado stress hemodinâmico na rede arterial cerebral. O estabelecimento 
de uma norma para a geometria arterial cerebral deve resultar em melhores critérios preventivos e de planejamento 
terapêutico para essas patologias. Uma rede arterial deve distribuir-se no espaço para todo o órgão perfundido, 
e ao mesmo tempo possibilitar a perfusão tecidual com adequado custo energético e mínimo stress hemodinâmico. 
O custo total do fluxo sangüíneo é a soma do custo P f para propulsão do sangue através dos vasos (que aumenta 
com a redução do calibre das artérias) e do custo metabólico P m do tecido sangüíneo e dos vasos (que diminui 
com a redução do calibre das artérias). O equilíbrio entre P f e P m resulta no mínimo custo total quando artérias 
de grande e pequeno calibre organizam-se em uma hierarquia de ramificações tal que o raio interno do vaso é 
proporcional ao cubo do fluxo sangüíneo (princípio do trabalho mínimo), o que significa que em cada ramificação 
arterial o raio do tronco (r 0) e dos ramos (r, e r 2) estão relacionados de acordo com a regra 

r 3 =r 3 +r 3 

O exponente de bifurcação "n", definido 

r 0

n =r 1
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assume em condição ótima o valor 3. A regra n~3 é também compatível à optimação espacial de redes arteriais 
de acordo com princípios de geometria fractal. O exponente de bifurcação aproxima-se desse valor em redes 
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arteriais de diversas espécies de mamíferos e nas artérias cerebrais humanas. Arteríolas retinianas reorganizam-
se após atrofia óptica (quando o fluxo sangüíneo retiniano diminui) de acordo com essa regra. Estudos 
experimentais in vivo e in vitro corroboram esse princípio. O controle do calibre arterial ocorre através de 
mediação endotelial, com a produção de vasomediadores e alterações da polaridade das membranas celulares, 
desse modo controlando o tônus vascular em curtos intervalos de tempo, e resultando em remodelação anatômica 
a longo prazo. 

PALAVRAS-CHAVE - artérias cerebrais, artérias retinianas, fluxo sangüíneo, geometria fractal, 
hemodinâmica, mecanismos de controle, vasodilatação, vasos sangüíneos. 

The development of intracranial saccular aneurysms, the progressive remodeling of the cerebral 
vascular network in the presence of an arteriovenous malformation and the reversion of these changes 

after removal of the malformation are hemodynamically induced processes. Intracranial saccular 

aneurysms are generally accepted to be degenerative vascular lesions induced by locally increased 

wall shear stress with consequent lesion of the vessel wall at the apex, or flow divider, of the 

bifurcations 1 5 , 3 5 , 3 7 , 4 2" 4 4 . The key factor for aneurysm formation is disruption of the internal elastic 

lamina 4 2 , 4 3 , but the degenerative process is thought to be initiated at the endothelial cell layer 1 5 . 

Aging, arterial hypertension, deficiency of type III collagen and other known risk conditions for 

aneurysm 2 9, seem to be aggravating rather than causal factors 4 3. As aneurysms arise at the apex of 

arterial bifurcations, the development of aneurysms is probably related to branching characteristics 
of the cerebral arteries that increase locally the hemodynamic stress 3 7. Locally increased wall shear 

stress with consequent disruption of the endothelium and internal elastic lamina at the apex, or flow 

divider, of the bifurcations is probably the mechanism of aneurysm formation 3 5 , 4 3 , 4 4 . Changes in the 

shape of the arterial bifurcations during the cardiac cycle, resulting in loss of static equilibrium at the 

bifurcation apex and disruption of the vessel wall elements, have beem proposed as the mechanism 

of the aneurysm formation 6. The role of other hemodynamic forces, such as stagnation pressure due 

to deceleration of the impinging blood stream and vibrations of the vessel wall induced by high flow 
rates, is at present uncertain 4 3 , 4 4 . High blood flow conditions in localized portions of the cerebral 

arterial network associated to higher incidence of saccular aneurysms are related to anatomical 
variations of the circle of Willis, ligature of vessels (e.g. ligature of the carotid artery in the neck) 

and arteriovenous malformations 1 , 1 7 , 2 8 , 4 3 . Increased hemodynamic stress might also be responsible 

for the progressive remodeling of the cerebral vascular network in the presence of an arteriovenous 

malformation, by the development of the so-called high-flow angiopathy 3 0 and by the reversion of 

these changes after removal of the malformation 1 3 , 2 7. Establishing a norm for the arterial circulation 
has potential implications for understanding such phenomena 3 4. 

The structure of arterial networks is constrained by energetic and spatial requirements. The 

optimum energy cost for blood transport is achieved at an equilibrium between the pump cost required 

to overcome viscous power losses, which decreases as the diameter of the vessels increases, and the 

metabolic (volume) cost for maintenance of blood and vessel wall tissue, which decreases as the 

diameter of the vessels decreases. The vascular system is also constructed in such a way that, while 

blood vessels occupy only a small percentage of the body volume leaving the bulk to tissue, they 
also crisscross organs tightly in order to maximize the surface area of the transfer regions. Thus the 

arterial system may be defined as a nearly space filing network of pipes arranged in series and 
linking remotely distributed transfer regions, such that a few large pipes carry blood across large 

distances rapidly and many short small pipes slowly distribute blood at the transfer regions. This 
article aims to summarize evidence that such a model is theorically possible, and that it corresponds 
to actual arterial networks with appreciable accuracy. The discussion is mostly based on the author's 

research on cerebral and retinal vessels of man 3 1" 3 9, but the results are surely applicable to other 
arterial trees. 



THE ENERGETICALLY 
OPTIMUM CONSTRUCTION OF 

ARTERIAL NETWORKS 

Optimization in physiology 
requires strongly simplified mo­
dels. Mathematical modell ing 
assuming Poiseuille flow in arte­
ries indicates that an equilibrium 
between the pump cost and the 
volume cost is achieved when the 
arteries are arranged in a bran­
ching hierarchy such that the 
vessel radius (r) is adjusted to the 
cube root of the volumetric flow 
(f),or: 

f=k r 3 

where k is a constant involving the 
dynamic blood viscosity (TJ) and 
the metabolic cost for maintenance 
of the blood and vessel wall tissue 
16,23.33,34,40 indirect measure of 
the division of flow at branching 
points is the junction exponent "n" 
defined 

where the indices 0, 1 and 2 refer respectively to the parent artery and its branches. The energetical 
optimum occurs when n=3, Le.at branching points we have 

r 3 =r 3 +r 3 

0 1 2 

Thus the optimum rule for connection of narrow and wide arteries is that at branching points 
the radius of a parent artery is equal to the sum of the cubes of its branches. Such a rule is known as 
the principle of minimum work (PMW), and was proposed by Cecil D. Murray 2 3 . See Figure 1. The 
PMW was during several decades considered only of theoretical interest because it was falsified 
when applied to the parametric optimization of branch angles 2 4 . However, Murray's work concerned 
primarily vascular caliber, and the PMW was reconsidered when the parametric optimization of 
branch angles was proved irrelevant in terms of energy cost 4 9. The PMW applies to arteries with r > 
500 \im, where blood behaves approximately as a Newtonian fluid and the dynamic blood viscosity 
is constant for the sake of our calculations, excluding the aorta. As mentioned above, the PMW 
assumes that the blood flow in arteries is steady and laminar. Further analysis by Uylings 4 5 and by 
Mayrovitz 2 1 have extended the principle of minimum work to all types of steady flow. See Figures 2 
and 3. Rossitti 3 1 proposed that in arterioles (r < 500 u,m) the vessel caliber/blood flow relation is to 
be corrected for the blood viscosity because of the Fahraeus-Lindquist effect, i.e. for arterioles the 
relation is: 

f = * ' r 3 n r e l - ° 5 

where k'is a constant andi i r c l is the relative apparent blood viscosity corrected for the vessel radius; 
data on the retinal arterioles 3 3 seem to corroborate this hypotesis. 

Despite its simplicity, the PMW appears to be a robust model for the growth and adaptation of 
arterial networks. The junction exponent is just less than 3 over several magnitudes of vessel caliber 



in corrosion casts or radiographs after contrast 
perfusion of diverse portions of the arterial tree 
of the human and other mammals 1 6 , 4 0 , 4 7 , as well 
as in the cerebral arteries of the living man 3 4 , 3 6 . 
See Figures 4 and 5. Remodelling of one and 
the same arteriolar network to long-term 
changes in blood flow provoked by descending 
optic atrophy was observed to occur according 
to the PMW in human retinal arterioles 3 3. It is 
interesting to note that similar junction exponent 
laws have been found also in biological 



branching duct systems such as the large airways of the lungs, the branching of trees, the diffusion 
system of insects and duct systems of several species of sponge stromatoporoids, even in fossiles 1 6 , 4 5. 

It is reasonable to consider that regulation of arterial caliber in order to follow this rule is 
achieved locally at each vessel segment by mediation of some physical force. The above theoretical 
background assumed blood flow-induced shear stress to be this physical force 2 J 4• , 1 ' 1 6 ' 2 2• 2 3• 2 5• 3 2• 3 4• 4 0• 4 ,. 
Shear stress is expected to have the same magnitude over a wide range of branch generations in a 
vascular network obeying this principle, because flow rate influences shear stress proportionally to 
the third power of the vessel radius. The PMW implies strict functional relations between volumetric 
flow, flow velocity and vessel radius. Local changes of flow rate or in volume of the vascular system 
propagate upstream-downstream, and arteries alter their internal diameters in response to sustained 
changes of blood flow so that wall shear stress is kept under optimum limits. Empirical evidence 
corroborating this theory was obtained in animal studies showing that blood flow in arteries is 
approximately proportional to the cube of the vessel radius, and that arteries alter their caliber in 
response to sustained changes of blood f low 1 9 - 2 2 3 3 , 4 1 . These studies suggest that development and 
maintenance of optimum arterial caliber results of the interaction between the blood stream (shear 
stress) and the vascular endothelium. Arterial trees also seem to pursue optimum local conditions in 
terms of flow orderliness at bifurcation points, in this way minimizing the shear stress at the apex of 
the arterial bifurcations 3 5. Shear stress influences endothelial cell ultrastructure, shape, orientation 
and proliferation, modulates voltage changes across the cell membrane, alters ionic flow and 
intracellular pH and induces release of vasoactive substances 2 5 , 3 2- 4 6. However, any correlation between 
shear stress of the blood stream with stresses and strains inside the endothelial cell is presently 
obscure 9. Theoretical considerations of this problem may lead to contradictory conclusions if in the 





preliminary assumptions the endothelial cell contents are supposed to behave as a fluid {i.e. if it 
resists a strain by flow) or as a solid (if it resists a constant strain by deformation). 

SPATIAL CONSTRAINTS OF VASCULAR NETWORKS AND FRACTAL GEOMETRY 
The junction exponent just less than 3 is also compatible with the spatial constraints of arterial 

networks. Its has been suggested that arterial trees have a spatial fractal organization I 0 , 2 ° , and that 
there is a relationship between their fractal complexity and their functional efficiency 8- 1 8. A 
dichotomous fractal tree obeyng the junction rule n=3 on all branch generations would fill all three 
dimensions at the limit of null branch length, assuming a fixed vessel width/length ratio and that the 
length of each vessel is shorter than the summed lengths of its branches and larger than that of each 
individual branch. That means that in the case of such an arterial tree there would be no space 
available for other type of tissue, and even the vessels would have infinitely thin walls to obey this 
rule strictly 2 0 , 3 2 , 3 4 . The best arterial trees can achieve is to obey such a bifurcation rule over a limited 
range of branch generations with a diameter exponent of approximately three until the interpolation 
to narrower rami is interrupted by a cutoff at the length of the capilaries. Thus the general rule of 
junction exponents approximating 3 results in a nearly space filing arterial tree which is also 
energetically optimum. 

APPARENT INSTABILITY AT SHORT TIME INTERVALS 

The long term effect of blood flow-induced shear stress on the growth and adaptation of 
arterial networks is evident from its anatomy, or branching geometry. Such an observation is intriguing, 
because biological observables present apparently unpredictable oscillations over t ime 3 8 , 3 9 , 4 7 . See 
Figure 6. Blood flow rate and shear stress are no exception, and the significance of such spontaneous 
irregular oscillations of blood flow rate and shear stress within each heart cycle and over longer time 
intervals on the endothelial cell response in the long term regulation of the vascular caliber is poorly 
understood. Some recent reports have got a glimpse on this problem. Studies in vitro suggest that the 
synthesis of endothelium-derived relaxing factor is influenced both by the frequency and amplitude 
of wall shear stress 1 4 , 3 2 , i.e. the pulse oscillations and the time-averaged shear stress have distinct 
influences on the endothelium. The instantaneous regulation of vessel tonus is flow- and shear 
strees- dependent. Smooth muscle cell membrane potentials in rabbitt pial arteries are repoted to 
stabilize at approximately the same level (-58 mV) in response to flow, both in cells which are 
depolarized or hiperpolarized in relation to this level 5. A study in vivo showed that the spontaneous 
oscillations of blood flow velocity (and wall shear stress) in the cerebral arteries follow fractal rules 
over t ime 3 8 , 3 9 . Fractal processes oscillate continuously due to internal feedback and are highly adaptive 
to external perturbations, which may lead to a long term stability which is evident even when 
considering simplified models assuming Poiseuille flow in arteries. 
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