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VIEWS AND REVIEWS

What do we know about the neurogenic 
potential of different stem cell types?
O que sabemos sobre o potencial neurogênico de diferentes tipos de células-tronco?
Guilherme Lepski

The management of the majority of neurological diseas-
es, specially the degenerative subset, or the entities whose 
natural history runs to a degenerative fate, e.g., the vascu-
lar disorders, brain or spinal cord injuries, still imposes a 
great challenge for Medicine. Yet, most therapeutic inter-
ventions, whether clinical or surgical, focus on the conse-
quence rather than on the cause of such disorders, thus 
providing palliative amelioration, sometimes by means of 
highly invasive interventional techniques, or resulting in 
insufficient or no functional recovery.

In face of this scenario, with the advent of stem cell 
therapy as a promising tool to actuate in the cause, or 
as an intermediate between the cause and the outcome, 

many efforts have been concentrated in the last decades 
for the purpose of conquering safety and effectiveness 
of stem cells for the treatment of neurological disorders. 
Despite the advances already achieved, not only in the ma-
nipulation of the stem cells itself, but also the mechanisms 
of diseases they helped to elucidate, many issues regarding 
the neurogenic potential of these cells are to be answered 
before they become real therapeutic possibilities. 

We define neurogenic potential as the ability of stem 
cells to differentiate, under specific conditions, from cells 
with electrophysiological properties of mature neurons. 
Furthermore, once differentiated, these cells shall fire 
action potentials and create effective synapsis, not only 
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ABSTRACT
Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disor-
ders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential 
of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this 
potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. 
Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-
derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neuro-
genic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic 
and induced pluripotent stem cells are still missing. 

Key words: fetal neuronal stem cells, embryonic stem cells, induced pluripotent stem cells, electrophysiology, neuronal differentiation.

RESUMO
Terapias celulares, baseadas no transplante de células imaturas, têm sido consideradas ferramentas promissoras no tratamento de doen-
ças neurológicas. Muitos esforços têm sido concentrados no desenvolvimento de linhas de células-tronco seguras e eficazes. No entanto, o 
potencial neurogênico de algumas linhagens celulares, ou seja, a habilidade de gerar neurônios maduros, in vitro ou in vivo, ainda é altamente 
desconhecida. Dados recentes sugerem que esse potencial é distinto entre diversos tipos celulares, o que limitaria o largo emprego como 
células restauradoras no sistema nervoso central. Neste relato, revisaram-se os avanços recentes relacionados à maturação eletrofisiológi-
ca de células-tronco, com foco em células derivadas de tecido fetal, células embrionárias e células pluripotentes induzidas. Em resumo, há 
evidências que apontam para segurança biológica de células fetais, com alto potencial neurogênico e, em se tratando de algumas doenças, 
provável eficiência clínica. Ao contrário, ainda não há dados confiáveis acerca de células embrionárias e pluripotentes induzidas. 

Palavras-Chave: células-tronco neuronais fetais, células-tronco embrionárias, células-tronco pluripotentes induzidas, eletrofisiologia, 
diferenciação neuronal.
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among themselves, but also with the host tissue when im-
planted, hence permitting functional and structural res-
toration of the impaired nervous system. As stated by 
Liebau et al.1, the ability to establish and to maintain po-
larized excitatory synaptic contacts would be one of the 
basic requirements for intercellular communication and 
functional integration into existing neuronal networks. 

In the present work, we have aimed at reviewing the most 
important achievements to our understanding of the neuro-
genic potential of stem cells. For this, we direct the discus-
sion to two cell subtypes, which have already been proved 
to generate morphological and functional mature neuronal 
cells, namely the embryonic (ESCs), and neural stem cells 
(NSCs). In order to provide a rational and comprehensive 
analysis of the neurogenic potential of these cells, based on 
the current scientific knowledge, we have structured our 
review in two major subjects: the morphological and func-
tional in vitro characterization, and the in vivo integration 
and synaptogenesis. We have previously demonstrated that 
noninduced adult mesenchymal stem cells present a very 
limited neurogenic potential compared to NSCs2, although 
they may acquire some neuronal fate, therefore they were 
not included in the present review. 

IN VITRO EVIDENCE

Fetal neural stem cells
Pioneer studies have demonstrated the enormous ca-

pacity of fetal grafts to reverse some motor signals observed 
in the animal model of Parkinson’s disease (PD)3. In further 
studies, some specific properties of neural progenitor cells, 
like expression of the intermediate neurofilament nestin4, 
were described. This knowledge permitted in a following 
phase the isolation of NSCs from the fetal and adult rodent 
brains, and consequently the generation of neurons and as-
trocytes in vitro5. Since then, several authors have confirmed 
the importance of epidermal grow feature (EGF) and b fibro-
blast glow factor (bFGF), for proper isolation and expansion 
of neuronal precursors6. In this regard, EGF seems to be es-
pecially important to induce and maintain an undifferenti-
ated state7, whereas bFGF seems to induce the expression of 
neurogenic genes8. Although NSCs can be expanded for pro-
longed periods, still maintaining certain ability to generate 
neuronal cells9, other evidence suggests that the neurogenic 
potential is reduced, according to the expansion time10. 

Although numerous studies report the successful gen-
eration of mature neuronal cells based on the expres-
sion of neural genes and proteins, and acquisition of typi-
cal neuronal morphology, very few evidence is available 
concerning the electrophysiological maturation of NSCs-
derived cells. Indeed, our data have showed a chronologi-
cal discrepancy between expression of neuronal proteins 
and development of electrical activity in maturating cells 

from human fetuses11. This emphasizes the importance 
of electrophysiological methods to ensure acquisition of 
neuronal fate. Thus, the aim of the present review was to 
summarize the latest evidences supporting electrophysi-
ological maturation of neuronal precursors.

The importance of specific neurotrophic factors and sig-
naling molecules, such as brain-derived neurotrophic fac-
tor (BDNF)12, NT313, or Wnt14, for functional maturation of 
NSCs has been emphasized by many authors. Several piec-
es of evidence suggest that BDNF causes differentiation of 
neuronal progenitor cells in vitro15 and in vivo8, probably  
by inducing expression of Na+ and K+ channels12, as well as by 
promoting synaptic maturation and increasing synaptic 
transmission16. Using BDNF in some experiments, we could 
observe that 60% of GABAergic neurons in the culture sys-
tem resulted from the differentiation of human neural fe-
tal cells11. Similarly, the effect of NT3 on inducing neuronal 
differentiation has also been demonstrated13. Other lines of 
evidence suggest that the cAMP-pathway, via phosphory-
lation of cAMP response element binding (CREB) protein, 
is particularly involved in adult neurogenesis17. Moreover, 
electrical activity was proved to be essential for proper 
maturation of progenitor cells in vitro18, since chemically-
induced depolarization at high potassium concentrations 
and glutamate in culture medium increased the number 
of microtubule-associated protein 2 (MAP2)-positive neu-
rons derived from neural progenitor cells (NPCs). Also, the 
presence of astrocytes or immature cells in the culture me-
dium seems to play a central role on accelerating neuronal 
maturation19.

Additionally, calcium is believed to be involved not only 
in controlling cell survival and death20, but also in neuronal 
differentiation18. It was observed a strong correlation be-
tween intracellular Ca2+ signals and regulation of neuronal 
gene expression21. Ca2+  may activate numerous transcription 
factors, such as CREB, C/EBTβ, MEF-2, NT-ATc4, NFκB, and 
c-fos22. In cortical neurons, Cav1-mediated Ca2+ influx stimu-
lates the expression of various genes that regulate neuronal 
survival and plasticity through CREB phosphorylation23. This 
evidence supports the concept that Ca2+ signaling is a central 
requirement for proper neuronal differentiation. According 
to these observations, Ca2+ currents have been recorded in 
neuronal progenitor cells24.

Embryonic stem cells
ESCs have introduced new hope in the field of neural re-

pair, because they can be expanded for prolonged periods 
without loosing neurogenic potential, and, under appropri-
ate conditions, they give rise to mature neurons in vitro and 
in vivo25. Nevertheless, due to their high mitotic activity, these 
cells tend to form malignant teratoms. 

Spiliotopoulos et al.26 reported a high yield of electro-
physiologically confirmed neuronal cells derived from ESCs, 
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using a different medium comprised of increasing concen-
trations of BDNF and decreasing concentrations of bFGF 
for 21 days. Under these conditions, they observed 80% of 
GABAergic neurons after 21 days in vitro. ESCs acquire neu-
ronal characteristics once in presence of all-trans-retinoic 
acid, and the maturation into GABAergic and glutamatergic 
phenotypes has been described previously27. Other authors 
have also dedicated efforts in creating better cell culture 
conditions with improved yield of neuronal cells by culti-
vating cells onto bioengineered polyamide nanofibers, with 
an average diameter of 280 nm. Under these conditions, the 
authors described neurons derived from ESCs, which were 
able to fire action potentials and presented significantly 
greater Na+ and Ca2+ currents28.

In spite of the improved conditions already reached by 
novel methodologies applied to the standard two-dimen-
sional culture systems, they still only allow the formation of 
neurospheres with limited expansion life span. With the pur-
pose of increasing reliability of the culture design, Preynat-
Seauve et al.29 have created an air-liquid interface culture sys-
tem for human ESCs, which allowed three-dimensional cell 
expansion and neural differentiation. The tissue obtained af-
ter a three-month culture period formed immature tubular 
structures, which were constituted by niches of cells resem-
bling germinal layers of the human fetal brain. The analysis of 
this tissue revealed a dense network of neurons, astrocytes, 
and oligodendrocytes able to produce electrical activity. It is 
noteworthy that such results were obtained in the absence of 
growth factors. 

Continuing by this venue, other authors30 transduced 
by retroviral infection ESC-derived glial precursors to 
overexpress polysialic acid, a carbohydrate polymer at-
tached to the neural cell adhesion molecule (NCAM). As 
a result, the transfected cells showed enhanced migration 
in monolayer cultures and an increased penetration of or-
ganotypic slice cultures. 

Recently, new methodologies of reprogramming mature 
glia into immature neural progenitors were described. By ap-
plying transforming growth factor alpha (TGF-alpha) in as-
trocyte cultures, Sharif et al. were able to obtain neural pro-
genitor cells. These NPCs generated cells with morphological 
and electrophysiological properties of neuroblasts. Keeping 
such culture conditions for longer periods enabled the con-
version for a neural phenotype even more immature, whose 
characteristics resembled NSCs, i.e., they could be clonal-
ly derived from a single cell, formed self-renewing floating 
spheres, and underwent, upon proper stimulation, differen-
tiation into a neuronal lineage31. 

Induced pluripotent stem cells
In 2006, Yamanaka group demonstrated that a mature so-

matic cell can be reprogrammed to acquire immature stem 
cell fates after transfection with certain neurogenic and 

oncogenic genes, specifically Oct4, SOX2, Klf4, and c-Myc32. 
Using a similar strategy, Caiazzo et al. were capable of gener-
ating functional dopaminergic neurons directly from mouse 
and human fibroblasts, without reverting to a progenitor cell 
stage, by means of three transcription factors – Mash1, Nurr1 
and Lmx1a.33. Until now, at the best of our knowledge, there 
are very few evidence proving electrophysiological differen-
tiation of induced pluripotent stem cells (IPS) into mature 
neurons, so that no conclusion can be driven related to the 
neurogenic potential of these cells in comparison with other 
stem cell types.

IN VIVO EVIDENCE

Fetal neural stem cells
Studies with engrafted stem cells into the developing or 

adult central nervous systems are particularly important 
not only because they have been contributing to elucidate 
how these cells may interact with the host tissue and how 
they will be allowed to exert their neurogenic potential in a 
non-controlled environment, but also to establish the safe-
ty of transplantation protocols. In this setting, the local host 
microenvironment plays a decisive role in cell viability and 
compromising. The concept of stem cell niches that main-
tain an endogenous pool of stem cells of a living organism 
highlights the complex interrelationships between native 
stem cells and the architectural space, as well as the signal-
ing interactions at the interface of stem cells and niche or 

Figure. Confocal picture showing a mature neuronal cell derived 
from a human fetal neural stem cell, extracted from a nine-week-
old embryo, differentiated under brain-derived neurotrophic 
factor (BDNF) for five weeks in vitro, and stained for MAP2ab 
(microtubule-associated protein 2, a mature neuronal marker, 
revealed with AlexaFluor 594). The traces around the cell 
represent voltage-clamp traces that show inward and outward 
currents (above, left), a single action potential (on the right), and 
spontaneous synaptic currents (below, right).
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descendent cells, paracrine and endocrine signals from local 
or distant sources, neural input, and metabolic products of 
tissue activity34. Particularly, the nervous system participates 
of the niche expanding its boundaries: in the case of a dis-
tant injury, for example, a recruitment of the physiological 
stem cell pool is known to occur, thus contributing to the lo-
cal repair35.

A vast body of evidence confirms the great neurogenic po-
tential of fetal-derived NSCs and NPCs (Figure). Additionally, 
human tissue was already implanted in controlled random-
ized clinical trials36. Postmortem studies have successfully 
demonstrated that NSCs survive for many years after trans-
plantation into the diseased brain37, and they are able to dif-
ferentiate into mature neurons38, to produce neurotransmit-
ters like dopamine, and to reverse some neurological deficits 
accompanying PD36, Huntington’s disease39, spinal cord inju-
ry40, stroke41, and brain injury42. 

The malignant degeneration of fetal tissue was not re-
ported so far. Notwithstanding, the difficulty in obtaining hu-
man fetal tissue for scientific purposes, the prohibitive regu-
lations in some countries, and ethical issues, have limited the 
broad usage of these cells in the clinical field. Furthermore, 
many intracellular signaling molecules like cAMP, Ca2+ or 
GSK3 were reported to be important for in vivo neurogenesis 
and early neuronal development43. In particular, it has been 
reported that the inhibition of phosphodieserase 4 (PDE4) by 
rolipram strongly increases cognitive functions and the num-
ber of newly generated neurons in the hippocampus44.

Previous studies have demonstrated that the transcrip-
tion factor CREB is expressed by neuroblasts during mat-
uration45, and that its downregulation or deletion leads to 
defects in neuronal progenitor cell expansion, neuronal sur-
vival, and differentiation46. It has been demonstrated in pre-
vious studies that GABAergic afferences through the perfo-
rate pathway promote functional maturation and synaptic 
integration of neuroblasts in the subgranular zone of the 
dentate gyrus47. These findings corroborate with the men-
tioned in vitro evidence, which have shown the central role 
that electrical excitation promotes on neuronal maturation. 
In this regard, gap-junctional coupling between young and 
mature cells is also considered to be extremely relevant. It is 
accounted as an essential step in the functional integration 
of grafted murine and human NSCs into the host neural cir-
cuitry, even before mature electrochemical synaptic com-
munication has been established. In addition, gap junction 
formation apparently prevents death of host neurons and 
inhibits gliosis, thus yielding stem cells to exert a protective 
effect on host cells48. 

In the in vivo microenvironment, many molecules play 
important roles in the homeostasis of endogenous stem 
cells. Tenascin C, an extracellular matrix glycoprotein that 
participate in the neural embryonic development, is highly 
expressed in the sub-ventricular zone (SVZ) in mice, and it 

is responsible for switching NSC responsiveness from the fi-
broblast growth factor to the epidermal one by regulating the 
expression of the EGF receptor34. Furthermore, Wnt, N and 
Hedgehog pathways are required for the self-renewal and the 
differentiation of stem cell progeny in a variety of systems49.

Other studies have also reported successful integration 
of transplanted stem cells in different central nervous sys-
tem (CNS) structures, whether in the hippocampus50 or in 
the spinal cord51. The latter was assumed to barely support 
neuronal differentiation and integration, due to the tenden-
cy of glial fate commitment by the spinal cord white matter. 
Nevertheless, more recent studies have contributed to pull 
down the paradigm that the spinal cord only offers a hostile 
environment for stem cells. Yan et al.19 grafted human fetal 
spinal cord NSCs into the lumbar cord of normal or injured 
adult nude rats. These authors have also observed large-scale 
differentiation of these cells into neurons that formed axons 
and synapses and established extensive contacts with host 
motor neurons. 

Most interestingly, the microenvironment seemed to ac-
tively participate in the fate choice, since centrally located 
cells predominantly underwent neuronal differentiation, 
whether those under the pia mater persisted as NSCs or un-
derwent astrocytic differentiation. In accordance with these 
observations, we demonstrated, by fluorescence-guided 
patch clamp, complete functional maturation and synaptic 
integration of implanted NSCs into the normal hippocam-
pus of rats50. Physiological neurogenesis in the hippocam-
pus is supposed to be involved in mnestic processes, since 
cell turnover facilitates the incorporation of new informa-
tion and enhances learning performance18. At which extent, 
artificially implanted cells into the hippocampus are able to 
interfere with learning, and behavioral performance of host 
animals remains an intriguing issue yet to be clarified.

Embryonic stem cells
It has been demonstrated that ESCs can restore func-

tional deficits in the animal model of PD52, Huntington’s 
disease53, spinal cord injury54, and stroke55. These cells re-
tain large proliferative capacity, and thus can be expanded 
in culture over longer periods. Nevertheless, the high prolif-
erative capacity confers a trend to malignant degeneration, 
since it is difficult to control their in vivo growth after trans-
plantation52. In fact, these authors reported the occurrence 
of malignant teratoms in 25% of the animals implanted with 
such kind of cells. Some strategies are currently being con-
sidered to overcome this problem, like the previously selec-
tion of cells with slower growth rate56; nevertheless, these 
approaches must be validated by the scientific community 
before ESCs can be safely used in human trials.

Considering the importance of the stem cell niches, in 
vivo studies help to provide insights in how native stem 
cells or engrafted ones may interfere or be influenced by the 
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delicate and complex balance encountered in the niche mi-
croenvironment. In this direction, Joannides et al.57 found 
that transplanting human ESCs into the diseased brain, the 
microenvironment accelerated the development into a ma-
ture neuronal phenotype. 

Not less important is the response of the host immune 
system to the engrafted cells. Because local trauma and 
inflammation are inevitable in transplantation surgery, 
it is possible that inflammation and immune reaction af-
ter transplantation of NPCs influence survival and dif-
ferentiation of grafted cells. By transplanting allogeneic 
ES cell-derived NPCs, Ideguchi et al.58 have reported ac-
cumulation of microglia, macrophages, and lymphocytes 
around the graft and that immunosuppression promotes 
actually neuronal differentiation rather than survival of 
grafted NPCs. Furthermore, they found that the ratio  
of neurons to astrocytes was higher in the grafts of im-
munosuppressed mice. They also cultured these cells in 
vitro, and by the addition of interleukin-6 (IL-6), a dec-
rement in the neuron/astrocyte ratio was observed. 
Conversely, Oh et al.59 reported an enhancement of the 
neurogenic potential of rat adult hippocampal progeni-
tor cells when they were exposed to IL-6. Such contra-
dictory results demand further investigation in order to 
determine the actual role of IL-6 in neurogenesis.

Regarding the safety use of ESCs in the clinical practice, 
the efforts must be directed towards growth control and de-
velopment of strategies to reduce the incidence of tumor for-
mation after implantation. In this regard, promising solutions 
have been considered. Cho et al.56, for instance, developed a 
method to pre-select nononcogenic cells, based on the for-
mation of neural rosettes during expansion. Other authors 
are working on the overexpression of pro-neurogenic genes, 
like Nurr1, which supposedly can also reduce tumor forma-
tion60. Time will show if this category of cells will be valuable 
for clinical transplantations.

Induced pluripotent stem cells
Wernig et al.61 successfully demonstrated the induction of 

a mature neuronal fate after implantation into the fetal mouse 
brain, and amelioration of motor deficits in the rat model of 
PD. However, these promising results need to be reproduced 
by other authors. Additionally serious concerns about the bio-
logical safety of these cells still remain; first, c-Myc is a known 
oncogenic gene, which certainly favors occurrence of teratoms 
and possibly other malignant tumors; second, the lentniviral 
transfection necessary during construction of this cell line in-
creases the biological risk in human subjects. Trying to solve 
these issues, some authors have developed a similar cell line 
created without the oncogenic gene c-Myc, at the expense of a 
considerably lower efficiency rate62. Additionally, they are try-
ing to generate IPS cells based on plasmid vectors, dispensing 
with the incorporation of new genetic material by the modi-
fied cell63. These strategies represent encouraging solutions 
that might enable the use of IPS cells for brain repair.

The CNS is recognized as the most complex and special-
ized system of a living organism. This complexity relies on 
its intrinsic cellular components and interactions between 
itself and the whole organism. Although much is still to be 
clarified about the idiosyncratic mechanisms that govern 
the homeostasis of neuronal populations, including an in-
finite range of molecular components, networking and 
communication subsystems, altogether orchestrating the 
modus operandi of the nervous system, the advancements 
provided by the stem cell investigation have substantially 
contributed to our current understanding of the neurogenic 
potential of the in vivo and in vitro cells. 

Fetal NSCs cells still present the best results when 
compared to other stem cell types in terms of neurogenic 
potential, survival, and safety in in vivo models. More stud-
ies, however, are required in order to compare, in the men-
tioned parameters, the efficiency on generating functional 
neuronal cells from various stem cell systems.
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