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VIEWS AND REVIEWS

Pathophysiology of acute meningitis caused 
by Streptococcus pneumoniae and adjunctive 
therapy approaches
Fisiopatologia da meningite ocasionada pelo Streptococcus pneumoniae e novas 
possibilidades terapêuticas adjuvantes
Tatiana Barichello1, Jaqueline S. Generoso1, Allan Collodel1, Ana Paula Moreira1, Sérgio Monteiro de Almeida2

Bacterial meningitis is the most common and serious 
bacterial infection of the central nervous system (CNS), char-
acterized by an acute purulent infection of the piamater, 
arachnoid and subarachnoid space1. Approximately 1.2 mil-
lion cases are estimated to occur annually world-wide, re-
sulting in 135,000 deaths2,3. Streptococcus pneumoniae and 
Neisseria meningitidis are the main etiologic agents responsi-
ble for most of the meningitis cases in Europe and in the USA 

with up to 61% of total cases1. In Brazil, in 2011, among all age 
groups according to the Sistema de Informação de Agravos 
de Notificação (SINAN) were confirmed 8,676 meningitis cas-
es, from these 37% (n=3,194) were bacterial meningitis and 
41% (n=3,562) were viral meningitis. Among all the bacteri-
al meningitis cases 35% (n=1,133) were meningococcal; 43% 
(n=1,383) were meningitis by other bacteria and 15% (n=487) 
by pneumococcus4.
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ABSTRACT
Pneumococcal meningitis is a life-threatening disease characterized by an acute purulent infection affecting piamater, arachnoid and the 
subarachnoid space. The intense inflammatory host’s response is potentially fatal and contributes to the neurological sequelae. Streptococcus 
pneumoniae colonizes the nasopharynx, followed by bacteremia, microbial invasion and blood-brain barrier traversal. S. pneumoniae is rec-
ognized by antigen-presenting cells through the binding of Toll-like receptors inducing the activation of factor nuclear kappa B or mitogen-
activated protein kinase pathways and subsequent up-regulation of lymphocyte populations and expression of numerous proteins involved 
in inflammation and immune response.  Many brain cells can produce cytokines, chemokines and others pro-inflammatory molecules in 
response to bacteria stimuli, as consequence, polymorphonuclear are attracted, activated and released in large amounts of superoxide anion 
and nitric oxide, leading to the peroxynitrite formation, generating oxidative stress. This cascade leads to lipid peroxidation, mitochondrial 
damage, blood-brain barrier breakdown contributing to cell injury during pneumococcal meningitis.
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RESUMO
A meningite pneumocócica é doença potencialmente fatal caracterizada por infecção aguda purulenta que afeta a pia-máter, a aracnoide e 
o espaço subaracnoide. A resposta inflamatória do hospedeiro é potencialmente fatal e contribui para as sequelas neurológicas. O processo 
inicia-se com a colonização da nasofaringe pelo Streptococcus pneumoniae, seguida de invasão, bacteremia e passagem através da barreira 
hematoencefálica. O S. pneumoniae é reconhecido por células apresentadoras de antígenos através da ligação aos receptores Toll-like. Isto 
induz a ativação do fator nuclear kappa B ou proteína quinase ativada por mitógenos. Muitas células cerebrais também podem produzir 
citocinas, quimiocinas e outras moléculas pró-inflamatórias em resposta aos estímulos bacterianos. Como consequência, são atraídos po-
limorfonucleares, ocorrendo a liberação de grandes quantidades de ânion superóxido e óxido nítrico, o que leva à formação de peroxinitrito 
e ocasiona o estresse oxidativo. Esta cascata pró-inflamatória leva à peroxidação lipídica, a danos mitocondriais e à ruptura da barreira 
hematoencefálica, contribuindo para o dano celular em meningite pneumocócica.

Palavras-Chave: Streptococcus pneumoniae, meningite, citocinas, quimiocinas, estresse oxidativo.
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Pneumococcus is the most severe cause of bacterial men-
ingitis resulting in a 20-30% of hospital mortality an up to a 
40% rate of intracranial complications such as brain edema, 
hydrocephalus and intracranial hemorrhage1,5. Even patients 
with good apparent recovery may present sequelae; more-
over, around one-third of the patients have cognitive im-
pairments5. These impairments consist mainly of cognitive 
slowness, learning impairment, deafness, blindness, neurop-
sychiatric impairments, cerebral palsy, seizure disorders and 
mental retardation6. The objective of this paper was to review 
some aspects of the meningitis pathophysiology caused by S. 
pneumoniae and discuss some possible therapeutic adjunc-
tive approaches.

MECHANISMS OF BACTERIAL COLONIZATION

The pneumococcus habitat is the human nasopharynx 
mucosa with a prevalence of about 40% in infants and 15% 
in adults7. The bacterium is transferred among people by 
coughing and sneezing. It has to face the natural barrier, the 
host’s immune system and up to 700 different microbial spe-
cies that can colonize the same niche8,9. S. pneumoniae col-
onizes the nasopharynx by degradation of the mucus by ex-
oglycosidases such as neuraminidase A, β-galactosidase, 
β-N-acetylglucosaminidase, and neuraminidase B decreasing 
mucus viscosity10. S. pneumoniae produces the pneumolysin 
that is a major exotoxin. It decreases epithelial cell ciliary’s beat-
ing and enhances bacterial adherence11. Pneumococcus also 
expresses the enzymes peptidoglycan, N-acetylglucosamine-
deacetylase A, and O-acetyltransferase that provides resis-
tance to lysozyme12 and it also produces IgA1 protease, which 
cleaves IgA, the major class of Ig in secretions, promoting bind-
ing to the respiratory mucosa13. S. pneumoniae may transmi-
grate through the epithelial cells by binding the phosphoryl-
choline with the receptor of the platelet-activating factor (PAF) 
or by connecting the pneumococcal choline-binding protein 
with the epithelial polymeric immunoglobulin receptor, which 
transports the bacterium to the basal membrane of the host’s 
epithelial cell and may lead to invasive illness8,14.

CENTRAL NERVOUS SYSTEM BACTERIAL INVASION

The CNS protection is formed by bony skull, the leptom-
eninges, the blood-brain barrier (BBB) and blood-cerebrospi-
nal fluid barrier15. The BBB is constituted of brain microvas-
cular endothelial cells, astrocytes, and pericytes. It maintains 
the neural microenvironment by regulating the passage of 
molecules into and out of the brain, and preserves the brain 
from whatever microorganisms and toxins that comes from 
the blood16. The S. pneumoniae crosses the BBB and interacts 
with cell-wall phosphorylcholine, the platelet-activating-factor 

receptor and cross the BBB without any evidence of intercel-
lular tight-junction disruption or detection of microorganism 
between cells through transcellular traversal mechanism16. It 
can also crosses intercellularly by disruption of the interepi-
thelial tight junctions8. The pneumococcus replication within 
the subarachnoid space occur concurrently with the release 
of the bacterial products such as peptidoglycan, cell wall frag-
ments that are highly immunogenic and may lead to an in-
creased inflammatory response in the host15. S. pneumoniae 
is recognized by antigen-presenting cells binding to a pattern 
recognition receptors. The main pattern recognition receptors 
involved in initial pneumococcus sensing in the CNS are Toll-
like 2 receptors (TRL-2 or CD282) that is recognized by pepti-
doglycans and lipoteichoic acids17, Toll-like 4 receptors (TRL-4 
or CD284) that are recognized by exotoxin pneumolysin18 and 
the Toll-Like 9 receptors (TRL-9 or CD289), an intracellular 
pattern recognition receptor that is activated by CpG in bacte-
rial DNA19. Family members of the NOD-like receptors (NLRs), 
which are intracellular, play essential roles on innate immu-
nity by detecting intracellular pathogen-associated molecular 
patterns20. When they are activated, they induce the activation 
of nuclear factor kappa B (NF-κB) or mitogen-activated pro-
tein kinase (MAPK) pathways and inflammatory caspases21. 
TRL-2 and TRL-4 use a common intracellular adapter protein 
known as myeloid differentiation factor 88 (MyD88)8. MyD88 
signals for NF-κB activation and subsequent up-regulation of 
pro-inflammatory mediators. MyD88-deficient mice displayed 
a markedly diminished inflammatory host response in the 
CNS, as an evidenced of the reduced CSF pleocytosis and ex-
pression of cytokines, chemokines and complement factors22. 
Furthermore, MyD88-dependent immune response contrib-
utes to hearing loss in experimental pneumococcal meningi-
tis; it is required for mounting a robust host immune response 
to S. pneumoniae in the CNS23. NF-κB comprises a closely re-
lated family to transcription factors, which play a key role on 
the expression of genes involved in the development of acces-
sory cell and lymphocyte populations, expressing numerous 
proteins involved in inflammation and immune response24. It 
is also a transcriptional activator of many genes involved in the 
pathogenesis of pneumococcal meningitis, such as, TNF-α, IL-
1β, inducible nitric oxide synthase and intercellular adhesion 
molecules25,26 (Figure).

INFLAMMATION

Cytokines
Many brain cells such as astrocytes, glial cells, endotheli-

al cells, ependymal cells, and resident macrophages can pro-
duce cytokines and pro-inflammatory molecules in response 
to bacterial replication and its components27. TNF-α is a 158 
amino acid cytokine considered a pro-inflammatory mol-
ecule, enhancing the immune response to help speed-up the 
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pathogens elimination and the resolution of the inflammatory 
challenge28. TNF-α leads to NF-κB activation in the CSF and 
brain resident cells, which regulates the expression of many 
pro-inflammatory mediators29. In animal models for pneumo-
coccal meningitis, TNF- α was produced in the first 6 h of the 
immune response30. Intrathecal administration of TNF-α re-
sults in a similar pathophysiological characteristic of bacterial 
meningitis such as BBB disruption, facilitating bacterial tra-
versal into the CSF31, on the other hand, TNF-α deficient mice 
increased mortality and spatial memory deficits32. TNF-α is a 
marker of the acute inflammatory response, however, it’s also 
essential for an adequate host immune response8.

IL-1β is a pro-inflammatory cytokine, produced by 
perivascular, mononuclear phagocytes, glial cells, and men-
ingeal macrophages that increase the expression of nearly all 
other cytokines such as TNF-α, IL-6, IFN-γ, and chemokines. 
IL-1β has potent stimulatory effects on granulocytes white 
cells; it promotes the adhesion of neutrophils and monocytes 
in endothelial cells33. IL-1β is found in the CSF of patients 
with bacterial meningitis34, furthermore, in animal models it 
was produced in the first 24 h after pneumococcal meningitis 
induction30, although intrathecal administration of IL-1β did 
not lead to CSF pleocytosis or brain edema35. However, the 
mortality was significantly higher and earlier in the course of 
the disease among IL-1 receptor (IL-1R) gene-deficient mice, 
demonstrating that endogenous IL-1β is required for an ad-
equate host defense in pneumococcal meningitis36.

IL-6 is produced by monocytes, endothelial cells, and as-
trocytes primarily in response to IL-1β37. It has predominant-
ly pro-inflammatory effects such as potent inducer of acute-
phase proteins, fever and leukocytes38 but it also acts as an 
anti-inflammatory cytokine, indeed, the lack of IL-6 enhanc-
es inflammatory response but decreases vascular permeabil-
ity in bacterial meningitis39. IL-6 gene-deficient mice showed 
impaired defense against pneumococcal pneumonia40.

IL-10 is a potent immunosuppressive cytokine, produced 
by monocytes, macrophages, B and T lymphocytes, brain 
cells such as neurons and microglia41. Elevated levels have 
been found in the CSF in patients with bacterial meningitis42, 
it leads to macrophage and monocyte deactivation and in-
hibits the cytokines production such as TNF-α and IL-6 and 
the release of reactive oxygen species43. IL-10 gene-deficient 
mice were associated with higher levels of TNF-α and IL-6 in 
animal model of pneumococcal meningitis36.

TGF-β is an anti-inflammatory cytokine that is expressed 
in neurons and glial cells, maintains T cell tolerance to self 
or innocuous environmental antigens via its direct effects 
on the differentiation, homeostasis and regulatory T cells44. 
It suppresses the production of IL-1β, IL-6 and TNF-α from 
microglia in vitro45, moreover, endogenous TGF-β suppresses 
the host defense in the CSF of mice with S. pneumoniae men-
ingitis3. The collective activity of TGF-β and IL-10 ensures 
a controlled inflammatory response specifically targeting 

pathogens without evoking excessive immunopathology to 
the self-tissues44.

Chemokines are chemoattractant cytokines, which play 
key roles on the accumulation of inflammatory cells in the in-
flammation site. Increased chemokines levels have been re-
ported in the CSF of patients with bacterial meningitis. IL-8 is 
produced by wide variety cell types such as monocytes, mac-
rophages through stimuli of the live bacteria, TNF-α, and IL-β. 
It is important to regulate the acute inflammatory response 
and it’s rapidly synthesized in the inflammation sites with the 
function to recruit acute inflammatory cells46. In pneumococ-
cal meningitis treatment with a monoclonal antibody to IL-8 
given intravenously attenuated the pleocytosis in rabbits. IL-8 
plays an important role on the recruitment of neutrophils dur-
ing experimental pneumococcal meningitis47.

Matrix metalloproteinases
Matrix metalloproteinases (MMPs) is a family Zn2+ and 

Ca2+ dependent endopeptidases, which is secreted by all 
cell types in the CNS and serve as effectors of cell migra-
tion, tissue remodeling, degrade constituents of the BBB 

Figure. Summary of the development of host pattern 
recognition receptors involved in sensing S. pneumoniae. Toll-
like 2 is activated by pneumococcal cell wall peptidoglycan, 
lipoteichoic acids and Toll-like-4 is activated by pneumolysin, 
both use a common intracellular adapter protein MyD88 to 
activated NF-κB. NOD-2 is activated by peptidoglycan and 
also activated NF-κB, inducing transcription of several pro-
inflammatory mediators.
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and interacts with the cytokines48. Gelatinases (MMP-2 
and MMP-9) have shown to induce BBB breakdown and fa-
cilitate leukocyte extravasation in experimental bacterial 
meningitis49, furthermore, patients with bacterial meningi-
tis present high concentrations of MMP-939 and MMP-8 in 
the CSF, indeed, high concentrations of MMP-9 were corre-
lated with risk factor for the development of postmeningitis 
neurological sequelae48. In a rat model, adjuvant treatment 
with dexamethasone resulted in a lower MMP-9 mRNA50, in 
addition, combining the MMP and TNF-α inhibitors led to 
a decrease incidence of the seizures and mortality, further-
more, neuronal necrosis in the cortex and apoptosis in the 
hippocampus were attenuated in rats submitted by pneu-
mococcal meningitis51.

Oxidative stress
Bacterial components are recognized by Toll-like recep-

tors or other pathogen recognition receptors that lead to the 
activation of NF-κB21. It triggers the expression of pro-inflam-
matory cytokines, as consequence, polymorphonuclear are 
attracted, activated and released in large amounts superoxide 
anion (O2

-) and nitric oxide (NO), leading to the peroxynitrite 
formation (ONOO-)52. The release of large amounts of reactive 
nitrogen species (RNS) and reactive oxygen species (ROS) 
had been documented in patient’s populations, likewise, in 
animal model by pneumococcal meningitis and might con-
tribute to the development of neuronal damage52. Treatment 
with superoxide dismutase mimetics and catalase (hydrogen 
peroxide scavenger) inhibited brain edema formation53,54; an-
tibiotic therapy prevented, in part, the oxidative stress in ex-
perimental pneumococcal meningitis55. Brain resident cells 
produce O2

-, H2O2 as part of the host immune response to in-
vasive bacterial infection, in addition, S. pneumoniae itself is 
also an important source of H2O2, which is not only able to 
cause direct cytotoxic damage but also reacts with the host’s 
NO to form the highly reactive species ONOO56. Peroxynitrite 
can crosses membranes, activate the MMPs, leads to DNA 
damage, protein carbonylation and cause lipid peroxidation52, 
leading to a membrane integrity loss, energy depletion, con-
tributing to cell injury during pneumococcal meningitis57.

NEURONAL DAMAGE AND TARGETS FOR 
ADJUNCTIVE THERAPY

Pneumococcal meningitis causes sequelae including 
sensory-motor deficits, hearing loss, deafness and neuro 
intellectual impairment, including deficits in learning and 
memory. These neurofunctional consequences occur in up 
to 30% of survivors patients5. The neuronal damage is caused 
by the strong inflammatory reaction and direct effects of 
the microorganism32. Significant injury during bacterial 
meningitis arises from mechanisms of neuronal apoptosis, 

particularly in the hippocampus; in autopsies cases of bac-
terial meningitis were found apoptosis of neurons in the 
dentate gyrus58. Apoptosis can involve both the caspase-
dependent and the caspase-independent pathway59. The 
caspase-independent pathway is triggered by the pneumo-
lysin and H2O2 that are produced by S. pneumoniae. The ac-
tions of these toxins result in an increase in ROS and cal-
cium, resulting in mitochondrial dysfunction that leads to 
the release of apoptosis-inducing factor into the cytosol56,59. 
However, the caspase-dependent pathway occurs later, and 
pneumococcal cell-wall components trigger the required 
host inflammatory response from the leukocytes. p53 tu-
mor suppressor protein and ATM protein kinase (ATM) as 
upstream mediators that converge on the mitochondria to 
initiate the release of cytochrome c, which is necessary to 
form the apoptosome forming apoptotic protease activat-
ing factor-1 (Apaf-1) and active caspase-9 that results in the 
activation of caspase-359.

In the pre-antibiotic era when acute bacterial meningi-
tis was described the mortality rate was from 90 to 100%. 
Although, nowadays, with the development of highly effec-
tive antibiotics, more precocity in diagnosis with precise di-
agnostic methods as immunological and molecular biology 
methods, supportive care in intensive care units the mortal-
ity doesn’t decrease. The mortality of S. pneumoniae is (16-37%), 
N.  meningitidis (5%), Haemophilus influenzae (3%). This 
maintenance of mortality is explained by inflammation in 
the subarachnoid space caused by the generation of bacterial 
cell wall components in CSF during treatment of meningitis 
with antibiotics2,60,61. Bacterial cell wall components stimu-
late the release of inflammatory cytokines in the CNS such as 
TNF-α, IL-1β, and prostaglandins.

Possible therapeutic approaches to decrease the harm-
ful effects of TNF and/or IL-1-β are investigated in vitro and 
animal model and might include: a) Drugs or procedures to 
decrease their production, block their biologic activity or en-
hance removal from the circulation; b) Passive immunization 
with antibodies against TNF and IL-1, limitation is the BBB 
even during inflammation; c). Drugs that interfere with IL-1 
induced arachidonic acid metabolites.

Corticosteroids are largely used as adjunctive therapy for 
acute bacterial meningitis since the 90 decade.

In addition to corticosteroids, several other adjunctive 
approaches may be useful (Table)60-67; although there is no 
proved clinical evidence for use of these therapies and some 
are only experimental. The use of bactericidal but nonbac-
teriolitic antibiotics to reduce endotoxin and other injurious 
substance release into CSF as rifampicin and daptomycin 
have been investigated in animal models of pneumococcal 
meningitis63. Thalidomide acts by blocking TNF release from 
microglia65. An enhanced lifespan of activated neutrophils 
in the CSF contributes to massive leukocyte accumulation 
and host-driven cytotoxicity. Roscovitine, a purine derivative 
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